
Exploring the Performance of Spark for a Scientific
Use Case

Saba Sehrish
Fermi National Accelerator Laboratory

P.O.BOX 500
Batavia, IL 60510

Email: ssehrish@fnal.gov

Jim Kowalkowski
Fermi National Accelerator Laboratory

P.O.BOX 500
Batavia, IL 60510

Email: jbk@fnal.gov

Marc Paterno
Fermi National Accelerator Laboratory

P.O.BOX 500
Batavia, IL 60510

Email: paterno@fnal.gov

Abstract—We present an evaluation of the performance of
a Spark implementation of a classification algorithm in the
domain of High Energy Physics (HEP). Spark is a general engine
for in-memory, large-scale data processing, and is designed for
applications where similar repeated analysis is performed on the
same large data sets. Classification problems are one of the most
common and critical data processing tasks across many domains.
Many of these data processing tasks are both computation- and
data-intensive, involving complex numerical computations em-
ploying extremely large data sets. We evaluated the performance
of the Spark implementation on Cori, a NERSC resource, and
compared the results to an untuned MPI implementation of the
same algorithm. While the Spark implementation scaled well,
it is not competitive in speed to our MPI implementation, even
when using significantly greater computational resources.

I. INTRODUCTION

In High Energy Physics (HEP), datasets from both ex-
periments and simulations are increasingly large and com-
plex, broadening the gap between what analyses can and
should be done to advance the scientific discovery process.
Analyses are constrained by the computation and storage
capabilities available to the scientists, and by the computing
model common in HEP. The techniques used to organize
applications and algorithms contribute to the limitations of
this model, including large memory space requirements (∼ 2
GB/process) and lack of parallelism (typically singly threaded
processes are used). These in turn impact how much data
can be used conveniently in analysis. Smaller analyses can
be done efficiently using today’s technologies, but there are
many tasks that take days or weeks to complete; this high
latency is detrimental to exploratory analysis. In particular, the
computing model makes it difficult to make use of large-scale
multicore computing facilities.

Most HEP data processing involves tasks such as data
classification, integration, pattern matching and parameter
estimation (optimization, minimization and fitting). At the
scale of petabyte datasets, such analyses can’t be done with
low-latency, nor in near-real-time, without leveraging parallel
computing technologies and hardware.

Classification is the process of assigning objects or events
to a set of possible discrete classes. In HEP, the typical
classification problem involves relating an observed signal in
a detector to the physical particles or processes that resulted in

the production of that detector signal. For example, identifying
the observation of a high-energy muon by recognizing the
pattern of light flashes observed in a scintillating material
caused by the passage of the muon, as opposed to the pattern
that might be left by a different type of particle, such as
an electron. [8]. In this paper, we present our experience of
implementing a classification algorithm used by the NOvA [4]
experiment, used to identify the type of neutrino interaction
responsible for leaving an observed set of energy deposits in
the NOvA detector, using Apache Spark. [5], [11]

Spark allows for in-memory data processing, and is an
attractive approach for the cases where repeated analysis is
performed on the same data sets. Spark provides implicit
parallelization of the physicists’ data processing algorithms,
thus providing the possibility of good scaling to large numbers
of cores without requiring the physicists to master complex
parallel programming techniques. This provides important ease
of use for “casual” programmers, for whom the goal is rapid
performance of analysis, who are usually not interested in
developing specialized parallel programming skills. Addition-
ally, a supported and tuned installation of Spark is available at
NERSC [6], thus eliminating the need for the user to master
the installation and tuning of the complex Spark system.

The goal of this exploratory work was to evaluate Spark
for an HEP analysis use case, using a sufficiently large data
sample and involving a typically complex set of compute-
intensive calculations, and to compare that solution with a
parallel programming technology more traditionally used in
HPC: MPI.

In Section II, we present the algorithm. In Section III,
we provide details about implementation in Spark and MPI.
Section IV explains the experimental setup, and describes
results. We provide conclusion and future work in Section V.

