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Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-
driven parametric instabilities because the zero-current charged particle dynamics are characterized
by a single tune. Landau damping can suppress these instabilities, which requires energy spread
in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces
dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent
of energy spread in the distribution, while preserving the dynamic aperture. This novel approach
promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In
this paper we present results, obtained using the Lie operator formalism, on how chromaticity and
dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks
the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the
chromaticity correcting magnets can be weaker and fewer correcting magnet families are required,
thus minimizing the impact on dynamic aperture.

I. INTRODUCTION

Modern accelerator applications require increasingly
high intensity beams. For example, the European Spalla-
tion Source plans for a proton beam with 5 MW average
power. The Proton Improvement Plan at Fermilab, in-
tended to drive neutrino experiments, will top 1 MW with
the ability to expand beyond that. As the beam power
increases, the stability of the beam becomes threatened
by coherent collective effects due to direct space charge
– the canonical example of this is beam halo. Mitigating
these effects to reduce beam loss requires improvements
in beam transport.

One proposed tool to mitigate coherent effects is the
nonlinear integrable lattices [1, 2] to introduce large
transverse tune spreads while still maintaining bounded,
regular orbits. The principle here is to construct an
accelerator lattice which leads to bounded, regular mo-
tion in the transverse plane for on-momentum particles
while having extremely broad tune spreads. The large
tune spread with amplitude decoheres any oscillations
which would normally drive coherent space charge insta-
bilities [3].

These lattices have been studied in the two-
dimensional regime for both single-particle and collec-
tive effects. Preliminary work indicates that they are
robust against space charge and small perturbations in
the transverse lattice design. However, some numerical
studies have indicated susceptibility to off-momentum ef-
fects such as dispersion in the elliptic magnet sections and
chromaticity in the lattice.
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In this paper, we address chromaticity and dispersion
effects using the Lie operator formalism. We obtain gen-
eral results on how these effects break the integrability of
the lattice, as well as how we may mitigate those effects.
We conclude from our studies that having equal vertical
and horizontal chromaticities and having no dispersion
inside the drifts for the nonlinear elements restores the
integrability exactly for a coasting beam. We also find
that the standard chromaticity correction schemes will
also work for these lattices. Because we need only make
the chromaticities equal, rather than make them vanish
or close to vanishing to control tune spread, we are free
to select a family of correcting sextupoles, octupoles, etc.
which has the least effect on the dynamic aperture.

II. SINGLE-TURN MAP & NORMAL FORM
ANALYSIS

To provide a sufficiently general treatment of the non-
linear integrable lattices, we turn to the Lie operator for-
malism of Dragt, Forest, and others [4–6]. This formal-
ism is useful for obtaining invariants of the lattice, such as
the Courant-Snyder invariants and their nonlinear gener-
alizations. This formalism begins with the Poisson brack-
ets for the equations of motion for a dynamical variable
z:

ż = −{H, z} (1)

where H is the Hamiltonion and the overdot indicates the
derivative with respect to the independent variable. We
may interpret the Hamiltonian as a Lie operator, :H :,
which acts on z as such:

ż = − :H : z (2)
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The action of the Lie operator on a dynamical variable is
to take the Poisson brackets of H with that variable, so
that :H : ∗ = {H, ∗}. Under these conditions, the solution
to the differential equation (1) is

z(t) = e− :H : sz(0) (3)

assuming that H is independent of the independent vari-
able.

This approach offers a number of advantages for ac-
celerator applications. The first is that you can multiply
these operators together, whereas you cannot multiply
Hamiltonians directly. This is very fruitful, as a storage
ring can be thought of as a series of piecewise constant
Hamiltonians for drifts, quadrupoles, etc. The resulting
map is simply the product of all the individual maps, in
order. Second, and particularly useful for this applica-
tion, the Lie operator formalism provides a clear path for
canonical transformations, such as the transformation to
the Courant-Snyder parameterization. Finally, there is a
perturbation series for computing invariants, courtesy of
the Baker-Campbell-Hausdorff series. This perturbation
series provides increasingly high-order invariants of the
motion which inform the dynamic aperture.

One identity we will require is the similarity trans-
formation identity. This allows us to move accelerator
elements around, manipulating their order without ap-
proximation. The following identity is exact:

e:f :e:g :e− :f : = exp
(
:e:f :g :

)
(4)

What this allows us to do is take an operator and move
it around another operator – this is convenient for com-
puting the linear transfer map for a ring with nonlinear
elements in preparation for a perturbation theory calcu-
lation. Specifically, we consider

e− :h1 :e− :h2 : (5)

To move the h2 operator past h1, we simply insert the
identity to its left, so that

e− :h1 :e− :h2 : = e− :h2 :e:h2 :e− :h1 :e− :h2 :

= e− :h2 : exp
(
− :e− :h1 :h2 :

) (6)

We will use this technique extensively in the next section.
Let us now consider how all this applies to a storage ring.

If we have a series of accelerator elements, with Hamil-
tonians denoted by {H1, H2, . . . ,HN}, then we may think
of each Hi as generating the motion of the particles
through element i of length `i. The combination of all
these maps yields H, the Hamiltonian which generates
the single-turn map. Thus, we define

M = e− :H:C =
N∏
i=1

e− :Hi : `i (7)

This product gives the single turn map from element 1
through the i elements and back to element 1. Thus,

given a phase space coördinate z0, after a single turn
through this ring it will find itself at z1. M is the single-
turn map for this ring. It should be clear that M con-
tains all the single-particle dynamical information for the
ring[? ].

