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Four-loop Standard Model effective potential at leading order in QCD

Stephen P. Martin

Department of Physics, Northern Illinois University, DeKalb IL 60115,

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510

The leading QCD part of the four-loop contribution to the effective potential for the

Standard Model Higgs field is found. As a byproduct, I also find the corresponding

contribution to the four-loop beta function of the Higgs self-interaction coupling.
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I. INTRODUCTION

The effective potential [1–3] is an important tool for analyzing spontaneous symmetry breaking

associated with scalar field vacuum expectation values (VEVs). In the Standard Model, it provides

a quantitative link between the Lagrangian parameters and the VEV of the Higgs field. The

fact that the Higgs boson mass is near 125 GeV implies that the electroweak vacuum is close to

metastable, motivating a program of precise study of the stability criteria [3–21]. Of more general

importance is the fact that the effective potential minimization condition allows one to determine

and eliminate one of the Lagrangian parameters of the theory, typically the negative Higgs squared

mass parameter, in favor of the radiatively corrected VEV.

The effective potential Veff(φ) can be obtained as the sum of one-particle irreducible vacuum

Feynman graphs, computed in terms of particle masses and couplings that depend on a constant

background scalar field φ. In the normalization conventions of the present paper, the canonically

normalized Standard Model Higgs complex doublet field Φ has a tree-level potential

V = m2Φ†Φ+ λ(Φ†Φ)2, (1.1)
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where λ is the Higgs self-interaction coupling, and the negative Higgs squared mass parameter is

m2. The real neutral part of Φ is given by (φ+h)/
√
2, where φ is the constant background field and

h is the physical Higgs real scalar boson field. The complete set of 1-loop and 2-loop contributions

to the effective potential in Landau gauge are known for the Standard Model [22] and for a general

renormalizable field theory [23]. Also known [24] are the 3-loop contributions that only involve the

strong coupling g3 and the top-quark Yukawa coupling yt. Contributions from Goldstone bosons

can be resummed [25, 26] in order to avoid potential infrared singularities and spurious imaginary

parts. The value of the background field at the minimum of the effective potential is the radiatively

corrected VEV of the Higgs field.

The purpose of this paper is to extend the existing calculations of the effective potential Veff(φ)

by obtaining the 4-loop contributions that are leading in the strong coupling g3, using dimensional

regularization [27–31] and the MS renormalization scheme [32, 33]. These contributions come

from those diagrams that involve only quarks, gluons, and QCD ghost fields. I will work in the

approximation that all quarks are massless except the top quark. This is an excellent approximation

beyond 1-loop order, due to the small magnitudes of the Yukawa couplings of the bottom and

other quarks. Then, in dimensional regularization, at least one top-quark loop must be present in

a diagram in order for the contribution not to vanish. At loop order ℓ, the resulting leading QCD

contribution is proportional to g
2(ℓ−1)
3 t2 multiplied by a polynomial of order ℓ in ln(t), where

t ≡ y2t φ
2/2, (1.2)

is the field-dependent MS top-quark squared mass, and

ln(t) ≡ ln(t/Q2), (1.3)

where Q is the MS renormalization scale.

The organization of the remainder of this paper is as follows. In section II, I review the basis

of scalar integrals used in the calculation. The effective potential in

d = 4− 2ǫ, (1.4)

spacetime dimensions is given in section III in terms of bare quantities and the basis integrals. In

section IV, the bare parameters are re-expressed in terms of MS quantities to obtain the effective

potential in that renormalization scheme, after expanding in ǫ. (This is more efficient than doing

a separate calculation of counterterm diagrams.) In the process, I obtain the leading QCD con-

tribution to the 4-loop beta function for λ, from the requirement that poles in ǫ do not appear in

the effective potential when written in terms of the renormalized parameters. Some of the results,

when given in general form in terms of group theory invariants, are rather lengthy and therefore

are provided in ancillary electronic files rather than in print. Section V concludes with some brief

comments on the numerical impact of the new results.
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II. THREE-LOOP AND FOUR-LOOP INTEGRAL BASIS

