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Abstract
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to
generate proton beamswithout stripping foils. The time-dependent Schrödinger equation describing
the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a
broad range of laser wavelengths, durations and energies. Parameters are identifiedwhere theDoppler
frequency up-shift of radiation collidingwith relativistic particles can lead to efficient ionization over
large volumes and broad bandwidths using currently available lasers.

1. Introduction

The photo-ionization of atoms exposed to strong electromagnetic fields has been the subject of extensive
research overmany decades [1–5]. Following the invention of lasers, comprehensive theoretical and
experimental studies of laser-matter interaction at high intensities have been carried out in the infrared spectral
region, uncovering a highly nonlinear regimewhere ionization occurs through the absorption of a large number
of low-energy photons. Recently, ionization by intenseUV radiation has also become a reality [6, 7] thanks to the
development of new sources based on free-electron lasers, high harmonic generation and plasmas. New interest
in this topic has also been sparked by the rapidly developing field of laser stripping of particle beams, a process
where electrons are removed from a relativistic beamby irradiationwith intense lasers [8–11]. Proton beams can
be obtained by passing aHorH− beam through a thin foil, but oftenwith the drawbacks of significant beam
losses, quality degradation and frequentmaintenance of foils that can become activated. Uncontrolled beam loss
at injection is one of themain challenges encountered in the development of high-intensity, high-energy proton
accelerators [12]. As an alternative,multi-step stripping schemes have been proposed [10, 13–15], where lasers
excite transitions between bound states of hydrogen, resulting inweakly bound electrons that are easily removed
bymagnetic fields. Herewe show that direct ionization of hydrogen can also be a viable single-step stripping
method, since in the rest frame of an atommoving at relativistic speed a colliding infrared laser can beDoppler
shifted toUV frequencies where photo-ionization is highly efficient at intensities achievable with commercially
available lasers. Since accurate ionization cross-sections are not known in theUV region for awide range of
frequencies and pulse durations, we have conducted an extensive numerical study by solving the time-
dependent Schrödinger equation (TDSE) governing the atom-radiation interaction, exploring the properties of
one-photon tofive-photon ionization and discussing possible applications to laser stripping, using as a test case
the beamparameters of Project X, a proton accelerator whichwas proposed at Fermilab [16].

2. Ionization probabilities

The probability of ionizing hydrogen atoms through exposure to intense laser radiation has been calculated by
numerically solving the TDSE using the publicly available codeQPROP [17]. This is a package developed to study
the non-relativistic atom-field interaction in the dipole approximation, which is applicable when the energy
gained by electrons is smaller than their rest energy, a conditionmetwhen the dimensionless normalized vector
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potential of the laser-field λ μ= ∣ ∣ ≈ × − −a eA mc I8.5 10 ( m) (W cm )0
10

0
2 is less than 1.Here e is the electron

chargemagnitude,A the laser-field vector potential,m the electronmass and c the speed of light. This approach
restricts the laser intensity I0 to values below ∼ −10 W cm18 2 for wavelengths λ ≈ 1 μm, or ∼ −10 W cm20 2 for
λ ≈ 100 nm.Non-dipole features can however be induced by the lasermagnetic field and by retardation effects
at intensities about one order ofmagnitude lower [18, 19]. In this work only intensities up to −10 W cm16 2 have
been considered, a range appropriate for laser stripping, where high irradiances over large volumeswould be
difficult to achieve andwould potentially lead to degradation of laser and particle beamquality.