Philosophically, the goal of the transfer map ap-
proach is to obtain invariants. For purely linear lattices,
this yields the Courant-Snyder invariants; Lie perturba-
tion theory treatments (see, for example, Forest [7] or
Chao [8]) yield their approximate extensions with non-
linearities. These are frequently asymptotic, but contain
a great deal of useful information regardless. In particu-
lar, if a lattice has an invariant, then we can rewrite the
transfer map as a coördinate transformation which con-
tains all the information specific to the location in the
ring times a pure rotation operator which is a property
of the ring. The linear version of this is the Twiss param-
eterization, and then rotations in the normalized x − p
space.

This is the normal form analysis. Suppose A is a Lie
operator which represents a coördinate transformation,
so that Az = z. Then the transfer map in eqn. (7) can
be rewritten in the form

e− :H:C = A−1e− :H :CA (8)

where A represents the position-dependent coördinate
transformation to bring z 7→ z, and H has no explicit
dependence on where in the ring we are.

As an explicit example, consider the single turn map
for a purely linear ring in one transverse dimension. This
is a series of thin(or not) quadrupoles and drifts, which
after Lie concatenation yields the transfer map

M = e−
µ
2

:γx2+2αxp+βp2 : (9)

It is straightforward to show that any Lie concatenation
of quadratic elements takes this form. Now, to rewrite
the single-turn Hamiltonian H in the “simplest possible
way”. Intuitively, it would be nice to turn the tilted
ellipse into a circle, which can be accomplished with the
normalizing map

A−1 =

(
1/
√
β 0

α/
√
β
√
β

)
(10)

The normalizing map contains the Twiss parameters!
Under this transformation, the normalized Hamiltonian
is given simply by

H =
µ

2

(
p2 + x2

)
(11)

We can obtain the tune(s) explicitly from looking at the
rotation of the normal form coördinates under the action
of the normalized Hamiltonian. More importantly, we
have a global invariant, ε = p2 +x2, which tells us a great
deal about the beam dynamics. In fact, ε is the emit-
tance. Because all of the ring dynamics are contained in

the e− :H :C operator, any function of H is conserved –
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this is the concept of beam matching. For nonlinearities,
H may be obtained either using the resonance basis or
the Baker-Campbell-Hausdorff formula (see, for example,
§9.4 of Chao’s notes [8] for a thorough discussion of the
topic) to include higher order terms.

III. A HIERARCHY OF LATTICES

For nonlinear integrable optics lattices, there is in a
sense a three-tiered hierarchy of the lattice. It is im-
portant to discuss this hierarchy here to avoid confusion
and gain a sound conceptual understanding of what is to
come. The three tiers are: (1) the bare lattice; (2) the
corrected lattice; and (3) the nonlinear integrable lattice.

Tier (1), the bare lattice, contains only the drifts,
dipoles, and quadrupoles. This lattice includes a drift
section with equal vertical and horizontal beta functions,
where the nonlinear elliptic magnets will be located. This
lattice is linear for on-momentum particles. The bare lat-
tice includes also the vertical and horizontal chromaticity
for off-momentum effects. We do not consider here the
effects of synchrotron oscillations – the beam is assumed
coasting. The bare lattice dictates the Twiss parameters
as well as the dispersion functions – the normalizing map
A−1 of the previous section.

Tier (2), the corrected lattice, contains all of the el-
ements in the bare lattice, as well as any families of
nonlinear elements used to correct the bare lattice. El-
ements that can appear in the corrected lattice include
chromaticity-correcting sextupoles, octupoles, etc. It is
noted by Chao [8], for example, that these nonlinear-
ities can modify the normalizing maps. However, we
can nevertheless choose our coördinate transformations
so that the normalizing map for the bare lattice remains
unchanged.

The nonlinear integrable lattice, Tier (3), contains all
of Tiers (1) and (2), as well as the nonlinear elliptic
magnets generating the elliptic potential described in §V
of [1]. These magnets are positioned in a drift with equal
vertical and horizontal beta functions. In this paper,
we consider the magnets to be a single, smoothly vary-
ing unit. In practice, the drifts containing the elliptic
potential magnets will be broken into segments contain-
ing two drifts symmetrically sandwiching a constant field
strength magnet. Preliminary work indicates that this
configuration does not change the ideal case substantially
– with ideal alignment we find well less than 1% variation
in the two invariants described in [1].

It is important to note that these three Tiers do com-
prise a hierarchy. Thus, Tier (2) is affected by Tier (1),
but not Tier (3). Thus, when we refer to chromaticity,
we refer to chromaticity as a Tier (2) effect. The nonlin-
ear elliptic element exists on top of that lattice, but does
not contribute to this chromaticity under our definition.
Similarly, the Tier (2) and Tier (3) lattices do not affect
the Twiss parameters – the choice of coördinate transfor-
mation is made to normalize the Tier (1) transfer map

FIG. 1. The IOTA ring with nonlinear drift elements (blue)
and the rest of the lattice (green), with a four-fold symmetry

and is unaffected by the Tier (2) and Tier (3) lattices.
With this nomenclature established, we continue to

discuss the four-fold symmetric design for a nonlinear
integrable lattice, currently under development at Fer-
milab.

