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I consider models in which non-standard supersymmetry breaking terms, in-

cluding Dirac gaugino masses, arise from F -term breaking mediated by opera-

tors with a 1/M3 suppression. In these models, the supersoft properties found

in the case of D-term breaking are absent in general, but can be obtained as a

special case that is a fixed point of the renormalization group equations. The µ

term is replaced by three distinct supersymmetry-breaking parameters, decou-

pling the Higgs scalar potential from the Higgsino masses. Both holomorphic

and non-holomorphic scalar cubic interactions with minimal flavor violation

are induced in the supersymmetric Standard Model Lagrangian.
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I. INTRODUCTION

In the Minimal Supersymmetric Standard Model (MSSM) the gaugino partners of the

gauge bosons can only have Majorana masses. However, by enlarging the particle con-

tent of the model to include chiral superfields in the adjoint representation, it is possible
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to instead have Dirac gaugino masses [1–3]. This amounts to promoting the gauge sector

particle content of the theory to that of N = 2 supersymmetry. In ref. [4], Fox, Nelson,

and Weiner proposed a particularly compelling and predictive way to incorporate Dirac

gaugino masses, called supersoft supersymmetry breaking. In this framework, supersym-

metry is broken by a D-term vacuum expectation value (VEV), leading directly to Dirac

gaugino masses together with specific non-holomorphic scalar cubic couplings. The MSSM

squarks and sleptons remain massless at tree-level, and do not receive ultraviolet (UV) di-

vergent or renormalization group (RG) corrections. Earlier, Jack and Jones [5, 6] had noted

the existence of the corresponding RG trajectory in the context of a general theory with

“non-standard” supersymmetry breaking: non-holomorphic scalar cubic interactions and

supersymmetry-breaking chiral fermion masses in addition to Dirac gaugino masses.

Supersymmetric models with Dirac gaugino masses from supersoft breaking have unique

phenomenological properties. As noted in ref. [4], the real scalar part of the adjoint chiral

superfield receives a mass at tree-level, but the imaginary part (in an appropriate phase

convention) is massless at tree-level, and another Lagrangian term that can be added to

the theory threatens to make one or the other of them tachyonic. After integrating out the

heavy real scalar adjoint field, the resulting effective theory does not include the MSSM

scalar quartic interactions that usually follow from integrating out the D-term auxiliary

fields of the Standard Model gauge groups. This makes it somewhat problematic to stabilize

the Higgs potential sufficiently to accommodate the observed Higgs mass of Mh = 125

GeV. Solving these problems requires some interesting and non-trivial model-building. Dirac

gaugino masses together with an approximate R symmetry, or an exact R symmetry together

with an extension of the Higgs sector, provide a strong natural suppression of flavor- and

CP-violating effects in low energy experiments, even if flavor and CP symmetries are not

respected at all in the squark and slepton mass sectors [7]. Given the present lack of evidence

for superpartner production at the Large Hadron Collider (LHC), another attractive feature

of supersoft models is that they predict [8, 9] a significant weakening of the limits that can

be obtained for any given beam energy. This is partly because gluinos are predicted to be

much heavier than squarks, and partly because of the suppression of squark pair production

due to the Dirac nature of the gluino. Recent years have seen other important studies on

the phenomenological implications of Dirac gaugino mass models for colliders [10–15] and

dark matter [16–20]. Dirac gaugino models have been further developed in refs. [21–60] in a

variety of interesting directions.

In this paper, I consider models with Dirac gaugino masses arising from an F -term VEV,

rather than the D-term VEV in supersoft models. In these models, the supersoft property is

lost in general, but appears as a special case, a fixed point of the RG equations. The adjoint

scalars can naturally be made heavy. The µ-problem is solved in a way that decouples

the naturalness of the electroweak breaking scale from the Higgsino masses, similar to that

proposed in the supersoft case in ref. [56].
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II. DIRAC GAUGINO MASSES FROM F -TERM VEVS

In this paper, the MSSM gauginos will be denoted λa, where a is an index that runs over

the adjoint representation of the gauge group with gauge coupling ga. The usual Majorana

gaugino masses then can be written in 2-component notation as†

L = −1

2
Maλ

aλa + c.c. (2.1)

In general, to obtain Dirac gaugino masses in the low-energy effective theory, one introduces

new chiral superfields Aa with complex scalar component φa and 2-component fermion com-

ponent ψa. Then one can have Dirac gaugino masses by coupling the gauginos to the adjoint

chiral fermions:

L = −mDaψ
aλa + c.c. (2.2)

It is also possible to have a Majorana mass term for the chiral adjoint fermions:

L = −1

2
µaψ

aψa + c.c. (2.3)

A completely general theory would have all three terms.

In supersoft models [4], it is assumed that the main source of supersymmetry breaking

in the MSSM can be written as

L =
ka
M

∫

d2θW ′αWa
αA

a + c.c., (2.4)

whereM is a scale associated with the communication between the supersymmetry breaking

sector and the MSSM, ka are dimensionless parameters, and Wa
α = λaα + . . . are the MSSM

gauge group field strength superfields, and W ′α = 〈D〉θα is an Abelian superfield strength

with a D-term spurion component, and α is a Weyl spinor index. As a convention, 〈D〉 is
chosen to be positive. In terms of the component fields, the result is Dirac gaugino masses

accompanied by specific scalar interactions:

L = −mDa(ψ
aλa + c.c.) +

√
2mDaD

a(φa + φa∗) + gaD
a(φ†

i t
aφi) +

1

2
(Da)2 (2.5)

where the indices a and i are implicitly summed over, with i labeling the scalar field flavors

in the theory, the ta are the generators of the gauge group Lie algebra, and the Dirac gaugino