II. NOVA LIBRARY EVENT MATCHING ALGORITHM
(LEM)

The NOvA problem is to classify an unknown event by
comparing it to a large number of known simulated events. The
metric used for comparison is loosely based on the electrostatic
energy comparison for two systems of point charges laid on top
of each each other. The charges are taken to be the recorded
energy deposits (hits) in the NOvA detector. Once the very best

FERMILAB-CONF-16-072-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy

matches are found (here, the best 104 of all simulated events),
their known properties are used to estimate the properties of
the event to be classified. The details of the matching criteria
calculations are described in the paper [3].

We only describe a very simple high level equation here,
which we used to implement the algorithm. An event A to
be classified is matched with an event B in the simulated
events; the match score is defined as E = 1

2EAA + 1
2EBB −

EAB where EAA is the self-energy (repulsion) of event A’s
charges, EBB is the self-energy of event B’s charges, and EAB
is the (negative) energy due to the the A/B attraction. The self
energy of the simulated events, EBB is pre-calculated. The
EAB calculation is shown in the algorithm 1. The input event
and template is the same for EBB and EAA.

Algorithm 1: Algorithm to calculate electrostatic energy,
this function accepts an event and a template, each event
and template has the following information per hit: cells
(c), planes (p) and energy (e), and the number of hits (N).

1 function calcEEnergy (A,B);
Input : Event A and template B;
N= the number of hits in the event to be classified;
pi, ci, ei= plane and cell coordinates and energy of hit i
in the event to be classified; i ∈ N − 1;
Nk= the number of hits in the template k;
pk,i, ck,i, ek,i= plane and cell coordinates and energy of
hit i in the template k; i ∈ Nk − 1;
Output: The metric value for measuring the closeness of

template k to the event.
2 β = 0.5;
3 T =function of the distance (motivated by the

electrostatic analogy) between the hits; see [3] for details;

4 EAB =
N−1∑
i=0

Nk−1∑
j=0

ei
βek,j

βT (pi − pk,j , ci − ck,j);

5 return EAB ;

III. IMPLEMENTATION

A. Using Spark

1) Background: Spark [5] was developed for those applica-
tions that reuse a working set of data across multiple parallel
operations. It introduces a concept of Resilient Distributed
Datasets (RDDs), which is a collection of elements partitioned
across the nodes of the cluster that can be operated on in
parallel. Spark SQL is a Spark module for structured data
processing [7]. It provides a programming abstraction called
DataFrame, which is a distributed collection of rows organized
into named columns [2]. A Spark DataFrame is an abstraction
for selecting, filtering, aggregating and plotting structured data.
These operations are optimized using the catalyst optimizer.
The Catalyst Optimizer leverages Scala’s pattern matching
and quasiquotes for logical optimization, physical planning,
and run-time code generation. Spark applications run as
independent sets of processes on a cluster, coordinated by
the SparkContext object in the main program (called the

driver program). We used Spark DataFrame API (in Java) to
implement the classification algorithm.

2) Implementation Details: Input Data Format The
NOvA data is stored in the form of ROOT trees [10], which is
the most common data format in HEP. The ROOT I/O format
is not directly accessible in Spark unless there is a ROOT I/O
reader and writer implemented for use with Spark and HDFS.
The data format is relatively simple for this problem. Data
is kept in two types of files. The first has the properties of
an event, e.g. number of prongs, number of hits, total PE,
etc. The second includes cells, planes, etc per event, which
are used to calculate the score. We used two approaches to
deal with the data format; the first approach was to use the
ASCII tabular form in text files, and the second approach
was to use the JSON format. The first approach was used for
RDD implementation, and its disadvantage was the extensive
and repeated parsing of the data to retrieve the fields for
calculation.

The second approach was used for DataFrame implemen-
tation, and the data was directly read into DataFrame thus
allowing direct operations on a single row of the DataFrame.
We will only discuss the second approach in this paper. Spark
SQL can automatically infer the schema of a JSON dataset and
load it as a DataFrame [5]. We used jsonFile, which loads data
from a directory of JSON files where each line of the files is
a JSON object.