TDSE simulations have been performed using a gridwith 500 points in the radial direction and a step size of
0.2 au. Electrons reaching the boundaries are absorbed, causing the norm  t( )of thewave function to decrease
with time. The ionization probability is calculated as  = − t1 ( ). The number of angularmomenta, which
corresponds to themaximumnumber of absorbed photons, has been set to 5 for wavelength ranges where
ionization is dominated by one or two photon absorption, and 6–8 in the three–five photon regimes. These
parameters offer a good compromise between accuracy and computational speed and their validity has been
verified by repeating some calculations for 10 angularmomenta and by computing the photoelectron spectra.
All simulations have been performed for a linearly polarized sin2 pulsewhere the electric field is described by the

time profile ω= ω( )E t E t( ) sin cos( )t

N0
2

2 c
, withω the radiation angular frequency andNc the number of cycles,

corresponding to a pulse duration π= −T 2( 2FWHM arcsin (2−1/4)) ω ω≈N N2.29c c (FWHMof the
intensity). Our results have been comparedwith the TDSE simulations of [20, 21], as well as with the
experimentalmeasurements reported in [22], finding an excellent agreement.

The dependence of the ionization probability on laser wavelength is shown infigure 1 for pulses with
intensity of −10 W cm12 2 and durations of 100, 200, 10 000 and 20 000 cycles. Five different regions can be
identified. Forwavelengths shorter than 91nm the photon energy is larger than the 13.6eV electron-proton
binding and ionization is driven predominantly by the absorption of a single photon.Here the ionization
probability is highest, reaching 1 in the 80–90 nmwindow for intensities around 1011–1012 −W cm 2 and
picosecond-scale pulse durations.When saturation does not occur, the ionization probability proportionally
decreases with frequency asω−4.6, a behaviour in agreement with theω−9/2 dependence expected at high
frequencies from calculations of the one-photon ionization of hydrogen in the first-order Born approximation
[24]. Past the 91.1 nm resonance, a sharp dip at about 95–100 nm leads to a new region dominated by two-
photon ionization and characterized by a plateau of roughly constant amplitude up to about 190 nm. Peaks
corresponding to the 102.5 nm (1s–3p) and 121.5 nm (1s–2p) transitions are prominent. Dips around list 190,
270 and 370 nm signal the passage to the three, four and five photon regimes. Calculations have been repeated
for different laser intensities observing the same general behaviour, with differences only in the saturation
threshold and in the amplitude of the oscillations close to resonance. A comparisonwith the results predicted by
the analyticalmodel presented in [23] (plotted in crosses infigure 1 for 100 cycle pulses) reveals similar general
features, although the analytical formula cannot reproduce the resonances and also appears to overestimate the
ionization probability at short wavelengths, probably because it employs a perturbative expansion for the
Coulomb correctionwhich requires ω ≪ 1 au.

Figure 1. Ionization probability of atomic hydrogen as a function of laser wavelength at an intensity of −10 W cm12 2 and for pulse
durations of 100 (continuous line), 200 (dashed line), 10 000 (triangles) and 20 000 (circles) cycles. (Fewer points have been
calculated for long pulse durations because of the long computational time.) The crossed line shows the ionization probability for 100
cycles predicted by the analytical formula derived in [23].
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The ionization probability versus the laser intensity I is shown infigure 2 for 10 000 cycle pulses and a range
of wavelengths corresponding to the one–three photon regimes.Most curves follow the expected In dependence
[2], where n is the number of absorbed photons, although amixed behaviour is observed at the transition
between different ionization regimes, in thewavelength regions close to the sharp dips visible infigure 1.Here
more photons are absorbed as the intensity increases, as noticeable for example in the curves at 101.2 nm
(ω = 0.45 au) and 99 nm (ω = 0.46 au). The curve at the 121.5 nm (ω = 0.375 au) resonance is also atypical,
since it is characterised by a quadratic growth at low intensities followed by a linear growth at high intensities.
Similar features are observed for femtosecond and picosecond durations, although shorter pulses exhibit small-
scale variations that are smoothed away for longer durations.

These numerical results can be used to calculate generalizedmulti-photon cross-sections, which include the
smallmodifications to the ionizationmechanism caused by atomic-level resonances induced by the rapidly
evolving laserfield [25]. Effective cross-sections can be estimated by fitting the curves derived fromTDSE

simulations to the equation  σ ω= − − ℏ( )t I1 exp [ ( )]n
n

eff , where  is the ionization probability, σn is the n-

photon effective cross-section and ∫= ′ ′
−∞

+∞
t F t t( ) dn

eff is the effective pulse duration tailored to an n-photon

process [26], with F(t) = I(t)/I the normalized laser-pulse intensity profile and ℏ the reduced Planck constant.