† The spinor and superspace conventions used here are as in ref. [61].
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masses are:

mDa = ka〈D〉/
√
2M. (2.6)

The last two terms in eq. (2.5) come from the kinetic terms of the chiral and gauge superfields,

respectively. After integrating out the MSSM gauge group auxiliary fields Da, one finds [4]

that the canonically normalized real scalar adjoint field, Ra = (φa +φa∗)/
√
2, has a squared

mass equal to 4m2
Da and a non-holomorphic supersymmetry-breaking interaction with the

other scalars that is also fixed in terms of the Dirac gaugino mass, while the imaginary scalar

adjoint field Ia = i(φ∗a − φa)/
√
2 remains massless and free of supersymmetry-breaking

interactions:

L = −mDa(ψ
aλa + c.c.)− 2m2

DaR
2
a − 2gamDaRa(φ

†
i t

aφi)−
1

2
g2a(φ

†
i t

aφi)
2. (2.7)

The last term is the usual supersymmetric D-term-induced scalar quartic interaction. The

other terms in eq. (2.7) form the specific combination of supersymmetry breaking couplings

that was recognized as an RG invariant trajectory in [6]. The reason for this becomes

apparent by writing it in terms of a (non-renormalized) superpotential spurion term as in

eq. (2.4).

The last three terms in eq. (2.7) are proportional to the square of ga(φ
†
i t

aφi) + 2MDaRa.

Therefore, this quantity is set equal to 0 by the equations of motion upon integrating out

the heavy field Ra, eliminating [4] the scalar quartic terms that are usually present in the

low-energy effective theory. These include the quartic terms responsible for stabilizing the

Higgs scalar boson potential, so the absence of such terms increases the difficulty of obtaining

Mh = 125 GeV.

A term that could be expected to accompany eq. (2.4) is the so-called “lemon-twist” term

L =
kLTa

M2

∫

d2θW ′αW ′
αA

aAa + c.c. = kLTa

〈D〉2
M2

(φaφa + c.c.) (2.8)

= −kLTa

〈D〉2
M2

(I2a − R2
a). (2.9)

where kLTa are dimensionless parameters, taken to be real here. If kLTa < 0, then this

holomorphic scalar squared mass term makes the imaginary scalar adjoint Ia tachyonic,

unless there are other positive contributions to the squared mass. On the other hand, if

kLTa > k2a, we see by comparing with eq. (2.7) that then Ra will be tachyonic at tree-level.

In simple UV completions of the supersoft Lagrangian, kLTa is indeed found to be larger in

magnitude than k2a, posing a tachyonic adjoint problem [4, 28, 45] in the absence of fine-

tuning or contrivance. Some proposals to deal with this issue are given in refs. [4, 28, 45,
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56, 59, 60].

In this paper, I will consider the possibility that Dirac gaugino masses instead come from

an F -term VEV spurion X = θθ〈F 〉, via the Lagrangian term [62]:

L = − c
(1)
a√
2M3

∫

d4θ X∗XWaα ∇αA
a = −mDaψ

aλa (2.10)

where 〈F 〉 is chosen real as a convention and c
(1)
a is a dimensionless parameter for each of

SU(3)c, SU(2)L and U(1)Y , and now instead of eq. (2.6),

mDa = c(1)a 〈F 〉2/M3. (2.11)

Note that DαΦ is not supergauge covariant if Φ is a non-singlet chiral superfield. Here

Dα =
∂

∂θα
− i(σµθ†)α∂µ (2.12)

is the usual chiral covariant superderivative, with the “covariant” here traditionally referring

to supersymmetry transformations, rather than supergauge transformations. Therefore,

eq. (2.10) instead uses a “gauge-covariant chiral covariant superderivative”, whose action on

a chiral superfield Φ is defined by

∇αΦ = e−VDα(e
VΦ) (2.13)

where V = 2gaV
ata, with ta the matrix generator for the rep of Φ and V a is the MSSM

vector superfield for the index a. However, in Wess-Zumino gauge, the eV and e−V factors

have no practical effect on the component-level expressions here or below when spurions

X∗X = θ†θ†θθ〈F 〉2 are present.

Equation (2.10) is a non-holomorphic source for the Dirac gaugino mass. Therefore, the

Dirac gaugino masses are not accompanied by the supersoft scalar couplings, in general.

III. OTHER LAGRANGIAN TERMS AND MODEL-BUILDING CRITERIA

A. Terms with 1/M3 suppression

The Dirac gaugino mass with F -term spurion origin given by eq. (2.10) can be accompa-

nied by other supersymmetry breaking Lagrangian terms in the low-energy effective theory.

Since it is suppressed by 1/M3, it is not at all clear whether it can be the dominant source

of supersymmetry breaking in the MSSM sector.
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In particular, even if X carries a conserved charge, this term is allowed:

L = −
kΦ∗

iΦj

M2

∫

d4θ X∗X Φ∗
i e

VΦj (3.1)

where Φi are the chiral superfields of the theory, including the quarks, leptons and Higgs

fields of the MSSM and the adjoint chiral superfields. If present, this term can give non-

holomorphic squared masses to the MSSM Higgs, squarks and sleptons with a mass scale

of order 〈F 〉/M , which should be much larger than the Dirac gaugino masses, unless the

dimensionless parameters kΦ∗

iΦj
are very small, or 〈F 〉 is comparable to M2. There are also

terms

L = − 1

M2

∫

d4θ X∗X
(

kAAA
aAa + kHuHd

HuHd

)

(3.2)

that can give holomorphic squared mass terms to the scalar adjoints and the Higgs fields.