IV. A LIE OPERATOR TREATMENT OF THE
IOTA LATTICE

We now have most of the key ideas in place to discuss
the proposed elliptic lattice in the Integrable Optics Test
Accelerator (IOTA) ring (figure 1) [9]. We will initially
consider a coasting beam with no RF acceleration, so
that the longitudinal momentum δ is a constant, and z
changes by ηcδ every turn. The longitudinal dynamics
will not be of much interest in this section, except for
the presence of energy spread for chromaticity.

The theory that follows applies to a single superperiod
of an integrable nonlinear ring. In practice, a nonlinear
integrable lattice may include several superperiods. How-
ever, because of the periodicity, the analysis that follows
still applies.

To represent this ring in the form of eqn. 7, we need
to contend with the strongly s-varying magnets. To do
this, we imagine N slices of constant magnetic field with
length ∆s, so that N∆s = `, the length of the drift. We
can then take the limit of N →∞ with N∆s fixed after
our manipulations.

We consider the transfer map from the middle of an
elliptic magnet segment to the middle of the next. Note
that Lie operators are perhaps a little backwards from
matrices. A string of matrices N1, N2 . . . will be arrayed
. . . N2N1a when acting on a vector a. The matrices are
resolved from right to left. Lie operators, which we will
denote with script letters, resolve from left to right. Thus
we would writeN1N2 · · ·◦a to denote a string of operators
which act on a beginning with N1. Though contrary to
what one might expect, this is the convention used and
the one we follow in this paper.
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t(s)

s

exp
{

− : ~p
2

2
+ ti

1−δ
Ui(x, y):∆s

}

FIG. 2. Schematic of the piecewise constant elements for the
elliptic magnet section. As N → ∞ this becomes the ideal
elliptic element.

It is convenient for exploiting the symmetry of the lat-
tice to start in the middle of the elliptic magnet. Thus,
starting with the middle of the elliptic magnet and work-
ing our way to the middle of the next, we have

M0→1 =
N∏

i=N/2+1

exp

{
− :

~p2

2
+

ti
1 + δ

Ui(x, y): ∆s

}
(12)

This map imagines breaking up the second half of the
elliptic magnet into N/2 thin segments, each with a con-
stant field strength. Each term in the above product
moves a particle through the thin slice of constant field
strength that it represents. For the ideal case of a
smoothly varying elliptic magnet, we will take N → ∞
and ∆s→ 0, holding their product fixed. This factoriza-
tion is shown schematically in figure 2.

This infinite product of maps takes us from the middle
of the elliptic element to the edge. The map that brings
us to the beginning of the next elliptic element we denote
as

M1→2 = e− :h: (13)

where :h: contains all the quadrupoles, drifts, sextupoles
for chromaticity correction, etc. that describes the ele-
ments between the elliptic magnets. This is the Tier 2,
corrected lattice surrounding the drift space surrounding
the elliptic magnets and brings us from the end of the
elliptic magnet to the beginning of the next. Because we
began in the middle of a mirror-symmetric lattice, the
second half of the elliptic magnet transfer map is just
the mirror symmetric version of the first half. Thus, we
have the transfer map explicitly as

M2→0 =

N/2∏
i=0

exp

{
− :

~p2

2
+

ti
1 + δ

Ui(x, y): ∆s

}
(14)

The transfer map for the nonlinear integrable lattice is
just the product of these individual maps, viz.

MIOTA =M0→1M1→2M2→0 (15)

The same argument applies for an IOTA lattice with a
single symmetry, so long as our observing point starts in
the middle of the elliptic magnet. We now want to find
the normalizing coördinates for this lattice, as discussed
in the previous section. We will look at this for theM2→0

map – the argument is symmetrical to the other half of
the elliptic magnet.

We begin with a factoring that is second order in ∆s
of each of the infinitesimal slices:

exp

{
− :

~p2

2
+

ti
1 + δ

Ui(x, y): ∆s

}
= e− : ~p

2

2
: ∆s/2 exp

{
− :

ti
1 + δ

Ui(x, y): ∆s

}
e− : ~p

2

2
: ∆s/2 +O(∆s3) (16)

Taken in the limit of ∆s → 0, this becomes exact.
We now use the similarity transformation described by
eqn.(6), inserting the identity as drift operators to move
the individual drifts to the left, resulting in the map tak-
ing the form

e− : ~p
2

2
:N∆s/2

N/2∏
i=0

exp

{
− :

ti
1 + δ

e− :~p2/2:(i+1/2)∆sUi(x, y):

}
(17)

We have thus moved all of the linear parts of the elliptic
magnet transfer map – specifically the drift maps – next
to the rest of the lattice. This, along with its symmetri-
cal argument for M0→1, gives the transfer map for the
nonlinear integrable IOTA lattice:
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MIOTA =
N∏

i=N/2+1

exp

{
− :

ti
1 + δ

e− :~p2/2:(i−N/2+1/2)∆sUi(x, y)∆s:

}
×

(
e− : ~p

2

2
: /̀2e− :h:e− : ~p

2

2
: /̀2

)
×

N/2∏
i=0

exp

{
− :

ti
1 + δ

e− :~p2/2:(i+1/2)∆sUi(x, y)∆s:

}
(18)

This factors the nonlinear integrable lattice into the cor-
rected IOTA lattice transfer map, and the strongly non-
linear elliptic potential. We analyze the corrected IOTA
lattice first, as this is where we will obtain the normaliz-
ing maps A, the bare lattice tunes, and the chromaticity.