Limitations/Constraints: To make the data ready for Spark
implementation, we encountered the following limitations. Our
solutions are also described.

1) Multi-line JSON form not supported: Spark does not
support typical JSON file format, rather it expects each
line must contain a separate, self-contained valid JSON
object. As a consequence, a regular multi-line JSON file
does not work. We made sure that JSON files we create
consist of one JSON object per line.

2) Adding a new column to the DataFrame: To perform
the score calculations and classification, we needed
one DataFrame with all the required fields from both
metadata and data files. Hence, adding a new column
to the DataFrame from another DataFrame was a nat-
ural choice. However, it was discovered that Spark
DataFrame doesn’t support adding a column from a
different DataFrame, it only supports columns within
the same DataFrame.

3) Using join operation instead: In order to address
the previous hurdle we attempted to use inner join,
but the overhead of the join operation was extremely
overwhelming that we had to pre-process the data, and
make amendments to data files before copying them to
Cori

4) Getting data out of DataFrame by index of column:
Another minor issue with using data frame API was
getting data for a particular row given the column name.
It works with a column index, and not the column
name. e.g. getDouble(int index) is correct but
getDouble("columnX") is not.

The schema of final JSON file we used to create DataFrames
is as follows:
r o o t
|−− c : a r r a y (n u l l a b l e = t r u e)
| |−− e l e m e n t : l ong (c o n t a i n s N u l l = t r u e)
|−− EventID : long (n u l l a b l e = t r u e)
|−− e : a r r a y (n u l l a b l e = t r u e)
| |−− e l e m e n t : l ong (c o n t a i n s N u l l = t r u e)
|−− p : a r r a y (n u l l a b l e = t r u e)
| |−− e l e m e n t : l ong (c o n t a i n s N u l l = t r u e)
|−− ccnc : l ong (n u l l a b l e = t r u e)
|−− mode : long (n u l l a b l e = t r u e)
|−− N : long (n u l l a b l e = t r u e)
|−− EBB: do ub l e (n u l l a b l e = t r u e)
|−− t h e t a 1 : d ou b l e (n u l l a b l e = t r u e)
|−− t h e t a 2 : d ou b l e (n u l l a b l e = t r u e)

c, p, e and N are used in the algorithm 1 to calculate
electrostatic energy. ccnc and mode are used to identify the
type of an event. theta1, theta2 and N are used in the
filter operation specified in Section 3.3. Spark team does not
recommend JSON format for production level analyses, we
will investigate alternate formats in the future work.

There are two types of RDD operations: transformations
and actions. A transformation creates a new dataset from
an existing one, and an action returns a value to the driver
program after running a computation on the dataset. For ex-
ample, map is a transformation that applies a function to each
element in the dataset and returns a new RDD representing
the results. In our implementation, we used a map function to
calculate score for each match between event to be classified
and events in the library. We use DataFrames and convert
them to RDDs before running transformations. A reduce
is an action that applies some function to all the elements
of the RDD, aggregates and returns the final result to the
driver program. We used top method to aggregate the best
N matches. Figure 1 shows the transformation and action in
our implementation.

Our implementation consist of Java classes and methods
for the matching score calculation. Then from the Spark
API, we used the map method to calculate EAB for each
library event with event to be classified. We formed tuples
out of the DataFrames, where each tuple was of the form
Tuple2<Long, Tuple2<Long, String> >. The first
Long corresponds to the Event ID of the library event, needed
for the look-up to find properties of the event. The second
Long is for the score, and the String is for the properties of
an event. Since the map method can not be directly applied to a
DataFrame, a conversion to RDD is needed before using map.
Since map is a transformation, the score calculation is not
performed until an action is called. We used the top method to
return the top matches and provided custom implementation of
a comparator to work on the tuples we created. Figure 1 shows
the sequence of map and top for each event classification.