Estimating naively, if mDa ∼ 〈F 〉2/M3 is to be of order mg̃ ∼ 1 TeV, then if kΦ∗

iΦj
is

of order 1, the squark mass scale 〈F 〉/M should be of order mQ̃ ∼
√

Mmg̃. This can be

up to an intermediate scale 1011 GeV if M is the reduced Planck mass, but could be much

smaller if M is low. For large M , one can have a version of supersymmetry with Dirac

gaugino masses and hierarchically heavier squarks and sleptons (sometimes called “PeV-

scale” or “split” or “semi-split” supersymmetry, depending on the extent of the hierarchy).

While such possibilities should not be dismissed immediately and can have some intriguing

properties [63–65], this goes against the main motivation for supersymmetry, the solution

to the hierarchy problem associated with the electroweak scale. Therefore, for the rest of

this paper I instead prefer to pursue the possibility that the operators in eqs. (3.1) and (3.2)

are absent or sufficiently suppressed, and ask what happens if the Dirac gaugino masses are

among the largest manifestations of supersymmetry breaking in the visible sector.

There is no obvious symmetry that would allow the Dirac gaugino mass operator of

eq. (2.10) while forbidding eq. (3.1). Indeed, realizations of Dirac gaugino masses using

F -term VEVs in gauge mediation evidently do [25, 26, 28] generically have scalar masses of

the type given in eq. (3.1). The Dirac gaugino masses can be comparable to, but somewhat

smaller than, these scalar squared masses, but this requires a lowM . This has the drawback

that it appears to force one to view the apparent gauge coupling unification as a mere

accident, as the combined presence of light adjoint and light messenger chiral superfields

will cause the Standard Model gauge couplings to become non-perturbatively strong in the

UV before they unify. Perhaps a more palatable approach is that in models of deconstructed

gaugino mediation [66, 67], it is possible to highly suppress (“screen”) the non-holomorphic

scalar squared masses compared to the Dirac gaugino masses [32], even though the former

are not forbidden by symmetry.
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Rather than commit to a particular type of UV completion, I will instead consider a set of

model-building criteria that are designed to allow F -term generated Dirac gaugino masses

to dominate over, or be comparable to, other sources of supersymmetry breaking. First,

I assume that X carries some conserved charge, so that parametrically larger Majorana

gaugino masses arising from

− 1

M

∫

d2θ XWaα Wa
α, (3.3)

as well as holomorphic scalar interactions from superpotential terms involving X , are for-

bidden. Second, suppose that all interactions between the spurions X,X∗ and the MSSM

sector are suppressed by 1/M3, where M is a characteristic large mediation mass scale, with

terms of order 1/M2 either forbidden or suppressed. This appeal to dimensional anal-

ysis (which perhaps could have a geographical or dynamical origin, as in [32]), rather

than symmetry, would eliminate from contention eqs. (3.1) and (3.2). Third, suppose

that the spurion interactions respect the approximate flavor symmetries of the Standard

Model; this assumption is technically natural, and effectively bans squark and slepton chiral

superfields from appearing in the spurion terms. Finally, if one wants the Dirac gaug-

ino masses and other supersymmetry-breaking interactions discussed below to be larger

than the effects of anomaly-mediated supersymmetry breaking (AMSB) [68], one must have

〈F 〉β/MPlanck ∼< 〈F 〉2/M3, where β schematically represents the beta function or anomalous

dimension suppression inherent in AMSB. This can hold if M is not larger than about 1013

GeV, so the scenario below apparently requires supersymmetry breaking to occur and to be

communicated at a scale well below the Planck mass. I admit to not knowing of any UV

completion that guarantees all of these criteria as stated, and it is conceivable that none

exists. Nevertheless, without further apology, I will proceed to consider their consequences.

Besides the Dirac gaugino masses of eq. (2.10), one has the following set of Lagrangian

terms (and their complex conjugates) allowed by the above criteria:

c
(2)
a√
2M3

∫

d4θ X∗X Aa ∇αWaα, (3.4)

− c
(3)
a

2M3

∫

d4θ X∗X Waα Wa
α, (3.5)

− c
(4)
a

4M3

∫

d4θ X∗X ∇αAa∇αA
a, (3.6)

− c
(5)
a

4M3

∫

d4θ X∗X Aa ∇α∇αA
a, (3.7)

− c
(6)
a

4M3

∫

d4θ X∗X Aa∗(eV ∇α∇αA)
a, (3.8)
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− c(7)

2M3

∫

d4θ X∗X ∇αHu ∇αHd, (3.9)

− c(8)

4M3

∫

d4θ X∗X Hu ∇α∇αHd, (3.10)

− c(9)

4M3

∫

d4θ X∗X Hd∇α∇αHu, (3.11)

− c(10)

4M3

∫

d4θ X∗X H∗
u e

V∇α∇αHu, (3.12)

− c(11)

4M3

∫

d4θ X∗X H∗
d e

V∇α∇αHd, (3.13)

where the c(i) are dimensionless parameters, and ∇α∇αΦ = e−VDαDα(e
VΦ) for a chiral su-

perfield Φ. I do not impose an exact U(1) R symmetry; otherwise all but c
(1)
a and c

(2)
a would

vanish, and it would be necessary to introduce an extra pair of Higgs doublet chiral super-

fields, as in [7]. Also, for simplicity I do not consider terms of the form 1
M3

∫

d4θX∗XΦ3+c.c.

and 1
M3

∫

d4θX∗XΦ2Φ∗ + c.c. where Φ3 and Φ2Φ∗ represent different gauge-invariant combi-

nations of adjoint and Higgs chiral superfields. These can contribute scalar cubic interactions

of the same magnitude as the Dirac gaugino masses. I also neglect the effects of any super-

potential terms that do not involve the MSSM quark and lepton superfields. Thus there is

no supersymmetric µ term and any superpotential couplings of the adjoints are taken to be

small. Now let us consider the component field form of each of the terms in eqs. (3.4)-(3.13)

in turn.

