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ABSTRACT

The knowledge of the scatter in the mass-observable relation is a key ingredi-

ent for a cosmological analysis based on galaxy clusters in a photometric survey.

We demonstrate here how the linear bias measured in the correlation function

for clusters can be used to determine the value of the scatter. The new method

is tested in simulations of a 5, 000 deg2 optical survey up to z ∼ 1, similar to

the ongoing Dark Energy Survey. The results indicate that the scatter can be

measured with a precision of 5% using this technique.

Subject headings: cosmology: observations-cosmology-galaxies: clusters: general-

large-scale structure of universe



– 3 –

1. Introduction

The discovery of late time cosmic acceleration from observations of supernovae in

1998 is one of the most important development of modern cosmology (Riess et al. (1998),

Perlmutter et al. (1999)). It raises fundamental questions about the expanding universe and

our understanding of gravity. The cosmic acceleration could arise from the repulsive gravity

of dark energy or it may be signal that General Relativity breaks down on cosmological

scales and must be replaced (e.g., Copeland et al. (2006); Clifton et al. (2012)). Apart from

distance measurements using type Ia supernovae, there are other methods such as weak

gravitational lensing of matter distribution or galaxy cluster surveys to test these theories

at recent epoch (e.g., Weinberg et al. (2013)).

Clusters of galaxies were first identified as over-dense regions in the projected number

counts of galaxies (e.g., Abell (1958); Zwicky et al. (1968)). They are the most virialized

systems known in the Universe and have a long history as cosmological probes.

The abundance of galaxy clusters as a function of mass can be used to constrain

cosmological parameters (e.g., White et al. (1993); Rozo et al. (2010); Allen et al. (2011),

Bocquet et al. (2015) ) and they are also a powerful tool for large scale studies (e.g., Bahcall

(1998); Bahcall et al. (2003); Einasto (2001);Yang et al. (2005); Papovich (2008) and Willis

et al. (2013)).

The quantity most tightly constrained by cluster abundance is a combination of the

form σ8Ωq
m. However, the statistical power of large solid angle cluster surveys will allow

us to break the degeneracy between σ8 and Ωm. The evolution of cluster abundance with

redshift is highly sensitive to cosmology because the matter density, Ωm controls the rate

at which structure grows. The evolution of the abundance will also allow us to constrain

the equation of state, w (e.g., Eke et al. (1998); Haiman et al. (2001); Mohr (2005)) and to

parametrize deviations from General Relativity (e.g., Cataneo et al. (2015)).
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The number density of virialized dark matter halos as a function of redshift and halo

mass can be accurately predicted from N-body simulations (e.g., Sheth & Tormen (1999);

Jenkins et al. (2001); Reed et al. (2003); Warren et al. (2006); Lukić et al. (2007); Tinker

et al. (2008); Crocce et al. (2010); Angulo et al. (2012); Watson et al. (2013)). Comparing

these predictions to the evolution of the abundance of galaxy clusters in large-area surveys

that extend to high redshift (z ≥ 1) can provide precise constraints on the cosmological

parameters.

Massive galaxy clusters can be identified via optical (e.g., Soares-Santos et al. (2011)

and Rykoff et al. (2014)), X-ray emision (e.g., Vikhlinin et al. (1998), Böhringer et al. (2000)

and Pacaud et al. (2007)) and Sunyaev-Zeldovich effect (SZE) (e.g., Planck Collaboration et

al. (2014) and Bleem et al. (2015)) observables. Their masses can be estimated in a number

of different ways using these detections. However, these estimators are always indirect and

inferred from observables correlated with mass. Since the number density for clusters is a

strong function of mass, a well understood mass-observable relation is required to recover

the cosmological information. Uncertainties in the mass-observable relation are the main

challenge for cosmological studies with clusters, and could destroy most of the cosmological

information in cluster counts if it is not well calibrated (e.g., Lima & Hu (2005)). The

calibration task is to determine the mean relation and the dispersion of the mass-observable

relation (called “scatter”) and to characterise deviations from lognormal form that are large

enough to affect the predicted abundance (e.g., Shaw et al. (2010)).