V. THE CORRECTED IOTA LATTICE

In the previous section, we factored the transfer map
into the nonlinear elliptic potential and the corrected lat-
tice. The bare lattice with all nonlinear terms neglected
contains all the information for computing the normaliz-
ing map. As discussed, the normalizing map contains the
Twiss parameters, specifically the beta functions which
carefully cancel to produce the integrable elliptic Hamil-
tonian. To describe this cancellation in a more general
form to obtain effects due to dispersion and chromatic-
ity, we need to carry out a normal form treatment of the
IOTA lattice. We therefore consider the corrected IOTA
lattice transfer map

M0 = e− : p
2

2
: /̀2e− :h:e− : p

2

2
: /̀2 (19)

This is the full Tier 2 lattice for the IOTA ring, in the ab-
sence of any elliptic elements. Thus, it contains the com-
bined transfer maps for quadrupoles, drifts, and bends,
as well as any chromaticity correcting elements such as
sextupole families. The familiarity with chromaticity cor-
rection schemes means we push the details of this discus-
sion to the appendix and instead approach the problem
as computing the single-turn invariant Hamiltonian in
the normalized coördinates.

Thus, we start from the assumption that the total
Hamiltonian H has been computed by some manipu-
lation of Lie operators representing the individual ele-
ments, viz.

M0 = e− :H0 :C =
M∏
i=0

e− :hi : `i (20)

and furthermore that we have computed the normalized
variables so that we may represent this as

e− :H0 :C = A−1e− :H :A (21)

Recall the peculiar choice of ordering for Lie operators,
which act left-to-right instead of right-to-left. Thus, if

M0 ◦ z, then we would have the h0 operator act on z
first, then the h1, and on. We assume that A is derived
purely from the linear part of the bare lattice – the per-
turbation theory used to compute the full Hamiltonian
H generates higher order, nonlinear normalizing maps
if there are nonlinear elements in the corrected lattice.
However, these can be swept into the form in eqn. (21)
with a judicious use of the similarity transformation tech-
nique described in eqn. (6).

The typical Courant-Snyder parameterization is a lin-
ear transformation on the p’s and q’s given by the matrix

A−1 =


1/
√
βx 0 0 0 0 −η/√βx

αx/
√
βx
√
βx 0 0 0 −αxη+βxη

′
/
√
βx

0 0 1/
√
βy 0 0 0

0 0 αx/
√
βy

√
βy 0 0

η′ η 0 0 1 0
0 0 0 0 0 1


(22)

where β and α are the Twiss parameters, and η is the
dispersion function at the given point in the lattice. This
neglects effects like linear transverse coupling, vertical
dispersion, and RF oscillations. Because IOTA will only
have blocking RF, this is unnecessary for the initial ring
design. However, future work must consider the effects
of accelerating RF and synchrotron oscillations in greater
detail.

The map A is a constant at one particular location of
the ring. We will need to manipulate A to move around
the ring, particularly when we are to concatenate all of
the elliptic potential steps on the edges of eqn. 28. So,
how do we move from one point on the ring to the other?

The answer is to look at the product in eqn. 20. If
we want to know the transfer map from element M to
element M − 1, instead of from element 0 to element
M , this is just a cyclic permutation of the product. To
enact this cyclic permutation, we multiply the inside and
outside by the transfer map to get from element 1 to
element M and its inverse:

e− :H′
0 :C = e− :hM : `M

(
M∏
i=0

e− :hi : `i

)
e:hM : `M (23)

This then translates in the normal coördinate represen-
tation as

e− :H′
0 :C = e− :hM : `MA−1e− :H :Ae:hM : `M (24)
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In the section discussing normalizing maps earlier, we
noted that H needs to be a quantity invariant of the
particular location in the ring. Thus, the normalizing
map must be what changes under this change of azimuth.
Hence, if A is the normalizing map at the M th element,
then

AM = Ae:hM : `M (25)

must be the normalizing map of the (M − 1)st element.

We will assume a rather generic form for H, since it
could contain any number of complex elements. We have,
however, restricted ourselves to not having any elements
which change δ, such as an RF cavity. Assuming we have
incorporated the chromaticity correction calculations in
Appendix A into our computation, we are left with

H =
µ0

2

{
[1− Cx(δ)]

(
p2
x + x2

)
+ [1− Cy(δ)]

(
p2
y + y2

)}
+

1

2
αCδ

2 + h.o.t.
(26)

where the higher order terms include sextupole, oc-
tupole, etc. terms left over from the chromatic correction
scheme. Thus, Cx(δ) and Cy(δ) are assumed to include
these corrections. In the absence of such corrections, we
are left with the bare lattice chromaticities. These higher
order terms will affect the dynamic aperture and break
the integrability of the system, as they do in the case
of conventional linear strong focusing lattices. They are
higher order, though, and we are focused here on the
lowest order of the nonlinear integrable lattices first.