B. Optional supersoft interactions

The Lagrangian contribution from the term in eq. (3.4) together with its complex conju-

gate can be written as

L = mRa
Da(φa + φa∗)/

√
2 = mRa

DaRa, (3.14)

where

mRa
= 2c(2)a 〈F 〉2/M3. (3.15)

After combining this with the rest of the Lagrangian involving the Da auxiliary field, and

integrating it out, one obtains:

L = −1

2

(

mRa
Ra + gaφ

†
i t

aφi

)2
. (3.16)
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This is recognized as the scalar part (only) of the supersoft interaction, but with a parameter

mRa
that is independent of the Dirac gaugino mass parametermDa = c

(1)
a 〈F 〉2/M3. A specific

linear combination of eqs. (2.10) and (3.4), namely c
(1)
a = c

(2)
a so that mRa = 2mDa, gives a

combination proportional to the complete supersoft interaction. The reason for this can be

seen by noting that (taking c
(1)
a = c

(2)
a = 1) integration by parts in superspace yields

1√
2M3

∫

d4θ X∗XDα(A
aWaα) =

1

4
√
2M3

∫

d2θ D†D†Dα(X
∗X)AaWaα, (3.17)

so that the chiral superfield 1
M3D

†D†Dα(X
∗X) now plays the role of the D-term spurion

1
M
W ′α in the supersoft Lagrangian eq. (2.4). Previous papers that discuss Dirac gaugino

masses in the context of F -term spurions have used this supersoft form; see for example

refs. [25, 27, 32]. However, with F -term breaking, that specific linear combination is not

preferred in general, except that it is a fixed point of the RG running, with mixed stability

properties to be discussed below. Therefore it is possible to assume that |c(2)a | is smaller

than |c(1)a |, so that the Dirac gaugino mass parameter dominates over the scalar adjoint

interactions. This will avoid the problem of the missing scalar quartic couplings in the

low-energy MSSM effective theory that can occur in the supersoft case.

C. General gaugino masses

The terms in eqs. (3.5) and (3.6), together with their complex conjugates, provide Majo-

rana masses for the gaugino and the adjoint chiral fermion, respectively, with

L = −1

2
Maλ

aλa − 1

2
µaψ

aψa + c.c., (3.18)

where

Ma = c(3)a 〈F 〉2/M3, (3.19)

µa = c(4)a 〈F 〉2/M3. (3.20)

These terms, and the Dirac gaugino mass mDa from eqs. (2.10)-(2.11), are all parametrically

of the same order, so the gaugino mass can be the most general allowed by gauge invariance.

In the basis (λa, ψa), the gaugino mass matrix is





Ma mDa

mDa µa



 , (3.21)
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The gluinos will be Dirac-like if |c(3)a | and |c(4)a | are both much less than |c(1)a |, or Majorana-

like if at least one of |c(3)a | and |c(4)a | is much greater than |c(1)a |, or could have a mixed

Dirac/Majorana character. This provides a continuous set of possibilities for gluino couplings

to quark-squark in the MSSM, following from the mixing. For the electroweak gauginos,

there is of course a further complication due to mixing with the Higgsinos.

D. Scalar adjoint masses

The Lagrangian term of eq. (3.7) and its complex conjugate give a common positive-

definite squared mass to both the real and imaginary parts of the adjoint scalar:

L = mSaφ
aFa + c.c. → −|mSa|2|φa|2 = −1

2
|mSa|2(R2

a + I2a), (3.22)

where the → indicates the effect of integrating out the chiral adjoint auxiliary field Fa in

this term together with its kinetic term contribution |Fa|2, and

mSa = c(5)a 〈F 〉2/M3. (3.23)

This mass scale is again parametrically the same order as the Dirac gaugino mass. Unlike the

minimal version of the supersoft model, the adjoint scalar Ra and pseudoscalar Ia therefore

can naturally have a common positive squared mass at tree-level, in addition to the positive

squared mass for Ra if c
(2)
a does not vanish.

Note that the particular linear combination c
(4)
a = c

(5)
a would give a supersymmetric mass

to the chiral adjoint superfield, with mSa = µa. The reason for this is that the corresponding

Lagrangian term is (for c
(4)
a = c

(5)
a = 1):

− 1

8M3

∫

d4θ X∗XDD(AaAa), (3.24)

which, upon integration by parts twice, can be written as a superpotential term:

1

32M3

∫

d2θ D†D†DD(X∗X) AaAa =
〈F 〉2
2M3

∫

d2θ AaAa (3.25)

In fact, this term has precisely the same effect as the one proposed by Nelson and Roy in

ref. [56] in the supersoft case with D-term breaking. However, again in the present context

there is no reason in general to prefer this specific linear combination.