Each transformed RDD is recomputed each time an action
is run on it. We used the cache() feature available in Spark
to persist the initial data set in the memory. Spark keeps the
elements in memory for much faster access the next time.
Spark system creates a DAG for executing user program and
divides the program execution into different stages as shown
in Figure 2. The DAG created for execution shows a green

Transforma
tion Action

List <Tuple2<Long,
Tuple2<Float,

String>>>scores =
templates.filter().map(…){…
//Calculate E = Eaa + Eab + Ebb

for all events in template
}

scores.top(numbest
matches, new

TupleComparator())

Output

read JSON files
(DataFrame templates = sqlContext.jsonFile(“lemdata/”);)

DataframeDataframeDataframeDataframe
(LEM Data)

Transforma
tion Action

List <Tuple2<Long,
Tuple2<Float,

String>>>scores =
templates.filter().map(…){…
//Calculate E = Eaa + Eab + Ebb

for all events in template
}

scores.top(numbest
matches, new

TupleComparator())

Output

Library of events is read
once and stored in

Dataframes in memory

Event 1

Sequence of operations
per event classification

Fig. 1: Flow of operations and data in Spark. This figure
shows the sequence of operations that take place per event
classification. The green boxes correspond to the program flow
for an event to be classified. The dotted blue box represents
the load/file read operation that happens only once, and the
DataFrame is loaded in the memory, and used for event
classification.

dot as an indication of data persisted in memory. There is
also support for persisting RDDs on disk, or replicated across
multiple nodes [5]. In our case, we didn’t persist the computed
RDDs because computations vary per event to be classified as
shown in the equation for calculating EAB .

Optimization The number of EAB calculations are directly
proportional to the number of events in the template library,
hence we used an optimization to reduce the number of events
to look at thereby reducing the number of EAB calculations.
The filter operation is used to implement this functionality.
Our filter is based on two characteristics of the events, one is
number of hits and other is the angle theta along x and y
direction. The filter limits the events to have number of hits
in the range IH/2 to 2× IH , where IH is the number of hits
in the event to be classified.

B. Using MPI

Input Data Format. As mentioned earlier, the NOvA
source data is stored in the form of ROOT trees [10]. The
MPI implementation transforms the trees into data structures
similar to the Spark JSON schema: events are represented by a
struct containing relevant attributes and arrays for cell position,
plane position, and cell energy. A second data structure is
maintained with the entire set of metadata attributes for each
event. A major difference is that the arrays use fundamental
types (shorts for position and floats for energy). A custom
output routine writes the event structure directly into binary
disk files. The result of the conversion is 200 files containing
the entire LEM dataset with the number of events per file
matching the original ROOT files. A custom input routines
reassembles the in-memory representation from the binary data

RDD

map

mapPartitions

mapPartitions

InMemoryColum
narTableScan

mapPartitions

map

filter

top

Stage 5

Fig. 2: DAG showing one of the stages. Each blue box
corresponds to one individual operation (transformation or
action). The first three boxes represent getting the input data
i.e. event to be matched and the templates. The last three boxes
represent two transformations and one action performed on the
data. The cached DataFrame is denoted by the green highlight.

files. The original ROOT dataset did not have equal number of
events or equal file size; the transformed binary dataset echoes
this feature and does not attempt to correct it.

The data distribution scheme among the processing ranks is
rigid and simple: each rank consumes (TotalFiles / TotatRanks)
number of files and build a private in-memory dataset using
these events. The size of data files vary from hundred of MB
to less than five GB. Therefore the only run represented in
this paper is 200 files and 200 ranks or one file per rank. The
output data (the 10K best matches) is returned as an array eight
byte integers. The integers contain of the score, the event ID
and its type information. Such a compact form permits for an
efficient implementation of the merge sort operator used in the
reduction stage.