For the sin2 pulse considered here = ω( )F t( ) sin t

N
4

2 c
and π Γ ωΓ= + +t n N n2 (2 1 2) ( (2 1))ceff , withΓ

the gamma function. Effective cross-sections for a range of wavelengths are presented in table 1 for 10000 cycle
pulses and in table 2 for 100 cycle pulses.

Below saturation the ionization probability depends linearly on the pulse duration, as shown infigure 3 for
λ = 91.1 nm and λ = 182.2 nm. Close to the 91.1 nm resonance saturation is already appreciable at

−10 W cm11 2, and the dependence on pulse duration becomes nonlinear. For intensities and durationswhere the
linear scaling holds, the ionization rate can be obtained by dividing the probability by the pulse duration.

Figure 2. Ionization probability of atomic hydrogen as a function of laser intensity for 10 000 cycle pulses of varying frequency. For
ω > 0.5 au (λ < 91.1 nm) the ionization probability depends linearly on intensity. For ω< <0.25 au 0.5 au
( λ< <91.1 nm 182.2 nm) the typical dependence is quadratic. For ω< <0.125 au 0.25 au ( λ< <182.2 nm 273.4 nm) the
dependence is cubic.Mixed behaviour is observed at the transition between different regimes.

Table 1.Effective n-photon ionization cross-
sections σn for 10 000 cycle laser pulses of varying
frequency interacting with atomic hydrogen.

n λ (nm) ω (au) σn (cm
2n sn − 1)

1 30.4 1.5 2.88 × 10−19

1 50.6 0.9 1.25 × 10−18

1 65.1 0.7 2.52 × 10−18

1 86 0.53 5.28× 10−18

1 91.1 0.5 6.21 × 10−18

1 93 0.49 1.12× 10−17

2 106 0.43 2.00× 10−51

2 123.1 0.37 1.62× 10−49

2 151.9 0.3 1.10 × 10−50

2 182.2 0.25 1.55× 10−50

3 198.1 0.23 9.67× 10−84
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Figure 4 shows photoelectron spectra calculated for 100 cycle pulses with intensity −10 W cm12 2 for
λ = 30.4 nm (ω = 1.5 au), λ = 91.1 nm (ω = 0.5 au) and λ = 182.2 nm (ω = 0.25 au). Above-threshold
ionization peaks [27] at energies   ω= −∣ ∣ + ℏnn s1 are present, showing thatmore photons than requiredmay

be absorbed. For the high frequencies considered here, the ponderomotive shift by ω−E (4 )0
2 2 normally

observedwith infrared lasers is very small.

Table 2.Effective n-photon ionization cross-
sections σn for 100 cycle laser pulses of varying
frequency interacting with atomic hydrogen.

n λ (nm) ω (au) σn (cm
2n sn − 1)

1 30.4 1.5 2.88 × 10−19

1 50.6 0.9 1.25 × 10−18

1 65.1 0.7 2.52 × 10−18

1 86 0.53 5.22× 10−18

1 91.1 0.5 5.98 × 10−18

1 93 0.49 6.56× 10−18

2 106 0.43 2.04× 10−51

2 123.1 0.37 2.33× 10−49

2 151.9 0.3 1.10 × 10−50

2 182.2 0.25 1.40× 10−50

3 198.1 0.23 1.13× 10−83

Figure 3. Ionization probability of atomic hydrogen versus laser pulse duration for λ = nm91.1 (ω = 0.5 au) (left) and
λ = 182.2 nm (ω = 0.25 au) (right) at intensities of −10 W cm10 2 (squares), −10 W cm11 2 (filled circles), −10 W cm12 2 (triangles)
and −10 W cm13 2 (empty circles).