11

If we also include the term eq. (3.8), then eq. (3.22) is generalized to

L = (mSaφa +m′
Saφ

∗
a)Fa + c.c., (3.26)

where

m′
Sa = c(6)a 〈F 〉2/M3, (3.27)

so that after integrating out Fa we get

L = −(|mSa|2 + |m′
Sa|2)|φa|2 − (mSam

′∗
Saφ

2
a + c.c.). (3.28)

This still always provides positive semi-definite squared masses for both of the adjoint scalar

degrees of freedom, but splits them apart. The squared mass eigenvalues are (|mSa|±|m′
Sa|)2.

E. Solution to the µ problem

The three Lagrangian terms in eqs. (3.9)-(3.11) provide a novel solution to the µ problem.

First, eq. (3.9) and its complex conjugate yield a mass for the Higgsinos only:

L = −µ̃H̃uH̃d + c.c. (3.29)

where

µ̃ = c(7)〈F 〉2/M3. (3.30)

Equations (3.10) and (3.11) and their complex conjugates provide terms:

L = µuHuFHd
+ c.c. → −|µu|2|Hu|2 + . . . , (3.31)

L = µdHdFHu
+ c.c. → −|µd|2|Hd|2 + . . . , (3.32)

where

µu = c(8)〈F 〉2/M3, µd = c(9)〈F 〉2/M3. (3.33)

The → in eqs. (3.31) and (3.32) corresponds to the effect of integrating out the auxiliary

fields FHd
and FHu

when their kinetic terms |FHd
|2 and |FHu

|2 are included. The ellipses in
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eqs. (3.31) and (3.32) refer to non-holomorphic scalar cubic couplings, which are

L = ytµdt̃R(t̃
∗
LH

0
d + b̃∗LH

−
d ) + ybµub̃R(b̃

∗
LH

0
u + t̃∗LH

+
u ) + yτµuτ̃R(τ̃

∗
LH

0
u + ν̃∗τH

+
u ) + c.c. (3.34)

in the approximation that the only Yukawa couplings are yt, yb, and yτ . These have the

same form as the scalar cubic terms that occur in the supersymmetric part of the MSSM

Lagrangian. However, here these terms are supersymmetry-violating in general, because µu

and µd and µ̃ are different.

Thus, there are really three µ terms, all parametrically of the same order but otherwise

distinct: µ̃ for the Higgsinos, µu for the up-type Higgs scalars, and µd for the down-type Higgs

scalars. There is a special choice with c(7) = c(8) = c(9) that yields a supersymmetric relation

µ̃ = µu = µd, but in general this specific linear combination is not preferred. This means that

the Higgsino mass µ̃ is independent of the Higgs scalar potential sector, effectively decoupling

the Higgsinos from electroweak-scale naturalness issues. A quite similar mechanism† has

been proposed in ref. [56] in the supersoft context, where there can be two distinct µ terms,

one shared by the Higgsinos and the Hu scalars, and the other common to the Higgsinos

and the Hd scalars. In fact, the two Nelson-Roy Higgs µ terms are obtained in the present

context by restricting to the special parameter subspace with 2c(7) = c(8) + c(9).

The holomorphic scalar squared mass term L = −bHuHd+c.c. will arise by RG evolution

from µ̃. While this is loop-suppressed, one can obtain a sufficiently large b if |µ̃| is not too
small, with no naturalness concerns since it is not tied to |µu| in this model. Therefore,

naturalness of electroweak symmetry breaking might actually prefer a relatively heavier

Higgsino, in contradiction with popular argument. However, there is another, probably

better, way to get the b-term, discussed in the next subsection.

F. MSSM a-term and b-term (holomorphic scalar) couplings

Finally, consider including the terms in eqs. (3.12) and (3.13) and their complex conju-

gates, in conjunction with the terms in eqs. (3.10) and (3.11) just considered. Their effect

is to modify eqs. (3.31) and (3.32) to give a total:

L = (µuHu + µ′
dH

∗
d)FHd

+ (µ′
uH

∗
u + µdHd)FHu

+ c.c., (3.35)

† Some other intriguing ways of decoupling the Higgsino mass from the naturalness of the Higgs potential

are proposed in refs.[69–72].
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where

µ′
u = c(10)〈F 〉2/M3, µ′

d = c(11)〈F 〉2/M3. (3.36)

Now, adding in the |FHu
|2 and |FHd

|2 kinetic terms and integrating out the auxiliary fields

one obtains, in addition to the non-holomorphic scalar cubic couplings of eq. (3.34), terms

that have exactly the same form as the usual MSSM soft scalar interactions:

L = −
(

Hu ˜̄uauQ̃−Hd
˜̄dadQ̃−Hd ˜̄eaeL̃+ bHuHd + c.c.

)

−|Mu|2|Hu|2 − |Md|2|Hd|2. (3.37)

Here the Higgs scalar squared mass parameters are now

|Mu|2 = |µu|2 + |µ′
u|2, (3.38)

|Md|2 = |µd|2 + |µ′
d|2, (3.39)

b = µuµ
′∗
d + µdµ

′∗
u , (3.40)

and the a-terms are, in terms of the corresponding superpotential Yukawa coupling matrices

yu, yd, and ye,

au = µ′∗
u yu, (3.41)

ad = µ′∗
d yd, ae = µ′∗

d ye. (3.42)

In this way, one obtains minimal flavor violating a-terms, including the Higgs-stop-antistop

coupling at which is useful in obtaining 1-loop contributions that help give a Higgs mass as

high as 125 GeV. The magnitude of at is related at tree-level to a lower bound on |Mu|, as
seen from comparing eqs. (3.38) and (3.41). Note that all of these terms are parametrically

related to the mass scale 〈F 〉2/M3.