There is a long history of cluster samples selected from optical and near infrared

photometric surveys (e.g., Gladders & Yee (2000); Koester et al. (2007); Hao et al. (2010);

Rykoff et al. (2014); Bleem et al. (2015)), and large scale optical surveys will soon be

available from ongoing and future surveys such as the Dark Energy Survey (DES, Flaugher
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(2005))1, Euclid (Laureijs et al. 2011) and the Large Synoptic Survey Telescope (LSST;

LSST Dark Energy Science Collaboration (2012)). They are expected to generate galaxy

catalogs to sufficient depth to reliably detect clusters at redshifts as high as z ∼ 1.

In order to overcome the degeneracy between cosmological parameters and mass

calibration parameters, self-calibration techniques have been developed (e.g., Schuecker

et al. (2003), Majumdar & Mohr (2004), Lima & Hu (2005), Oguri & Takada (2011)

and Andreon & Bergé (2012)). The relation is calibrated using a large cluster sample

complemented with statistical properties of the cluster that are sensitive to mass. One

parametrizes the mass-observable relation and then use standard likelihood methods to

jointly fit for both cosmology and mass-observable parameters.

The uncertainty in the scatter for the mass-observable relation translates into a

systematic uncertainty in the determination of cosmological parameters. This systematic

effect has been studied for constraining dark energy parameters in a cluster counting

experiment for an imaging survey with an area of 5000 deg2, similar to the ongoing Dark

Energy Survey. Rozo et al. (2011) studied when a source of scatter is observationally

relevant with the standard calibration with a fiducial cluster sample. Their conclusions are

that if the accuracy to measure the scatter, σtrue − σmodel, is ≥ 0.05, the recovered dark

energy parameters will be significantly biased and the source of noise will be observationally

relevant.

In this paper, we present a new method to constrain the scatter of the mass-observable

relation for ongoing and future wide area photometric surveys. We show that the amplitude

of the correlation function of clusters (i.e., Bahcall et al. (2003), Bahcall & Soneira (1983),

Estrada et al. (2009)) provides information about the mass-observable relation (Majumdar

1http://www.darkenergysurvey.org
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& Mohr 2004), and can be used to constrain the scatter. This method is complementary

to self-calibration and cross-calibration techniques in multiwavelength data from so called

direct mass measurement (e.g., Rozo et al. (2009) and Saro et al. (2015)).

To ensure that the scatter and other systematics are under control, the DES

collaboration has pursued the development of multiple cluster finder algorithms. Saro et al.

(2015) study the mass-richness relation and the scatter for a small subset of SZE selected

clusters of the South Pole Telescope (SPT; Bleem et al. (2015)) with optically selected

clusters in the DES Science Verification Area (SVA). The new analysis technique proposed

in this work can be implemented as a cross-check of this study in the DES data and other

photometric surveys to reduce the uncertainty in cosmological parameters coming from an

uncertainty in the scatter in the mass-richness relation.

The plan of this paper is the following. In Section 2 we describe the mass-richness

relation that we are going to use in this work to add the galaxies to the dark matter halo

in simulations. In Section 3, we introduce the theoretical model for the bias to compare

with observations in optical surveys such as DES. We define the bias using the Halo

Model of Galaxy Clustering. We require a Halo Occupation Distribution (HOD) where

the mean number of galaxies is specified. In Section 4, previous to studying the bias

in clusters, we study the accuracy of the halo mass function and bias in the light cone

simulations. In Section 5, we describe our simulated cluster sample based on the dark

matter halo simulations. In Section 6, we define our model for the bias when we make cuts

in richness to compare with the measurements in simulations. In Section 7 we will show how

measurements of the clustering of clusters can constrain the scatter of the scaling relation.

We will make a forecast of the performance of the new analysis technique for DES. We end

with a summary and conclusions in Section 8.
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2. Mass-richness relation in galaxy clusters

The main observational challenges when using clusters to constrain cosmology are the

cluster detection algorithm and the cluster mass estimation. The advent of multi-band

data has led to a proliferation of optical cluster-finding algorithms. These algorithms use

various techniques for measuring clustering in angular position plus color/redshift space,

ranging from simple matched filters to Voronoi tessellations. These cluster finders estimate

a richness that correlates with external mass proxies and then the mass-richness relation can

be calibrated. Some examples of the matched filter algorithms that use the red-sequence are

the maxBCC (Koester et al. 2007) and the more modern redMaPPer (Rykoff et al. 2014).