In the approximation of this paper, the only mass scale (other than the renormalization scale) is

the top-quark mass. Therefore, it is convenient to write results in terms of Euclidean momentum

integrals with each propagator having dimensionless mass 0 or 1. The dependence on the bare

top-quark mass is then restored by dimensional analysis. Only integrals having an even number of

massive propagators meeting at each vertex are needed in this paper. Momentum integrations in

d dimensions are normalized by

∫

p
≡

∫
ddp

(2π)d
, (2.1)

so that the 1-loop vacuum master integral is defined by

A ≡
∫

p

1

p2 + 1
=

Γ(1− d/2)

(4π)d/2
. (2.2)

At 2-loop order, no new master integral appears. The necessary 3-loop and 4-loop integrals have

been studied and used in refs. [34–51]. Important applications include the calculations of the 4-loop

QCD corrections [41, 45, 46] to the ρ parameter and decoupling rules for αS and light quark masses

across heavy quark thresholds [43, 51]. Figure 2.1 shows a basis for the master integrals needed [39]

for single-scale gauge theories at 3-loop order and 4-loop order. Each solid line represents a massive

propagator denominator, and each dashed line represents a massless propagator denominator, and

the Euclidean loop integrations are normalized according to eq. (2.1). So, for example,

I42 ≡
∫

p

∫

q

∫

k

1

p2q2(k2 + 1)[(p + q + k)2 + 1]
. (2.3)

Also needed in the basis are products A2, A3, A4, AI40, and AI42. All of the integrals used in this

paper are reduced to the basis by repeated application of the integration by parts method [52],

using a strategy similar to that described in ref. [39].

The integrals I42, I53, and I64 have non-zero masses confined to a single 1-loop self-energy

subdiagram, and are therefore known analytically in terms of Γ functions. In general, it is sufficient

to have results for the basis integrals as expansions in ǫ. However, with the basis chosen here, the

coefficients of the basis integrals have poles in 1/ǫ in addition to the poles inherent in the basis

integrals.† This means that it is necessary to have the expansions to certain positive powers

of ǫ in most of the cases. The coefficients of expansions in ǫ of the other integrals have been

given numerically with high precision and to sufficiently high order in ǫ in [40], using the Laporta

difference equation method [53]. In principle this is enough for practical purposes, but it is nice

to have analytical versions as well. These have been provided in refs. [40, 47, 49, 50]. Table 2.1

shows the order in ǫ to which each basis integral is needed in the present paper, as well as the

highest order to which it is known analytically in terms of simple ǫ-independent sums, and the

† For an alternative basis with the nice property that coefficients do not contain extra poles in ǫ, see ref. [44, 48].
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I40 I42 I51 I53 I60 I62

I63 I64 I72 I73 I84 I93

FIG. 2.1: The 3-loop and 4-loop scalar basis integrals with one mass scale and an even number of massive
propagators at each vertex. Massive propagator lines are solid, and massless propagator lines are dashed.
The first subscript is the total number of propagators, and the second is the number of massless propagators.

TABLE 2.1: Summary of present analytical knowledge of 3-loop and 4-loop basis integrals needed in this
paper and depicted in Figure 2.1. The second row shows the order in the expansion in ǫ needed here. The
third row shows the highest order in the ǫ expansion to which the integral is presently known analytically
in terms of simple ǫ-independent sums, while the fourth row gives the source reference for that expansion.
All integrals were also previously evaluated numerically to the necessary orders and beyond in ref. [40].

integral I40 I42 I51 I53 I60 I62 I63 I64 I72 I73 I84 I93

needed ǫ3 ǫ4 ǫ4 ǫ3 ǫ2 ǫ3 ǫ2 ǫ1 ǫ1 ǫ1 ǫ0 ǫ1

known ǫ5 ǫ∞ ǫ4 ǫ∞ ǫ2 ǫ3 ǫ5 ǫ∞ ǫ3 ǫ1 ǫ0 ǫ1

source [49] [40] [50] [40] [50] [49] [47] [40] [49] [50] [50] [50]

source reference that provides that expansion. The (probably) transcendental numbers appearing

in these coefficients up to the orders needed in this paper are π, ln(2), and

ζn =
∞∑

k=1

1

kn
, (2.4)

an = Lin(1/2) =
∞∑

k=1

1

2kkn
, (2.5)

s6 =
∞∑

n=1

n∑

k=1

(−1)n+k

n5k
, (2.6)

although the last quantity cancels out of the results below. (The absence of this quantity could

presumably have been made manifest by using the alternative basis of [44, 48].)
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III. EFFECTIVE POTENTIAL IN TERMS OF BARE QUANTITIES