As one final note, we can rewrite A−1 in a more illus-
trative form for the cancellation of the beta functions in
the elliptic potential. The upper-left 4 × 4 matrix con-
tains transformations on coördinates for on-momentum
dynamics, and therefore does not mix in the longitudinal

momentum offset through dispersion. We thus write

A−1 =


A−1

0 −η/√βx
0 −αxη+βxη

′
/
√
βx

0 0
0 0

η′ η 0 0 1 0
0 0 0 0 0 1

 (27)

where A−1 is the upper-left 4× 4 matrix, containing the
Twiss parameters α and β. Later, we will freely inter-
change A−1 as either the upper 4× 4 matrix, or a 6× 6
with the lower right 2× 2 as the identity. This notation
will prove convenient in the next section, when we look
at the careful cancellation of β for generating the inte-
grable potentials used by Danilov and Nagaitsev in terms
of normalizing maps.

VI. THE IOTA TRANSFER MAP, AND AN
INTEGRABLE HAMILTONIAN

In the previous section, we discussed the transfer map
approach to the bare IOTA lattice. This allowed us to
create a normalizing coördinate transformation A and
rewrite the IOTA transfer Hamiltonian in the quadratic
form, plus chromaticity, plus remaining nonlinearities
that arise due to the chromatic correction schemes. The
goal here is to do for the outer products of the IOTA
transfer map what was done for the bare lattice – obtain
an invariant quantity and the normalizing coördinates
in which it is conserved. This will yield the single-turn
Hamiltonian and associated invariants, along with de-
scribing the effects of dispersion on the integrability of
the single-turn Hamiltonian (see Appendix B for more
details).

We begin from the transfer map in eqn. 28, but with
the new map for the bare IOTA ring plus the normalizing
map:

MIOTA =

N∏
i=N/2+1

exp

{
− :

ti
1 + δ

e− :~p2/2:(i−N/2+1/2)∆sUi(x, y)∆s:

}
×

(
A−1e− :H :CA

)
×

N/2∏
i=0

exp

{
− :

ti
1 + δ

e− :~p2/2:(i+1/2)∆sUi(x, y)∆s:

} (28)

We will try to move the A and A−1 operators to the
outside of MIOTA in the same way that we moved the
drifts into the middle of the map. As before, we will look

at the
∏N/2
i=0 half, as the argument is symmetrical.

We look the first term in the product:

A exp

{
− :

t0
1 + δ

e− :~p2/2: ∆s/2U0(x, y):

}
(29)

Here we do two things: we insert an identity on the right
side, and we take the drift component out of the exponent
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using the same identity we used to put it there in the first
place. This process gives us:

A exp

{
− :

t0
1 + δ

e− :~p2/2: ∆s/2U0(x, y):

}
=

A0 exp

{
− :

t0
1 + δ

U0(x, y)∆s/2:

}
A−1

0 A
(30)

where

A0 = Ae− :~p2/2: ∆s/2 (31)

is the normalizing map after the 0th half-drift. In general,
from our previous discussion of how the normalizing map
transforms, we can write

Ai = Ae− :~p2/2:(i+1/2)∆s (32)

so long as we are inside the drift region. This is familiar
from the usual way that the Twiss parameters are said
to transform in linear lattices ([10], Chap. 2, §II.2). By
repeating this operation, we are able to slip A all the way
to the right. This leaves us with the product:

A

N/2∏
i=0

exp

{
− :

ti
1 + δ

e− :~p2/2:(i+1/2)∆sUi(x, y): ∆s

} =

N/2∏
i=0

Ai exp

{
− :

ti
1 + δ

Ui(x, y): ∆s

}
A−1
i

A
(33)

Now we note that the products are of a Lie map which

normalizes the coördinates and a thin transfer map for
the elliptic element. Using the similarity transformation
rule in a way we have grown accustomed to, we write this
as:

Ai exp

{
− :

ti
1 + δ

Ui(x, y): ∆s

}
A−1
i =

exp

{
− :

ti
1 + δ

A ◦ Ui(x, y): ∆s

} (34)

Now the reasoning for rewriting the normalizing map in
the suggestive way we did in eqn. 27 should begin to be
apparent.

We have thus packed up, unpacked, and then packed
up again the IOTA transfer map to obtain its normalized
coördinates including longitudinal momentum spread.
The condition of matched beta functions and their can-
cellation in the original work by Danilov and Nagait-
sev [1] is the same as saying that

tiAi ◦ Ui(x, y) =
t

βi
U(x, y) (35)

independent of the position. That is to say, for the case
when δ = 0, t U(x, y) = βitiUi(A−1z) The addition of
the dispersion for off-momentum particles modifies this
so that

tiAi ◦ Ui(x, y) =
t

βi
U (x− ηiδ, y) (36)

where ηi is the value of the dispersion function at the ith

slice and δ is the relative energy deviation. Because all of
these operators commute with each other, we can collapse
everything immediately to get the nonlinear integrable
transfer map:

MIOTA = A−1 exp

{
− :

t

1 + δ

∫ `

/̀2

ds
1

β(s)
U

(
x− η(s)δ√

β(s)
, y

)
:

}
e− :H : exp

{
− :

t

1 + δ

∫ /̀2

0

ds
1

β(s)
U

(
x− η(s)δ√

β(s)
, y

)
:

}
A

(37)

This yields the total single-turn Hamiltonian

H =
µ0

2

{
[1− Cx(δ)]

(
p2
x + x2

)
+ [1− Cy(δ)]

(
p2
y + y2

)}
+

t

1 + δ

∫ `drift

0

1

β(s′)
U

(
x− η(s′)δ√

β(s′)
, y

)
ds′ +

1

2
αCδ

2 + h.o.t.