The Voronoi Tesselation (VT; Soares-Santos et al. (2011)) algorithm uses photometric

redshift to detect clusters in 2+1 dimensions.

Although the mass-richness relation is being calibrated using many cluster finder

algorithms such as redMaPPer and the VT algorithms in the DES footprint (e.g., Saro et

al. (2015)), we are going to use the form of the mean relation between the cluster mass

and richness used in Rozo et al. (2009) to test our method in simulations. It is based

on the results from the statistical weak lensing analysis in the maxBCG cluster catalog

(Koester et al. 2007). This algorithm identifies clusters using two optical properties. First,

the brightest cluster galaxy (BCG) typically lies near the center of the cluster galaxy light

distribution. Second, the cores of rich clusters are dominated by red-sequence galaxies that

occupy a narrow locus in color-magnitude space, the E/SO ridge line. MaxBCG uses a

maximum-likelihood method to evaluate the probability that a given galaxy is a BCG near

the center of a red-sequence galaxy density excess.

Every cluster is also assigned a richness measure N200, which is the number of red

sequence galaxies above a luminosity cut of 0.4L∗ and within a specified scaled aperture,

centered on the Brightest Cluster Galaxy (BCG) of each cluster.
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The separate statistical weak lensing measurement of Johnston et al. (2007),

Mandelbaum et al. (2008), Mandelbaum et al. (2008), indicate that N200 is strongly

correlated with cluster virial mass. These analyses are discussed in the Appendix of Rozo

et al. (2009) and yield a relation between cluster mass and richness given by,

〈M |N200〉
1014

= expBM|N200

(N200

40

)αM|N200
(1)

where αM |N = 1.06 ± 0.08(stat) ± 0.23(sys) and BM |N = 0.95 ± 0.07(stat) ± 0.10(sys)

are the priors described in Rozo et al. (2009). We take them as the fiducial values of the

mass-richness relation parameters.

3. A model for the galaxy cluster correlation function

In this section the clustering of clusters is predicted using the halo model of galaxy

clustering (i.e. Cooray & Sheth (2002)). In order to compute clustering statistics, it

is necessary to specify the number of galaxies per clusters using a Halo Occupation

Distribution (HOD) and the spatial and velocity distributions of galaxies within halos (e.g.,

Neyman & Scott (1952); Berlind & Weinberg (2002); Baugh (2013); Pujol & Gaztañaga

(2014)). One can then calculate the clustering of clusters from the combination of the

HOD with the clustering of halos if we assume that the clustering of halos depends only

of the halo mass. There are discussions about the dependency of the HOD on the cosmic

environment in addition to the mass of the halo (e.g., Croft et al. (2012)), however we

develop the formalism of the halo model keeping it as simple as possible.

From the assumption that all galaxies reside within dark matter halos it follows

immediately that given a halo population and a HOD, we can calculate the correlation

function of clusters. This is written as the sum of the one halo term and the two halo

term. On large scales the two halo term dominates the correlation function and it can
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be expressed in terms of the weighted value of the halo bias. Thus, the galaxy cluster

correlation function simplifies to

ξcc(r̄, z) = b2(z)ξmm(r̄, z) (2)

where b(z) is the mean large scale bias of a particular galaxy population at redshift z

that we assume is constant at large scales. The dark matter correlation function, ξmm, is

obtained via Fourier transform of the non-linear dark matter power spectrum, PNL. In

three dimensions, after assuming space isotropy, this yields

ξmm =
4π

(2π)3

∫
PNL

sin(kr)

kr
k2dk. (3)

For the ΛCDM model parameters, the predicted non-linear dark matter model is calculated

using the non-linear Halo-fit power spectrum (Smith et al. (2003); Takahashi et al. (2012)).