In this section, I find the 4-loop effective potential in terms of the bare quantities in d = 4− 2ǫ

dimensions. These include the external scalar field φB and the bare Yukawa coupling ytB and

QCD coupling g3B . In the next section, the results will be converted to MS parameters. The loop

expansion for the effective potential is written as

Veff =

∞∑

ℓ=0

V
(ℓ)
B . (3.1)

The tree-level potential is

V
(0)
B =

m2
B

2
φ2
B +

λB

4
φ4
B , (3.2)

where λB and m2
B are the bare Higgs self-coupling and squared mass parameter, respectively. The

latter will play no role in the following.

At each loop order, the contribution to the effective potential is given by the sum of 1-particle

irreducible Feynman diagrams with no external legs and containing only quarks, gluons, and QCD

ghosts. The pertinent contributions at loop order ℓ ≥ 1 are proportional to g2ℓ−2
3B t

2+ℓ(d−4)/2
B , where

tB = y2tBφ
2
B/2 (3.3)

is the bare field-dependent top-quark mass. Results below will be given in terms of group theory in-

variants: the dimension of the fundamental representation Nc, the Casimir invariants of the adjoint

and fundamental representations CG and CF , the Dynkin index of the fundamental representation

TF , and the number of quark flavors nq. In the Standard Model, these are given by

CG = Nc = 3, (3.4)

CF =
N2

c − 1

2Nc
= 4/3, (3.5)

TF = 1/2, (3.6)

nq = 6, (3.7)

but leaving them general provides more information for comparisons and checks. Diagrams at

2-loop order and higher are calculated with a gluon propagator

−i[gµν/p2 − (1− ξ)pµpν/(p2)2], (3.8)

where ξ = 1 for Feynman gauge and ξ = 0 for Landau gauge. The dependence on the (bare) QCD

gauge-fixing parameter ξ cancels at the level of the basis integrals, providing a stringent check.
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The contributions involving only quarks, gluons, and QCD ghosts, up to 3-loop order, are [24]:

V
(1)
B = −4Nct

d/2
B A/d, (3.9)

V
(2)
B = NcCF g

2
3Bt

d−2
B A2(d− 1)(d− 2)/(d− 3), (3.10)

V
(3)
B = g43Bt

3d/2−4NcCF

{
CG

[ (2− d)3

2(d− 4)2(d− 3)
A3 +

(3− d)(d3 − 13d2 + 50d− 48)

4(d− 4)2
I40

+
(d− 2)2(2d2 − 17d + 32)

2(d− 4)(2d − 7)
I42

]
+ CF

[(d− 6)(d − 3)(d2 − 7d+ 8)

2(d− 4)2
I40

+
(d− 2)2(−d5 + 13d4 − 67d3 + 181d2 − 274d + 188)

2(d− 4)2(d− 3)2
A3

+
(2− d)(2d3 − 21d2 + 67d− 68)

(d− 4)(d− 3)
I42

]
+ TF

[ 2(5− d)(d− 2)3

(d− 6)(d − 4)(d − 3)
A3

+
d3 − 7d2 + 6d+ 16

(d− 6)(4 − d)
I40 + (nq − 1)

4(d − 3)(d− 2)

7− 2d
I42

]}
. (3.11)

For the 4-loop order contributions involving quarks, gluons, and QCD ghosts, there are 51

Feynman diagrams, which are reduced to linear combinations of the 13 integrals from the set

I = {A4, AI40, AI42, I51, I53, I60, I62, I63, I64, I72, I73, I84, I93}, (3.12)

using integration by parts identities. The four-loop effective potential contribution is then organized

in terms of the group theory invariants from the set

G = {C2
G, CGTF , CGTFnq, CGCF , C

2
F , CFTF , CFTFnq, T

2
F , T

2
Fnq, T

2
Fn

2
q}, (3.13)

so that the result is written as:

V
(4)
B = g63Bt

2d−6
B CFNc

∑

G

∑

I

G I V
(4)
B (G,I). (3.14)

The 130 coefficients V
(4)
B (G,I) are rational functions of the spacetime dimension d. Although 58

of them vanish, this list of coefficients is still rather lengthy, so they are not shown in print here.