The terms in the effective Lagrangian listed above include “non-standard” supersymmetry

breaking operators, including those claimed to be hard breaking in the classification of

ref. [73]. Here, they have shown to arise from a consistent spurion analysis, but one might

still worry about destabilizing divergences associated with tadpoles in the case of a gauge

singlet chiral superfield [74]. One way to avoid this is to only include Dirac gauginos for the

SU(2)L and SU(3)c gauginos. Alternatively, one may assume that at very high energies the

gauge singlet chiral superfields are actually in a non-singlet representation of an extended

gauge group.



1 4

2 4 6 8 1 0 1 2 1 4 1 6
L o g

1 0
( Q/ G e V)

0

1 0

2 0

3 0

4 0

5 0

6 0

α
- 1
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FI G. 4. 1: T h e 2-l o o p r u n ni n g of t h e S U ( 3) c ,

S U ( 2) L , a n d U ( 1) Y i n v er s e g a u g e c o u pli n gs

α − 1
a , as a f u n cti o n of t h e r e n or m ali z a-

ti o n s c al e Q , wit h t h e M S S M p ar ti cl e c o n-

t e nt pl u s a dj oi nt c hir al s u p er fi el d s a n d t h e

v e ct or-li k e c hir al s u p er fi el d s i n t h e r e p r e-

s e nt ati o n s of e q. ( 4. 1 ). F or si m pli cit y, t h e

m as s es of all p ar ti cl es t h at ar e b e y o n d t h e

S t a n d ar d M o d el ar e p u t at a si n gl e t h r es h-

ol d at 2 Te V.

I V.  R E N O R M A L I Z A T I O N G R O U P R U N N I N G E F F E C T S

I n t h e pr e vi o us s e cti o n, it w as f o u n d t h at t h e s u p ers y m m etr y br e a ki n g fr o m a n F -t er m

s p uri o n V E V a n d m e di at e d b y o p er at ors s u p pr ess e d b y 1 / M 3 c a n pr o d u c e all t y p es of

s u p ers y m m etr y br e a ki n g wit h p ositi v e m ass di m e nsi o n, i n cl u di n g t h e “ n o n-st a n d ar d ” t er ms:

Dir a c g a u gi n o m ass es, c hir al f er mi o n m ass es, a n d n o n- h ol o m or p hi c s c al ar c u bi c i nt er a cti o ns.

N ot e t h at t h e Hi g gs-r el at e d t er ms dis c uss e d h er e ar e a ct u all y i n d e p e n d e nt of t h e Dir a c

g a u gi n o m ass iss u e. O n e c a n d el et e a n y or all of t h e a dj oi nt c hir al s u p er fi el ds fr o m t h e

t h e or y, a n d t h e s a m e m e c h a nis m will w or k t o pr o vi d e 3 i n d e p e n d e nt µ t er ms, i n a t h e or y

wit h F -t er m br e a ki n g a n d s u p pr essi o n of c o m m u ni c ati o n of s u p ers y m m etr y br e a ki n g b y

1 / M 3 .

If t h e a dj oi nt c hir al s u p er fi el ds a n d Dir a c g a u gi n o m ass es ar e i n cl u d e d, wit h a m ass s c al e

of or d er Te V, t h e n g a u g e- c o u pli n g u ni fi c ati o n c a n b e a c hi e v e d b y als o a d di n g i n v e ct or-li k e

c hir al s u p er fi el ds i n t h e l e pt o n-li k e r e pr es e nt ati o ns

L + L + 2 × [e + e ] = (1 , 2 , − 1 / 2) + ( 1 , 2 , + 1 / 2) + 2 × [(1 , 1 , − 1) + ( 1 , 1 , + 1)] ( 4. 1)

of S U ( 3) c × S U ( 2) L × U ( 1) Y . T h e r es ulti n g 2-l o o p r u n ni n g of g a u g e c o u pli n gs is s h o w n

i n Fi g ur e 4. 1, usi n g a si m pli fi e d s u p ers y m m etri c t hr es h ol d at 2 Te V. Alt h o u g h t h e S U ( 3) c

g a u g e c o u pli n g w o ul d n ot r u n i n t h e 1-l o o p a p pr o xi m ati o n, it a ct u all y b e c o m es si g ni fi c a ntl y

str o n g er i n t h e U V d u e t o 2-l o o p e ff e cts, wit h α 3 (M G U T )/ α 3 ( 2 Te V) = 1 .3.

T h e c o m pl et e 2-l o o p R G e q u ati o ns f or a g e n er al t h e or y of t his t y p e h a v e alr e a d y b e e n

gi v e n i n [ 5, 6]. T h e s p e ci ali z ati o n t o t h e M S S M ( pl us c hir al a dj oi nt s u p er fi el ds) will n ot

b e gi v e n h er e, as t his c a n n o w b e d o n e e asil y b y s y m b oli c m a ni p ul ati o n, f or e x a m pl e usi n g

m o d er n t o ols s u c h as r ef. [ 3 8]. T h e c as e dis c uss e d h er e is di ff er e nt t h a n e. g. i n r ef. [ 3 7, 5 1],

b e c a us e h er e t h e s u p ers oft s c al ar i nt er a cti o ns h a v e b e e n d e c o u pl e d fr o m t h e Dir a c g a u gi n o

m ass es.
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Because the supersoft case is a fixed point of the more general case, it is interesting to

consider whether that fixed point solution is attractive (stable) in the infrared (IR). To inves-

tigate this, without taking on the most general case, consider the following supersymmetry

breaking Lagrangian terms that involve the gauginos and the chiral adjoint fields:

L = −
[1

2
Maλ

aλa +
1

2
µaψ

aψa +mDaψ
aλa +

√
2gamDaNaφ

a(φ†
i t

aφi)