Calculations. The calculations required by the algorithm
were easy to implement using C++ and MPI. Several high
performance numeric and data structure libraries are readily
available for C++. Armadillo [1] and the C++ STL were
used to implement the computations. The LEM MPI imple-
mentation uses datatypes and structures that can be directly

node7
node…

node1

GPFSNOvA nodes

JSON files
200 metadata

200 event

art / ROOT files
200 metadata

200 event

NOvA
simulation

Binary files
200 metadata

200 event

Binary
converter~74M events

core-N
core-1

Rank Assignment
(core within node)

Load my subset of
template events

into memory

Order by metadata
values theta1 &

nhits

receive broadcast
event-to-match

find range of
template events to

match against using
metadata

run LEM on range

sort by best 10K
results

all-reduce to merge
results from me to
find overall best

Initialize Run

if rank0, get event
and broadcast

if rank0,
report
results

Fig. 3: Flow of operations and data in the MPI implementation.
This figure shows the sequence of operations that take place
per event classification.

manipulated by these libraries. Armadillo can make good
use of available vector units and perform calculations using
LAPACK and BLAS when necessary [1]. For example, we
used Armadillo dot product in the LEM calculation and STL’s
std::partial sort for sorting results.

The operations in main body of the application are divided
the following stages, also shown in Figure 3: MPI_Bcast
to hand out an event to be classified, scoring to find the
best 10K matches, sorting to sort the 10K matches, and
MPI_reduce to collect the best 10K across the all ranks
(custom reduce operator is used).

Optimization. The MPI implementation reduces the num-
ber of events considered using the number of hits. Library
events for scoring on each rank are only considered if its hit
count is in the range (IH/2, IH*2) where IH is the hit count
of the event to be classified.

IV. RESULTS AND DISCUSSION

We evaluated the event classification rate (i.e. number of
events classified per second) by comparing a set of events
with a library of ∼ 74 million events. The library data is in
200 files in the range of couple of hundred MBs to couple

hits

co
un

t

1

10

100

1000

10000

1e+05

1e+06

1e+07

0 200 400 600 800 1000

+mu CC
+e CC
−e CC
−mu CC
+mu NC
+e NC
−e NC
−mu NC

●

●

●

●

●

●

●

●

Fig. 4: This graph shows the distribution of the number of hits
per event in the template library. Each line corresponds to a
different type of event. Most of the events in the library have
fewer number of hits.

of GBs. We used varying number of hits for each event to be
classified, ranging from 20 to 250. The reason for using this
range is that the exploration of data sample revealed that the
common number of hits per event is less than 100, also shown
in the Figure 4.

For MPI, we classified 100 events. To keep the configuration
simple, 200 cores were used by specifying 7 nodes with 32
cores per node in the job allocation request. Each MPI rank
reads one file regardless of its size. Each file size is in the
range of hundreds of MBs to a few GBs. Figure 5 shows the
scoring time, in seconds, for each of the 100 events being
classified. The scoring time is the wall clock time to calculate
the scores of all the templates that pass the filtering condition.
Most of the events take less than 50 milliseconds. Figure 6
shows the time to gather the best 10 thousand scores; this
is the time for the local sort and the global reduction. All
the events took between 1.8 and 2.2 milliseconds to perform
sorting and reduction. No event took more than 0.4 seconds
to classify, as can be seen in Figure 7.

The rigid file distribution among MPI ranks, along with the
uneven files sizes and the filtering optimizations resulted in
uneven load across ranks. However, the initial performance
results with this untuned MPI implementation were promising
enough to be used as performance baseline, hence no further
tuning was done for load balancing or numerical optimization.
Figures 5, 6, and 7 also show that the score calculation in MPI
application is a costly operation as compared with the sorting
and gathering best 10 thousand scores. Hence, if we needed
to improve a phase that phase would be the score calculation.
Measurement of the time for each stage, easily done in the

Event scoring time (seconds)

C
ou

nt

0

5

10

0.00 0.05 0.10 0.15 0.20

Fig. 5: The distribution of score times for the sample of 100
events to be classified using MPI with 7 nodes on Cori.