(38)

where the higher order terms include remnants of the
chromatic correction scheme, Poisson brackets between
the elliptic potential and the chromatic correction higher
order terms, etc. These terms are important in under-

standing things like the dynamic aperture at higher or-
der, and the loss of integrability due to the chromatic cor-
rection schemes. However, we must get the zeroth-order
Hamiltonian correct before worrying about how pertur-
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bations affect it.
Looking at this Hamiltonian, and comparing to the

integrable Hamiltonian in two dimensions discussed in
Appendix B, we note two things:

1. Chromaticity differences break the assumptions in
the derivation of the Bertrand-Darboux equation

2. Dispersion breaks the form of the elliptic potential
for off-momentum particles

The latter of the two is straightforward enough to cor-
rect. Dispersion-free sections are a standard tool in lat-
tices, and indeed the current design for the IOTA ring has
dispersion-free sections in the drifts where the nonlinear
elliptic magnets will be placed.

The former is more interesting. In a conventional linear
strong focusing storage ring, chromaticity and its correc-
tion is a balancing act between keeping the tune spread
sufficiently small to avoid crossing low order resonance
lines, while keeping it large enough to maintain enough
Landau damping to prevent coherent instabilities. In the
absence of any collective effects, avoiding nonlinear reso-
nances requires making the chromaticity as small as pos-
sible.

The nonlinear integrable optics already has enormous
tune spreads – that is the reason it was designed in the
first place. The tune spreads already cross low order
resonance lines. Chromaticity correction should then be
focused not on avoiding resonance lines, but on restor-
ing integrability to off-momentum particles. Therefore,
one would want to keep the higher order terms as small
as possible, to avoid their impinging on the integrabil-
ity. This means we must tune our sextupoles, octupoles,
decapoles,..., to make the vertical and horizontal chro-
maticity equal.

If we define C0(δ) = (Cx(δ) + Cy(δ))/2 and ∆C =
(Cx(δ) − Cy(δ))/2, and we assume the linear dispersion
vanishes, we have

H = H0 + ∆C

(
p2
x + x2 − p2

y − y2
)

(39)

where H0 is the “ideal” Hamiltonian described in [1] to
within factors including C0(δ). This makes explicit that
all that is required of our chromaticity correction scheme
is enough nonlinearity to make ∆C vanish.

By building a lattice which satisfies these two consid-
erations, we are left with a single-turn Hamiltonian (ne-
glecting higher order terms here)

H =
µ0

2
[1− C(δ)]

(
p2
x + x2 + p2

y + y2
)

+ ν0 t U(x, y)

(40)

where ν0 =
∫ `

0
ds′ 1

β(s′) is the phase advance across the

drift where the elliptic elements are placed. This form is
similar to the form for the Hamiltonian in [1]. Note that

e−2π :(p2
x/2+x2/2):z = z (41)

for the phase space coördinates z, and similarly for y and
py. This is simply to say that this particular operation

is a 2π rotation in the normalized variables, which is just
the identity. Current design efforts for the IOTA ring
are such that µ0 = 2πN + ν0, which is to say that there
is a 2πN phase advance between the end of the elliptic
element and the beginning.

Using this design and factoring out the 2πN rotation,
the single turn transfer map takes the form

M = A−1e−
ν0
2

:H:A (42)

with the normalized Hamiltonian generating the map
given by

H =
1

2

(
1− µ0C(δ)

ν0

)(
p2
x + x2 + p2

y + y2
)

+ t U(x, y)

(43)
which, for on-momentum particles, is identical to the in-
variant Hamiltonian derived in [1].

VII. DISCUSSION & CONCLUSIONS

The original work of Danilov and Nagaitsev, present-
ing the elliptic potential as a way of having large tune
spreads in integrable dynamics, represents a zeroth order
design of a realizable nonlinear integrable lattice. This
work, considering a coasting beam with energy spread,
chromaticity, and dispersion, represents a first order cor-
rection, illustrating the first operational principles for a
realistic beam. Many other key issues remain – the effects
of magnet errors, synchrotron oscillations, and nonlin-
ear synchrobetatron coupling on the dynamic aperture
to name a few – but fundamental design principles for
nonlinear integrable lattices are taking shape.

In this paper, we have reached three important conclu-
sions about nonlinear integrable optics. The first is that
conventional notions of chromaticity survive, and exist-
ing correction schemes are perfectly valid and useful. We
have also shown that the elliptic elements should be in
dispersion-free sections. Finally, we have concluded that
chromaticity breaks the integrability of nonlinear inte-
grable lattices, but that a chromatic correction scheme
which tunes the chromaticities to be equal will restore
integrable single-particle motion. Because it does not
matter whether Cx or Cy are tweaked, this leaves the
lattice designer with much freedom in designing the cor-
rection scheme.