+
1

2
ba(φ

a)2 + c.c.
]

−m2
a|φa|2. (4.2)

Here I have assumed that the scalar cubic couplings of adjoints to MSSM fields labeled by i

are actually independent of i. This condition is preserved by 1-loop RG running if it is true

at any scale, and it is a feature of eq. (3.16), which may serve as a boundary condition on

the running. These couplings are also normalized to the gauge coupling ga and the Dirac

gaugino mass mDa, so that they are represented by three dimensionless running parameters

Na, one for each of the gauge groups SU(3)c, SU(2)L, and U(1)Y . The 1-loop beta functions

of the gauge couplings and the gaugino/adjoint fermion masses and the Na are found from

ref. [6]:

16π2βga = g3a[Ta(RF )− 2C(Ga)], (4.3)

16π2βMa
= g2aMa[2Ta(RF )− 4C(Ga)], (4.4)

16π2βµa
= g2aµa[−4C(Ga)], (4.5)

16π2βmDa
= g2amDa[Ta(RF )− 4C(Ga)], (4.6)

16π2βNa
= 4g2aC(Ga)(Na − 1), (4.7)

where C(Ga) is the quadratic Casimir of the adjoint representation of the gauge group, and

Ta(RF ) is the Dynkin index of the chiral superfields that are in the fundamental represen-

tation (i.e., not including the adjoint representation chiral superfields). For SU(3)c, one has

C(Ga) = 3 and Ta(RF ) = 6. For SU(2)L, one has C(Ga) = 2 and Ta(RF ) = 7 + nL+L. For

U(1)Y , one has C(Ga) = 0 and Ta(RF ) = (33+3nL+L+6ne+e)/5 in a GUT normalization (so

using g1 =
√

5/3g′). For the minimal MSSM with Dirac gaugino masses, nL+L = ne+e = 0,

and for the model that unifies gauge couplings with eq. (4.1), nL+L = 1, ne+e = 2. I will use

the latter in the numerical results and fixed-point analysis below.

Also found from ref. [6] are the beta functions for the non-holomorphic and holomorphic

adjoint scalar masses, respectively:

16π2βm2
a
= g2a[4Ta(Rf )|Na|2|mDa|2 − C(Ga)(8|Ma|2 + 8|µa|2 + 16|mDa|2)], (4.8)

16π2βba = g2a[4Ta(Rf )N
2
am

2
Da + C(Ga)(8Maµa − 8m2

Da − 4ba)]. (4.9)
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tively) as defined by eq. (4.2). The param-
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boundary conditions areN2 = N3 = 0 at in-

put scales M = 106 and 1010 and 1013 GeV

and the gauge coupling unification scale.

The vector-like chiral superfields of eq. (4.1)

are included to provide gauge coupling uni-

fication.

Now, for illustrative purposes, let us specialize to the case that Ma and µa can be neglected

in comparison to mDa, and normalize the adjoint scalar squared masses to the latter:

m2
a = 2Ea|mDa|2, (4.10)

ba = 2Bam
2
Da. (4.11)

This defines, for each gauge group, two dimensionless running parameters Ea and Ba, in

terms of which the adjoint scalar tree-level squared mass eigenvalues are 2m2
Da(Ea ± |Ba|).

Note that Na, Ea, and Ba are each 1 in the supersoft case. From eqs. (4.8) and (4.9), the

beta functions for the last two are:

16π2βEa
= g2a[2Ta(RF )(N

2
a −Ea) + 8C(Ga)(Ea − 1)], (4.12)

16π2βBa
= g2a[2Ta(RF )(N

2
a −Ba) + 4C(Ga)(Ba − 1)]. (4.13)

It is clear from eqs. (4.7), (4.12), and (4.13) that the supersoft trajectory Ba = Ea = Na = 1

is indeed a fixed point, as originally observed by ref. [6]. However, if c
(1)
a and c

(2)
a in eqs. (2.10)

and (3.4) are non-zero but different from each other, then one will have Ba = Ea = Na 6= 1

initially. The subsequent RG running will then make them all different. The U(1)Y scalar

cubic parameter† N1 does not run at all at 1-loop order, and the E1 = N2
1 and B1 = N2

1

fixed points are actually unstable in the IR. From eq. (4.7), we see that the fixed points for

N3 = 1 and N2 = 1 are stable in the IR, but while the E3 = 1 fixed point is formally stable,

in practice that stability is never realized in the running even if the input scale is very high.

The fixed points B3 = 1 and E2 = 1 are not even formally stable in the IR at 1-loop order,

† Gauge invariance dictates that couplings with different indices a corresponding to the same simple or

Abelian gauge group component are degenerate. Therefore, as a slight abuse of notation, in the following

1,2,3 are used for the index a to label the U(1)Y , SU(2)L, and SU(3)c components respectively.
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while the fixed point B2 = 1 is definitely unstable in the IR.

If one assumes that at the input scaleM the starting boundary condition is N2 = N3 = 0,

the resulting running for N2 and N3 (for SU(2)L and SU(3)c respectively) is shown in Figure

4.2. In this graph, four different choices for the input scale are shown: M = 106 and 1010

and 1013 GeV and the gauge coupling unification scale. (However, as noted above, the input

scale M probably should be less than roughly 1013 GeV, if one wants AMSB contributions

to the gaugino mass to be not larger than the Dirac gaugino masses.) We see that the

attractive fixed point at N3 = 1 is not actually approached unless the input scale M is very

high, while the fixed point N2 = 1 is quite weakly attractive, due to the smaller Casimir

invariant and smaller gauge coupling below the unification scale.