Instead, they are provided in an ancillary electronic file called V4bare.txt included with the arXiv

submission for this article.

IV. EFFECTIVE POTENTIAL IN TERMS OF RENORMALIZED QUANTITIES

In this section, I obtain the effective potential in the MS renormalization scheme by translating

the bare quantities into MS quantities. Because
∫
ddxV must be dimensionless in order to be

exponentiated in the path integral, one must introduce an arbitrary regularization scale µ, which
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is related to the MS renormalization scale Q by [32, 33]:

Q2 = 4πe−γEµ2. (4.1)

Then, in the MS scheme, one writes:

φB = µ−ǫφ
√

Zφ, (4.2)

Zφ = 1 +
∞∑

ℓ=1

ℓ∑

n=1

zφℓ,n
(16π2)ℓǫn

, (4.3)

xkB = µρxk ǫ
(
xk +

∞∑

ℓ=1

ℓ∑

n=1

zxk

ℓ,n

(16π2)ℓǫn

)
. (4.4)

The subscript B labels bare quantities, while the absence of a subscript B indicates the corre-

sponding MS renormalized quantity. The exponent ℓ is the loop order, while k is an index that

runs over the list of Lagrangian parameters, including xk = λ, yt, g3. The mass dimensions of the

bare parameters determine that ρλ = 2 and ρg3 = ρyt = 1, in order that the renormalized couplings

λ, g3, and yt are dimensionless and φ has mass dimension 1. The counter-term quantities zφℓ,n and

zxk

ℓ,n are polynomials in the MS renormalized parameters xj , and do not depend on ǫ or φ. They

are determined by the requirement that the full effective potential (and all physical observables)

are free of ultraviolet poles in ǫ when expressed in terms of the MS quantities.

The anomalous dimension for φ and the MS beta functions for the parameters xk are defined

by

γ ≡ −Q
d lnφ

dQ

∣∣∣
ǫ=0

= −Q
d lnφ

dQ
+ ǫ =

1

2
Q

d

dQ
ln(Zφ), (4.5)

βxk
≡ Q

dxk
dQ

∣∣∣
ǫ=0

= Q
dxk
dQ

+ ǫρxk
xk. (4.6)

Because the bare quantities φB and xkB do not depend on Q, the anomalous dimension and beta

functions are determined by the simple pole counterterms, so that:

γ =
∞∑

ℓ=1

1

(16π2)ℓ
γ(ℓ), (4.7)

βxk
=

∞∑

ℓ=1

1

(16π2)ℓ
β(ℓ)
xk

, (4.8)

where the ℓ-loop contributions are:

γ(ℓ) = −ℓzφℓ,1, (4.9)

β(ℓ)
xk

= 2ℓzxk

ℓ,1. (4.10)
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The higher pole counterterms are also fixed by consistency conditions

ℓzφℓ,n =

ℓ−n+1∑

ℓ′=1

(
−γ(ℓ

′) +
1

2

∑

j

β(ℓ′)
xj

∂

∂xj

)
zφℓ−ℓ′,n−1, (4.11)

2ℓzxk

ℓ,n =

ℓ−n+1∑

ℓ′=1

∑

j

β(ℓ′)
xj

∂

∂xj
zxk

ℓ−ℓ′,n−1. (4.12)

for ℓ ≥ n ≥ 2.