We have considered these chromatic correction
schemes to quadratic order in the transverse dynamics
and arbitrary order in δ, i.e. to order δnz2, while ne-
glecting terms of order z3 or higher in the Tier 1 and
Tier 2 lattices, assuming that their coëfficients are small
compared to the elliptic potential. These terms affect the
dynamic aperture, as they do in chromaticity correction
schemes in linear strong focusing lattices. However, we
have not considered their effect on the dynamic aperture
in this study.

The primary approximation of this work is the assump-
tion of a coasting beam. When synchrotron oscillations

----
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are present, the chromaticity will create coupling with
the highly nonlinear transverse dynamics. Because the
synchrotron tune is typically so much smaller than the
transverse tunes, one might expect that an adiabatically
conserved quantity would remain even with the nonlinear
coupling. How this affects the dynamic aperture remains
to be seen and is necessary to understand before a fully
functional integrable optics machine could be built.
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Appendix A: Lie Operator Treatment of Sextupole
Chromaticity Correction

In the course of carrying out this research, we found
that there is no complete write-up in the language of Lie
operators on how sextupoles correct chromaticity in lin-
ear lattices. For completeness, we include a more detailed
calculation here.

We start by considering a sample lattice given by the
elements

M =M0→1Msext.1M1→2Msext.2 (A1)

whereMii+1 is the transfer map for a purely linear lattice
(drifts and quadrupoles only) from the ith to the i+ 1st

location in the ring and Msext. is a thin sextupole. The
usual procedure for this thing (see Dragt [6], Forest [7],
or Chao [8]) is to move all of the linear components to
the left, then begin concatenating with the operators to
the right using a perturbation series. This is done with
the usual tricks we’ve carried out throughout this paper:

M =M0→1M1→2×
exp {− :M1→2V (x, y):} exp {− :V (x, y):}

(A2)

where V (x, y) = S3

3 (x3 − 3xy2) is a thin sextupole po-
tential. Now, if the composition above is a linear lattice,
then it has the same normal form analysis we had before,
with

M = A−1 exp
{
− :

µx
2

(1− Cxδ)Jx +
µy
2

(1− Cyδ)Jy :
}
A×

exp{− :M−1
1→2V (x, y):} exp{− :V (x, y):}︸ ︷︷ ︸

exp{− :Vnl :}
(A3)

where Jx and Jy are the usual action-angle variables. Let
us now insert the identity in the form of A−1A between

the two nonlinear operators, so now we have that

M = A−1 exp
{
− :

µx
2

(1− Cxδ)Jx +
µy
2

(1− Cyδ)Jy :
}
×

A exp{− :M−1
1→2V (x, y):}A−1A exp{− :V (x, y):}A−1A

(A4)

We can decomposeM−1
1→2 into a normal form, so long as

the dynamics are integrable or, more specifically in this
case, linear. Then we have thatM1→2 = B−1

1 RB2, where
R is a pure rotation, and Bi is the normalizing map at
point i in the lattice. Using the similarity transformation
rules, this gives

M = A−1

(
exp

{
− :

µx
2

(1− Cxδ)Jx +
µy
2

(1− Cyδ)Jy :
}
×

exp{− :AB−1
2 R−1B1V (x, y):} exp{− :AV (x, y):}

)
A

(A5)

We note that B2 = A from our definitions, and hence
those cancel. and we are left with the rotation and nor-
malizing map. This leaves the final two Lie operators
as

exp{− :AB−1
2 R−1B1V (x, y):} exp{− :AV (x, y):} =

exp{− :R−1V (
√
β1
xx− δη1,

√
β1
yy):}×

exp{− :V (
√
β2
xx− δη2,

√
β2
yy):}

(A6)

If the rotation R has its upper 4 × 4 as R = −I, i.e. a
rotation of (2k + 1)π in both transverse directions, and
the identity for the energy, this gives the final nonlinear
potential as

Vnl = V
(
−
√
β1
xx− δη1,−

√
β1
yy
)

+V
(√

β2
xx− δη2,

√
β2
yy
)

(A7)
For sextupole elements with strengths S1 and S2, this
gives, to first order in δ,

Vnl =
(
−S1(β1

x)
3/2 + S2(β2

x)
3/2
)
x3 + . . .

3
(
S1

√
β1
xβ

1
y − S2

√
β2
xβ

2
y

)
xy2+

3
(
S1β

1
xη

1 + S2β
2
xη

2
)
x2δ + 3

(
S1β

1
yη

1 + S2β
2
yη

2
)
y2δ

(A8)

We note that, generally, obtaining the desired phase
advance may be difficult, so there may be a family of
chromaticity-correcting nonlinear elements and rotations
positioned to cancel the leading order in δ term. The
first system of equations can be made to cancel exactly
through an intelligent choice of S1 and S2. The second
term tells us how much chromaticity can be cancelled.
The concatenation can be done with the usual resonance
basis method, described in §2.4 of [7]. The completion of
this perturbation theory analysis is left as an exercise to
the reader.

http://arxiv.org/abs/de-sc/0011340
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Appendix B: Derivation of the Bertrand-Darboux
Equation from a Transfer Map Approach

Because the assumptions of the Bertrand-Darboux
equation are so important to the conclusions of this pa-
per, we here include a derivation of the result. A treat-
ment in terms of constant Hamiltonians in time can be
found in Whittaker [11], §152. Since the theme of this
paper is the use of Lie operators, we obtain the same
result with this formalism instead.