The 1-loop order beta functions for the MSSM scalar squared masses are (including the

effects of possible Majorana gaugino masses Ma):

16π2β(m2)ji
= 8g2aCa(i)δ

j
i

[

(|Na|2 − 1)|mDa|2 − |Ma|2
]

+ . . . (4.14)

where Ca(i) are the quadratic Casimir invariants (4/3 for squarks for SU(3)c, and 3/4 for

doublets for SU(2)L, and 3Y 2
i /5 for scalars with weak hypercharge Yi), and the ellipses

represent the usual Yukawa and a-term contributions from the MSSM. In the supersoft

case, Na = 1 and Ma = 0, so there is no positive gaugino mass contribution to squark and

slepton squared masses from running. In the scenario of the present paper, there is such a

contribution even neglecting Ma, since Na is not at its fixed point value. This contribution

will be positive definite from running into the IR as long as |Na| < 1. In practice, this will

always be the case if Na starts from 0 at M , as was seen in Figure 4.2.

In Figure 4.3, the squark and the two scalar color adjoint (sgluon) mass eigenvalues are

shown for the case that the Dirac gluino mass c
(1)
a dominates at the input scaleMinput, so that

N3 = E3 = B3 = 0 there and both the Majorana gluino mass M3 and the supersymmetry-

breaking color adjoint fermion mass µ3 are neglected. The results are expressed as ratios

of the scalar masses to the gluino Dirac mass at the renormalization scale Q = 2 TeV, as

a function of the input scale Minput. Only 1-loop QCD-enhanced effects are included. A

realistic model probably must have Minput at least as large as 104 GeV, but the results are

shown forMinput all the way down to 2 TeV, to illustrate the expected behavior that if there

is no RG running then squarks and sgluons are massless at tree-level.

Clearly, even one decade of RG running is enough to generate sufficient squark and

sgluon masses. Figure 4.3 shows that for Minput > 100 TeV, the (tree-level) first- and

second-generation squark masses are between about 0.5 and 0.7 of the gluino Dirac mass;

this in comparison to a factor of 0.1 to 0.2 for the corresponding ratio of pole masses in

supersoft models. Of course, additional model parameter-dependent contributions to the

gluino mass matrix eq. (3.21) can strongly modify this prediction in either direction, but it

shows that the RG contributions to sfermion squared masses due to Dirac gaugino masses
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Only 1-loop QCD-enhanced RG contribu-

tions due to the Dirac gluino masses mD3

are included.

are generically significant and positive. Also we see that both sgluons have positive squared

masses, provided that the input scale Minput is smaller than 1014 GeV, even without using

the contributions from the mechanism of subsection IIID. For Minput larger than about

1014 GeV, the lighter sgluon is tachyonic, breaking color, but as mentioned previously the

AMSB contribution to gaugino masses should dominate in that case anyway. One of the

sgluons is heavier than the Dirac gluino provided that Minput > 20 TeV, and one is lighter.

Of course, finite 1-loop corrections and 2-loop RG corrections, as well as electroweak and

Yukawa effects for the squarks, should also be taken into account in order to get more

precise estimates. Moreover, non-zero values of c
(2)
a , c

(3)
a , c

(4)
a , c

(5)
a , and c

(6)
a can all disrupt

these simple predictions in calculable ways.

V. OUTLOOK

In this paper, I have considered a spurion operator analysis of a scenario in which su-

persymmetry breaking appears in the MSSM sector via operators with F -term VEVs that

are suppressed by 1/M3 where M is a mediation mass scale. The result of this is that

one can obtain all soft terms, including Dirac gaugino masses and non-holomorphic scalar

cubic interactions, with a common mass scale 〈F 〉2/M3. The supersymmetric µ term of the

MSSM is replaced by three independent supersymmetry-breaking parameters, decoupling

the Higgsino mass from the Higgs scalar potential. This illustrates that although it is tra-

ditional to think of µ as a superpotential parameter, it might be more sensible, depending

on the mechanism for supersymmetry breaking, to instead regard it as a part of the soft

supersymmetry breaking Lagrangian.

In general, Dirac gaugino mass parameters need not be accompanied by supersoft scalar

interactions. This has both good and bad implications. The adjoint scalars are naturally

both massive, and there is no problem in maintaining the electroweak scalar quartic inter-

actions that provide for a large Higgs mass. The squarks and sleptons of the MSSM get
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positive RG corrections to their masses from gauginos, unlike in the supersoft case. However,

the supersoft mechanisms for safety from flavor- and CP-violating effects, and for explain-

ing the lack of detection by the last run of the LHC, are diminished. The gaugino masses

can in principle be of the most general mixed Majorana/Dirac form, with consequences for

phenomenology that have already been explored in refs. [8–15]. One interesting possibil-

ity is that the gluino can be mostly Dirac and accompanied by the (approximate) scalar

supersoft interactions, as this is an IR quasi-stable fixed point of the RG equations, while

the electroweak gauginos could be either purely Majorana with no adjoint chiral superfields,

or else very far from the supersoft fixed point trajectory, which is not attractive in the IR

for SU(2)L or U(1)Y . Alternatively, one can simply discard all of the adjoint chiral super-

fields, as the mechanisms for non-standard supersymmetry breaking and three distinct µ

parameters will still go through.

An obvious important remaining question is whether the model-building criteria assumed

here can be realized (at least approximately) in a full UV completion. If so, it would be

interesting to outline the requirements for doing so, and any relationships between couplings

that might be implied. If not, then nevermind.
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