Figure 4.Photoelectron spectra generated in atomic hydrogen by a laser with intensity −10 W cm12 2, pulse duration of 100 cycles and
frequency ω = 1.5 au (λ = 30.4 nm, =E 40.8 eV, dotted line), ω = 0.5 au (λ = 91.1 nm, =E 13.6 eV, continuous line) and
ω = 0.25 au (λ = 182.2 nm, =E 6.8 eV, dashed line).
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3. Laser stripping

The cross-sections obtained from the numerical solutions of the TDSE have been used to explore the feasibility
of laser stripping ofHbeams by direct ionization. Calculations of the ionization fraction in a volume of
hydrogen atoms have been performed for a reference particle beamwith parametersmatching the proposed
Project X at Fermilab [16], which if realizedwould have delivered a beamwith 8 GeV (γ=9.526) energy,
transverse size σ = 1.5 mmr and temporal profile consisting of 15 psmicropulses at 325MHz emitted in bursts
of 1.25 msmacropulses duration and 5 Hz repetition rate.

Formoderate laser intensities and high-energy particles, the interaction is not expected to significantly alter
the properties of the two beams. Therefore the efficiency of laser stripping over an extended volume is obtained
by directlymapping the laser-intensity spatial distribution into ionization fraction using the cross-sections
derived in the previous section. In general, high laser intensities not only induce non-dipole and relativistic
effects in the atomic response to the radiation, as discussed in the previous section, but they also affect the laser
propagation by stimulating nonlinear processes such as self-focusing and self-phasemodulation, which can alter
the laser-pulse spatial and spectral properties, potentially leading to beam filamentation or defocusing [28]. At
relativistic intensities refractive-index variations caused by electron-mass changes can introduce additional
nonlinear processes such as laser-pulse self-steepening and relativistic self-focusing [29]. For applications to
laser stripping, where high efficiencies should be achieved over large volumes, it is however preferable towork
with loosely focused laser beams ofmodest intensities and in the following discussion ionisation induced effects
on the laser propagation are not included.

When laser radiationwithwavelength λl collides with particlesmoving at speed v= β c, thewavelength in the

particle rest frame isDoppler-shifted to λ λ γ β θ= +[ (1 cos )]lPF , with γ β= −1 1 2 the relativistic factor,
θ the angle in the lab frame between laser and particle trajectory and c the speed of light. This frequency up-shift
is accompanied by an intensity boost, since in the particle frame the photon energy increases and the pulse
duration shortens. An intensity I0 in the lab frame transforms into β θ γ= +I I(1 cos )PF

2 2
0 in the particle

frame. For a head-on collision (θ=0) β γ γ= + ≈I I I(1 ) 4PF
2 2

0
2

0, with an intensity boost by∼360 times for
γ=9.526. Such a counter-propagating geometry is advantageous for laser stripping applications, since a single
laser pulse can interact with a large portion of a particle beam train. Furthermore, an infrared laser will be
Doppler-shifted towards shorter wavelengthwhere ionization ismore efficient. For example, a 1–1.7 μm laser
collidingwith an 8 GeVbeamwill be shifted to 50–90 nm, an optimum spectral region as shown by the
ionization probabilities presented in figure 1.

The ionization fraction in a volume of hydrogen atoms has been estimated for a laser beamdescribed by a

Gaussian intensity distribution = −I r z I( , ) exp 2
w

w z

r

w z0 ( ) ( )
0
2

2

2

2

⎡
⎣⎢

⎤
⎦⎥, wherew0 is the beamwaist at the focus,

= + λ
π( )w z w( ) 1

z

w0

2
l

0
2 and r and z are the transverse and longitudinal coordinates respectively. For a head-on

collision the ionization probability depends weakly on the longitudinal properties of the particle beam and a
uniformdistribution is usedwith full width in the rest frame σ γ =c2 90 mmt for σ = 15 pst . The transverse

distribution is assumedGaussian, ρ ρ= −
σ( )r( ) exp r

0
r

2

2 , with σ = 1.5 mmr .