Best 10K sorting and reduction time (seconds)

C
ou

nt

0

2

4

6

8

10

0.0019 0.0020 0.0021

Fig. 6: The distribution of time taken to obtain the best 10
thousand scores, using MPI.

MPI implementation, is not possible in the Spark application.
For Spark, the results show the total time to classify an

event. Due to the lazy evaluation, we were unable to isolate
the timing results of different execution phases. The figure of
merit is the number of events that can be classified per second.

Event processing time (seconds)

C
ou

nt

0

20

40

60

80

0.1 0.2 0.3 0.4

Fig. 7: The distribution of the total time to classify each event,
using MPI.

We configured Spark to use 28 GB per node, and changing it
to a larger value did not improve the performance. Number
of cores was left at the default value (32 cores), and the
number of nodes was varied. There is an overhead associated
with caching that appears in the run time for the first event,
these numbers are omitted from the graphs as it is a one time
cost and caching reduces the event classification time of the
subsequent events. Using 16 nodes it takes ≈ 76 seconds to
classify an event. Investigation of the distributed tasks showed
that some nodes finished in a few seconds while the slowest
took almost 76 seconds. Hence both the MPI and the Spark
solutions have a load imbalance. However, in Spark we can
not distinguish between the time spent on filtering or score
calculation or reduction.

The Spark implementation provided us with the opportunity
to perform a scaling study as shown in Figure 8. The number
of nodes was varied from 16 to 1024. We observed linear
scaling until 512 nodes and adding more nodes after 512
does not provide any additional benefits. The untuned MPI
implementation using 7 nodes is 10 times faster than the Spark
implementation using 512 nodes (more than 2.5 events/s as
compared with ≈ 0.25 events/s).

In the following discussion, we present a comparison of the
two implementations and also explain a few reasons behind
the Spark performance.

1) Orchestration: In the MPI implementation, the data
placement, task assignment, and all the communication
steps to perform local sorting and operators for global
reduction was done manually. In Spark, however, data
distribution and task assignment is abstracted from the

nodes

Ev
en

t p
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

20

40

60

80

16 32 64 128 256 512 1024

●●
●
●

●●●●

●●●●

●●

●●

●●

●●

●●●● ●
●
●●

Fig. 8: The dependence of the event processing time on the
number of nodes, using Spark.

user. There are functions available to perform global re-
duction in a distributed environment, which can be read-
ily used. Such a set-up provides ease-of-programming in
a distributed environment. It does mean, however, that
the user has to rely on system optimizations provided by
Spark’s implementation to improve any performance.

2) Scaling: The Spark implementation provided good scal-
ing without requiring any tuning to the implementation
and developer expertise in parallel algorithms. With the
MPI implementation, providing scalability is challeng-
ing and requires a different distribution of input files
every time with the varying number of tasks. Additional
algorithm need to be written and maintained for this
implementation to work well as a system.

3) Application tuning: All the transformations in Spark are
lazy, with delayed calculation of results. The transfor-
mations applied to the base dataset e.g. a file are remem-
bered by the system and only computed when an action
is carried out on the dataset. This design enables Spark
to run more efficiently. For example, it can recognize
that a dataset created through map will be used in a
reduce and return only the result of the reduce to the
driver, rather than the larger mapped dataset. Due to
the lazy evaluation, it is hard to isolate slow-performing
tasks and report timing for different stages. In the MPI
implementation, the user has complete control of the
task assignments and data placement. All the steps are
well-defined, hence, performance measurement at each
stage is possible as shown in Figures 5, 6, and 7. Hence,
it is straight forward in the MPI implementation to tune
the application.