We note that an invariant I(p, q) of a single-turn map
e− :h: is such that

e− :h:I = I (B1)

It is certainly sufficient that :h: I = 0 to satisfy this con-
dition – that is, I commutes with the Hamiltonian Lie
operator. We assume h is quadratic in the momenta with
no difference in coefficients between px and py:

h =
1

2

(
p2
x + p2

y

)
+ V (x, y) (B2)

and that I is a quadratic form of the momenta:

I(p, q) = Pp2
x +Qpxpy +Rp2

y + Spy + Tpx +K (B3)

where the coefficients may, in general, be functions of
x and y. Taking the Lie operator on I and noting the
relationship with Poisson brackets gives a set of ten par-
tial differential equations corresponding to the ten coeffi-
cients of the third-order polynomial in px and py. These
coefficients must all vanish for the Poisson bracket to
vanish generally.

We start with the first order coefficients, specifically

2P
∂V

∂x
+Q

∂V

∂y
− ∂K

∂x
= 0 (B4a)

2R
∂V

∂y
+Q

∂V

∂x
− ∂K

∂y
= 0 (B4b)

We differentiate the first with respect to y and the sec-
ond with respect to x and subtract to obtain the single
differential equation

Q

(
∂2V

∂y2
− ∂2V

∂x2

)
+ 2(P −R)

∂2V

∂x∂y
+
∂Q

∂y

∂V

∂y
− ∂Q

∂x

∂V

∂x
+ 2

(
∂P

∂y

∂V

∂x
− ∂R

∂x

∂V

∂y

)
= 0 (B5)

From the p3
x, p

3
y coefficients, we know that P and R are

pure functions of y and x, respectively. From the mixed
cubic coefficients, p2

xpy and p2
ypx we have the relations

∂Q

∂x
= −∂P

∂y
(B6)

and

∂Q

∂y
= −∂R

∂x
(B7)

from which we can conclude that Q = xy, P = −1/2 y2+c
and R = −1/2 x2 + c′. Substituting this all into the main
equation yields the familiar Bertrand-Darboux result:

xy

(
∂2V

∂x2
− ∂2V

∂y2

)
+
(
y2 − x2 + C2

) ∂2V

∂x∂y
+ 3y

∂V

∂x
− 3x

∂V

∂y
= 0 (B8)

The corresponding invariant is obtained by inserting
these results and continuing to back-solve the remaining
five partial differential equations.

We note here that an important part of this deriva-
tion is that there are identical coefficients of p2

x and p2
y

in the Hamiltonian. If that were not the case, then
the coefficients of eqn. B5 would not be equal and the
anisotropy would make the corresponding generalization
of Bertrand-Darboux equation an explicit function of δ.
Thus, anisotropic chromatic effects would enter the po-

tential and invariant in a way that cannot be canceled
exactly. On the other hand, if the chromaticities are
isotropic, then they can simply be factored out of the
Hamiltonian thus:

h =

(
1− µ0C(δ)

ν0

)[
1

2

(
p2
x + p2

y + x2 + y2
)

+
1

1− µ0C(δ)
ν0

V (x, y)

]
(B9)

which is just a reparameterization of V so long as δ is
a constant. Thus, for a coasting beam in a ring with
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isotropic chromaticity, the invariant is restored by simply mapping t 7→ t/1−µ0C(δ)
ν0

.

[1] V. Danilov and S. Nagaitsev, “Nonlinear accelerator lat-
tices with one and two analytic invariants,” Phys. Rev.
ST – Acc. Beams 13 (2010).

[2] S. Nagaitsev, A. Valishev, and V. Danilov, “Nonlinear
optics as a path to high-intensity circular machines,” in
Proceedings of HB2010, THO1D01 (2010).

[3] Stephen D. Webb, David L. Bruhwiler, Dan T. Abell,
Andrei Shishlo, Viatcheslav Danilov, Sergei Nagaitsev,
Alexander Valishev, Kirill Danilov, and John R. Cary,
“Effects of nonlinear decoherence on halo formation,”
(2012), arXiv:1205:7083.

[4] A. Dragt and J. Finn, “Lie series and invariant functions
for analytic symplectic maps,” J. Math. Phys. 17 (1976).

[5] A. Dragt and E. Forest, “Computation of nonlinear be-
havior of hamiltonian systems using lie algebraic meth-

ods,” J. Math. Phys. 24 (1983).
[6] A. Dragt, Lie Methods for Nonlinear Dynamics with Ap-

plications to Accelerator Physics (University of Mary-
land, 2011).

[7] Étienne Forest, Beam Dynamics: A New Attitude and
Framework, The Physics and Technology of Particle and
Photon Beams, Vol. 8 (Harwood Academic Publishers,
1998).

[8] A. Chao, Lie Algebra Techniques for Nonlinear Dynam-
ics, SLAC-PUB 9574 (SLAC, 2012).

[9] http://asta.fnal.gov.
[10] S. Y. Lee, Accelerator Physics (World Scientific, 2004).
[11] E. T. Whittaker, A Treatise on the Analytical Dynamics

of Particles & Rigid Bodies (Cambridge University Press,
1937).