Figure 5 shows the radiation energy versus wavelength (both in the particle rest frame) required to achieve
99% ionization fraction in a × ×6 6 90 mm3 volume of hydrogen atoms after interactionwith a counter-
propagating laser beam focused at the center of the regionwithwaist =w 3 mm0 and pulse duration 100, 200,
10 000 and 20 000 cycles. The highest efficiency is achieved in awavelengthwindow corresponding to the single-
photon regime of ionization, around 50–100 nm,where the required energy is lowest and largely independent of
pulse duration. Atwavelengths shorter than∼40nm, however, 99% ionization cannot be reached for
femtosecond-scale pulses, because the ionization probability is reduced by the onset of stabilization [30].On the
contrary, the ionization probability for two ormore photon absorption is higher for short pulses, but the energy
required is at least one order ofmagnitude larger. Figures 5 and 6 show that in the optimumwavelengthwindow
the required laser energy dependsweakly on beamwaist and looser focusing can be employed, allowing for
longer interaction lengths with trains of particle pulses. Since the laser energy is boosted by the photon-
frequency up-shift in the particle frame, for example by∼19 times for γ=9.526 and head-on collision, a 100 mJ
laser can provide efficient ionization over a large bandwidth, accommodating also for a few percent energy
spread in the particle beam.

The long longitudinal extent of particle beams is one of themain challenges for effective laser stripping. The
Rayleigh length π λ=z wr 0

2 of an infrared laserwithwaist 3–4 mm is of the order of 25–50 m, therefore over a
length L=2zr a single laser pulse can interact with a slice ≈L c2 300–600 ns of a particle beam,where the factor
2 is due to the counter-propagating geometry. If beamquality can bemaintained, the interaction length can be
further extended using a cavity. The intensity of a laser beambouncing between twomirrors decreases in time
according to the formula τ= −I t I t( ) exp( )c0 , with τ = −c

L

c R R

2

(1 )1 2
andR1,2 themirror reflectivity. Assuming
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=L 100 m and 99% reflectivity, a single pulse can interact with a particle beam50 times before its intensity has
dropped by 1/e, corresponding to an interaction time of approximately 33 μs. In general, laser and cavity
parameters should be tailored to the specificmachine characteristics. Advanced cavity designs have been
developed for Compton scattering sources [31–33], which encounter similar challenges. Coupled to the use of
multiple laser beams or a new generation of intense high-repetition lasers [34], these technologiesmake direct
ionization a viable candidate for efficient laser stripping.

4. Conclusions

In conclusion, we have investigated the photo-ionization of atomic hydrogen exposed to laser radiation by
numerically solving the TDSE, showing that in the 50–90 nm spectral windownearly full ionization can be
achieved over large volumes at laser energies as low as 100mJ for picosecond-scale pulse durations. Such
irradiations are realizable with technology currently available or at an advanced development stage,making
direct ionization a viablemethod for laser stripping of high-energyHbeams.

Figure 5. Laser energy in the particle rest frame required to achieve 99% ionization fraction in a × ×6 6 90 mm3 volume of hydrogen
atoms characterized by a uniform longitudinal distribution and transverse Gaussian distributionwith size σ = 1.5 mmr . The laser is
modelled as aGaussian beamwithwaist =w 3 mm0 and pulse duration of 100 (filled circles), 200 (diamonds), 10000 (triangles) and
20000 (empty circles) cycles.

Figure 6.Dependence on laser beamwaistw0 of the energy in the particle frame required to achieve 99% ionization fraction in a
× ×6 6 90 mm3 volume of hydrogen atoms characterized by a uniform longitudinal distribution and transverseGaussian

distributionwith size σ = 1.5 mmr interactingwith a 20 000 cycle pulse of wavelength 93 nm (continuous line), 91.1 nm (dashed
line) and 86 nm (dotted line).
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