4) Wrapped types: We used the Java DataFrame API, and

most of the available operations for our implementation
are available through the Java wrapped types. A lot
of time was spent in boxing and unboxing. It is well
known that wrapped types perform much slower than
the primitive types, as explained in [9]. “... Changing
the declaration of sum from Long to long reduces the
run-time from 43 seconds to 6.8 seconds on my machine.
The lesson is clear: prefer primitives to boxed primitives,
and watch out for unintentional autoboxing ...” [9]. We
did a test on Cori to compare the performance of Float
and float by running a simple Java program based on the
calculations of the classification algorithm, and observed
a performance difference of 28% in using unboxed
types. Hence, we can achieve better performance with
Spark if DataFrames used primitive types. In the MPI
implementation, only primitive types and arrays of those
types were used. Therefore, there are no performance
penalties due to using unnecessary object types.

5) Vectorized linear algebra library: We experienced slow
performance for repetitive numerical computations in
Spark due to unavailability of high performance linear
algebra library. In the MPI implementation, we used
Armadillo, which is a high quality C++ linear algebra
library. The use of advanced libraries without data
conversions, and the ability to use vectorized hardware
allowed MPI implementation to perform exceedingly
well as compared with Spark.

V. CONCLUSION AND FUTURE WORK

We chose the LEM use case because its computational
tasks and processing stages are representative many common
analysis patterns in experimental HEP. These stages include
matrix algebra over a filtered range of data, sorting, and
summarization across the problem space. Spark and MPI are
capable of implementing these kinds of use cases, as demon-
strated in this paper. Each requires a different computing
model than is currently in use in HEP.

Experimental HEP’s current computing model requires
single-process (and mainly single core) applications running at
grid sites, operating on large files that have been staged by data
handling systems. Both the Spark and the MPI solution require
a different computing model, including a distributed dataset
that ultimately resides in memory, and a run-time configurable
number of compute resources. The current model also does not
adequately address multi-core scheduling.

The Spark implementation has shown excellent scaling
given our limited dataset size. We find that Spark also has

a good programming model that hides many of the difficulties
in achieving good scaling. We were able to achieve nearly
perfect scaling up to 512 nodes (or 16K cores) on Cori, without
being concerned about the intricacies of parallel programming.
However, the relative efficiency as compared to the MPI
solution is abysmal. The per-core performance of the untuned
MPI application is approximately 500 times greater that the
best performance we observed from the Spark implementation.

For this technology to benefit our science, we would need
improved floating-point performance available to us within
Spark, especially but not only for linear algebra. We also
need to be able to leverage the vectorization available on
many modern CPUs. In addition, we need better facilities for
profiling performance to guide our optimization efforts. We
suspect that the use of wrapped types leads to the inabil-
ity to make direct use of native high-performance libraries,
which impacts the overall performance. Comparison with our
MPI implementation shows what the hardware is capable
of. Increasing the computational efficiency of Spark while
retaining the simple programming model would make Spark an
attractive approach to HEP’s traditional programming model.

REFERENCES

[1] Armadillo - C++ linear algebra library. http://arma.sourceforge.net.
[2] Dataframe API. http://spark.apache.org/docs/latest/

sql-programming-guide.html.
[3] Library Event Matching event classification algorithm for electron

neutrino interactions in the NOvA detectors. http://arxiv.org/abs/1501.
00968v2.

[4] NOvA Neutrino Experiment. http://www-nova.fnal.gov.
[5] Spark. https://spark.apache.org.
[6] Spark Distributed Analytics Framework at NERSC.

https://www.nersc.gov/users/data-analytics/data-analytics/
spark-distributed-analytic-framework.

[7] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. Spark SQL: Relational Data Processing
in Spark. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages 1383–1394,
New York, NY, USA, 2015. ACM.

[8] Pushpalatha C. Bhat. Advanced analysis methods in high-energy
physics. AIP Conf. Proc., 583:22–30, 2001. [,22(2001)].

[9] Joshua Bloch and Guy L. Steele. Effective Java : programming language
guide. The Java Series. Addison-Wesley, Boston (Mass.), Toronto, Paris,
2001. La couv. porte : Foreword by Guy Steele.

[10] R. Brun and F. Rademakers. ROOT: An object oriented data analysis
framework. Nucl. Instrum. Meth., A389:81–86, 1997.

[11] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster Computing with Working
Sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