The coefficients zφℓ,n and zxk

ℓ,n for ℓ ≤ 3 are thus determined by the known results for the Standard

Model beta functions and Higgs scalar anomalous dimension given in [54–60]. (Extensions to QCD

4-loop and 5-loop order can be found in [61–66].) Keeping only the contributions needed for the

approximation of the present paper, they are:

zλ1,1 = −Ncy
4
t + . . . , (4.13)

zλ2,1 = g23y
4
t (−2NcCF ) + . . . , (4.14)

zλ2,2 = g23y
4
t (6NcCF ) + . . . , (4.15)

zλ3,1 = g43y
4
tNcCF

[(
8ζ3 −

109

6

)
CG +

(
131

6
− 16ζ3

)
CF +

(
16 +

10

3
nq

)
TF

]
+ . . . , (4.16)

zλ3,2 = g43y
4
tNcCF (24CG + 10CF − 16TFnq/3) + . . . , (4.17)

zλ3,3 = g43y
4
tNcCF (−22CG/3− 24CF + 8TFnq/3) + . . . , (4.18)

zyt1,1 = g23yt(−3CF ) + . . . , (4.19)

zyt2,1 = g43ytCF

(
−97

12
CG − 3

4
CF +

5

3
TFnq

)
+ . . . , (4.20)

zyt2,2 = g43ytCF

(11
2
CG +

9

2
CF − 2TFnq

)
+ . . . , (4.21)

zyt3,1 = g63ytCF

[
−11413

324
C2
G +

43

4
CGCF − 43

2
C2
F +

(
556

81
+ 16ζ3

)
CGTFnq

+

(
46

3
− 16ζ3

)
CFTFnq +

140

81
T 2
Fn

2
q

)
+ . . . , (4.22)

zyt3,2 = g63ytCF

(1679
54

C2
G +

313

12
CFCG +

9

4
C2
F − 484

27
CGTFnq

−29

3
CFTFnq +

40

27
T 2
Fn

2
q

)
+ . . . , (4.23)

zyt3,3 = g63ytCF

(
−121

9
C2
G +

88

9
CGTFnq −

33

2
CGCF − 9

2
C2
F + 6CFTFnq −

16

9
T 2
Fn

2
q

)
+ . . . , (4.24)

zg31,1 = g33

(
−11

6
CG +

2

3
TFnq

)
, (4.25)

zg32,1 = g53

(
−17

6
C2
G +

5

3
CGTFnq + CFTFnq

)
+ . . . , (4.26)

zg32,2 = g53

(121
24

C2
G − 11

3
CGTFnq +

2

3
T 2
Fn

2
q

)
+ . . . , (4.27)

while the zφℓ,n do not contribute at all at leading order in QCD. Now, expanding eq. (3.1) with

eqs. (3.2), (3.9), (3.10), (3.11), and (3.14) to order 1/ǫ, and requiring the 4-loop simple pole terms
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to cancel, I find:

zλ4,1 = y4t g
6
3NcCF

[
C2
G

(
470

3
ζ3 − 130ζ5 −

121547

972
− 11π4

45

)
+ CGTF

(
1472

9
+ 88ζ3 − 40ζ5

)

+CGTFnq

(
4ζ3 −

661

243
+

16π4

45

)
+ CGCF

(
896

3
− 826

3
ζ3 + 180ζ5 +

4π4

45

)

+C2
F

(
12ζ3 + 40ζ5 −

1471

6
+

4π4

5

)
− 16CFTF + CFTFnq

(
281

6
+

8

3
ζ3 −

4π4

9

)

−T 2
Fnq

64

9
+ T 2

Fn
2
q

(
2728

243
− 32

3
ζ3

)]
+ . . . , (4.28)

zλ4,2 = y4t g
6
3NcCF

[(
7811

54
− 44ζ3

3

)
C2
G − 88

3
CGTF +

(
−128ζ3

3
− 1138

27

)
CGTFnq

+

(
131

9
+

16

3
ζ3

)
CGCF + (2 + 48ζ3)C

2
F − 48CFTF

+

(
−451

9
+

112

3
ζ3

)
CFTFnq +

32

3
T 2
Fnq −

80

27
T 2
Fn

2
q

]
+ . . . , (4.29)

zλ4,3 = y4t g
6
3NcCF

[
−61C2

G +
322

9
CGTFnq −

562

3
CGCF − 39C2

F +
146

3
CFTFnq

−32

9
T 2
Fn

2
q

]
+ . . . , (4.30)

zλ4,4 = y4t g
6
3NcCF

[
121

9
C2
G − 88

9
CGTFnq + 66CGCF + 72C2

F − 24CFTFnq

+
16

9
T 2
Fn

2
q

]
+ . . . , (4.31)

where the ellipses refer to contributions that are lower order in g3. From eqs (4.10) and (4.28), I

find the leading QCD 4-loop contribution to βλ:

β
(4)
λ = y4t g

6
3NcCF

[
C2
G

(
3760

3
ζ3 − 1040ζ5 −

243094

243
− 88π4

45

)
+CGTF

(
11776

9
+ 704ζ3 − 320ζ5

)

+CGTFnq

(
32ζ3 −

5288

243
+

128π4

45

)
+CGCF

(
7168

3
− 6608

3
ζ3 + 1440ζ5 +

32π4

45

)

+C2
F

(
96ζ3 + 320ζ5 −

5884

3
+

32π4

5

)
− 128CFTF + CFTFnq

(
1124

3
+

64

3
ζ3 −

32π4

9

)

−T 2
Fnq

512

9
+ T 2

Fn
2
q

(
21824

243
− 256

3
ζ3

)]
+ . . . . (4.32)

Now taking the limit ǫ → 0, the effective potential is obtained in a loop expansion as

Veff =

∞∑

ℓ=0

1

(16π2)ℓ
V (ℓ). (4.33)
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Note that unlike the loop expansion with bare parameters, eq. (3.1), here loop factors 1/(16π2)ℓ

have been extracted, similarly to eqs. (4.7) and (4.8). In terms of t and ln(t) defined in eqs. (1.2)

and (1.3), the previously known results for the leading QCD effective potential contributions are:

V (0) =
m2

2
φ2 +

λ

4
φ4, (4.34)

V (1) = −Nct
2
[
ln(t)− 3/2

]
, (4.35)

V (2) = g23NcCF t
2
[
6ln

2
(t)− 16ln(t) + 18

]
, (4.36)

from ref. [22], and the three-loop result [24]:

V (3) = g43NcCF t
2
{
CG

[
− 22

3
ln

3
(t) +

185

3
ln

2
(t) + (24ζ3 −

1111

6
)ln(t)

+
2609

12
+

44

45
π4 − 232

3
ζ3 +

16

3
ln2(2)[π2 − ln2(2)] − 128a4

]

+CF

[
− 24ln

3
(t) + 63ln

2
(t)− (48ζ3 +

121

2
)ln(t) +

85

12
− 88

45
π4

+192ζ3 −
32

3
ln2(2)[π2 − ln2(2)] + 256a4

]
+TF

[
48ln(t)− 232

3
+ 96ζ3

]

+TFnq

[8
3
ln

3
(t)− 52

3
ln

2
(t) +

142

3
ln(t)− 161

3
− 64

3
ζ3

]}
. (4.37)

The new 4-loop result (with group-theory quantities left general) takes the form:

V (4) = g63CFNct
2
∑

G

4∑

n=0

G ln
n
(t)V (4)(G, n), (4.38)

in terms of the group theory invariants in the set G from eq. (3.13). The list of 50 coeffi-

cients V (4)(G, n) is again rather lengthy, and so is provided in another ancillary electronic file

V4MSbar.txt. After substituting in the Standard Model values for the group theory constants, the

result combines and simplifies to:

V (4) = g63t
2

[
13820381

270
+

1747112ζ3
45

+
1984ζ5

9
− 40288ζ23

9
− 298894π4

1215
− 1780π6

243
+

5888 ln5(2)

135

−5888

81
π2 ln3(2)− 36064

405
π4 ln(2) +

78464

81
ln2(2)[ln2(2)− π2] +

627712a4
27

− 47104a5
9

+ln(t)

(
27680ζ3

3
− 63200ζ5

9
− 1547146

27
− 208π4

9
+

640

3
ln2(2)[ln2(2)− π2] + 5120a4

)

+(30584 − 2400ζ3)ln
2
(t)− 9144ln

3
(t) + 1380ln

4
(t)

]
. (4.39)

Equation (4.39) can be consistently added to the 3-loop effective potential as given in refs. [22] and

[24]. Also, the condition for the minimum v = φmin of the Landau gauge effective potential of the

Standard Model (including the effects of resummation of the Goldstone boson contributions from
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the terms up to 3-loop order) is obtained by subtracting

1

(16π2)4
∆̂4 =

1

(16π2)4
1

v

∂V (4)

∂φ

∣∣∣∣∣
φ=v

(4.40)

computed using eq. (1.2) and (1.3) above, from the right-hand side of eq. (4.18) of ref. [25].

V. DISCUSSION

The main results of this paper are the leading QCD 4-loop contributions to the Higgs self-

coupling beta function βλ and to the effective potential and its minimization condition. In each case,

it is certainly possible that other contributions at 4-loop order, and the presently unknown 3-loop

effects involving electroweak couplings in the case of the effective potential, could be numerically

comparable to or even larger than the ones found here. The same is certainly true of parametric

uncertainties from the top-quark Yukawa coupling (or mass) and the strong coupling. Therefore

the results found here are perhaps most useful, for the present, as ways of formalizing estimates of

purely theoretical error.

The 4-loop leading QCD contribution of eq. (4.32) to the λ beta function can be expressed in

numerical form as

∆βλ =
1

(16π2)4
8308.17g63y

4
t . (5.1)

This can be compared to the leading QCD 1, 2, and 3-loop contributions:

βleading QCD
λ =

1

16π2
(−6y4t ) +

1

(16π2)2
(−32g23y

4
t ) +

1

(16π2)3
(−100.402g43y

4
t ). (5.2)

We see that the 4-loop contribution has a sign opposite to that of the other terms, and is larger

in magnitude than one might have expected from a simple geometric progression. However, its

magnitude is still only half as big as the 3-loop term in eq. (5.2) even at Q = Mt, and in absolute

terms it makes only a tiny difference in extrapolating λ to high energy scales.

The effective potential contribution of eq. (4.39) can similarly be expressed in numerical form

as:

V (4) = g63t
2
[
59366.97 − 54056.36 ln(t) + 27699.06 ln

2
(t)− 9144 ln

3
(t) + 1380 ln

4
(t)

]
. (5.3)

It follows that the corresponding contribution to the effective potential minimization condition

m2 + λv2 = − 1

16π2
∆̂1 −

1

(16π2)2
∆̂2 −

1

(16π2)3
∆̂3 −

1

(16π2)4
∆̂4 + . . . (5.4)
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is, numerically:

∆̂4 = g63y
2
t t
[
64677.58 − 52714.59 ln(t) + 27966.13 ln

2
(t)− 12768 ln

3
(t) + 2760 ln

4
(t)

]
, (5.5)

where ∆̂ℓ for ℓ = 1, 2, 3 were given in ref. [25]. Consider the VEV and other MS parameters of the

Standard Model at benchmark values

v(Mt) = 246.647 GeV, (5.6)

λ(Mt) = 0.12597, (5.7)

yt(Mt) = 0.93690, (5.8)

g3(Mt) = 1.1666, (5.9)

g(Mt) = 0.647550, (5.10)

g′(Mt) = 0.358521, (5.11)

at Q = Mt = 173.34 GeV. These choices provide agreement with the measured values of the h, W ,

and Z boson masses in the pure MS scheme [67–69]. Using only the previously known 3-loop con-

tributions in eq. (5.4), the resulting Higgs squared mass parameter is: m2(Mt) = −(92.890 GeV)2.

Now including the new contribution of eq. (5.5) gives instead m2(Mt) = −(92.926 GeV)2. Thus I

find

∆
(√

−m2
)

= 36 MeV (5.12)

from the leading QCD 4-loop contribution, at the scale Q = Mt. The parameter m2 is not directly

constrained by experiment, but it can be connected to ultraviolet completions that may predict

it in terms of other underlying parameters that can be measured, eventually. This could occur in

models of supersymmetry breaking, for example.
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