In terms of the halo mass function, dn(M,z)
dlnM

, and the linear halo bias, b(M, z), that we

describe in Section 4 the mean large scale bias is given by

b(z) =
1

n̄

∫
dlnM

dn(M, z)

dlnM
〈N |M〉b(M, z) (4)

where 〈N |M〉 is the mean number of galaxies per halo and n̄ is the mean number density of

galaxies given by

n̄ =

∫
dM

dn(M, z)

dlnM
〈N |M〉. (5)

4. Halo mass function and bias in simulations

In this work, first, we study how the halos are biased with respect to the underlying

matter distribution using the halo model. Theoretical models for the halo bias have been

derived from the mass function (e.g. Mo & White (1996) and Sheth & Tormen (1999)).
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We studied the accuracy of the Sheth & Tormen (1999) and Tinker et al. (2010) halo bias

model.

We used a halo catalog with the same volume as DES based on the Hubble Volume

PO light cone output (Evrard et al. (2002)), extracted from the DES v1.02 mock galaxy

catalog 2.

Halos were identified directly on the dark matter lightcone using a spherical over

density halo finder.

Since the halo bias is closely related to the description of halo abundance, we first

study the theoretical models of the halo abundance. The comoving number density of halos

with mass between M and M + dM or the unconditional mass function can be written as

dn

dM
=
ρ̄m
M
f(ν)

dν

dM
(6)

where f(ν) is the multiplicity function (the fraction of mass in collapsed objects) and ρ̄m is

the mean comoving mass density. The height of the density peaks is defined

ν ≡ δ2
c

σ2(M)
(7)

where δc = 1.686 is the critical density for spherical collapse and σ2(M) is the variance of

matter density fluctuations on mass scale M .

Sheth & Tormen (1999) generalized the expression of the Press-Schechter mass function

(Press & Schechter (1974)) and calibrated the free parameters using numerical simulations.

It can be written as

νf(ν) = A(p)

√
qν

2π
[1 + (qν)−p]e−

qν
2 (8)

2http://www.slac.stanford.edu/ mbusha/mocks/catalogs.html; provided by M. Busha &

R. Wechsler
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with p = 0.3 and q = 0.707 and A(p = 0.3) = 0.322.

Tinker et al. (2008) also calibrare fitting functions for the mass function and bias using

high resolution simulations. They choose the form

νf(ν) = A[1 + (bν)a]νde−
cν
2 (9)

where A, a, b, c and d are the free parameters for each overdensity ∆ value with respect to

the mean density of the universe, ρ̄m, and were calibrated in simulations at z = 0. They also

provide redshift correction to match mass function to simulations. The halo finder in the

DES light cone defines overdense regions with respect to the critical density ρc(z) instead of

ρ̄m . If we define an overdensity contrast as , ∆′ = ∆
Ωm(z)

, we can use this functional form for

any value of ∆′. The value of the parameters at z = 0 are calculated by spline interpolation

as a function of ∆′ and then we calculate their redshift evolution.

The corresponding large scale halo bias prediction of Sheth & Tormen (1999) is given

by

b(ν) = 1 +
qν − 1

δc
+

2p

δc(1 + (qν)p)
. (10)

Later, Tinker et al. (2010) introduces a similar but more flexible fitting function of the form

b(ν) = 1− A νa

νa + δac
+Bνb + CνC (11)

where the parameters also depend on the density contrast ∆.

We compare the mass function measured in redshift bins of width ∆z = 0.2 using

the dark matter halo simulation with a DES volume with the Sheth & Tormen (1999)

model with p and q fiducial values evaluated at the mean redshift. Since there is a high

disagreement in all the mass ranges, we fit the parametric model to the halo catalog

measurement. Our fitting method is a simple χ2 of the difference between the theoretical

model and the measured counts in bins (e.g., Jenkins et al. (2001), Manera et al. (2010)
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and Manera & Gaztañaga (2011)). We also studied the accuracy of the fitting function for

∆ overdensities of Tinker et al. (2008). Figure 1 shows the comparison of the systematic

error ∆ dn
dM

with the statistical error σ for the two models. In all the redshift bins we found

that the deviations,
∆ dn
dM
dn
dM

, increase on the high mass tail for both models where the number

of halos is very small. However, these deviations are not significant.

At lower redshift we found the same accuracy for models, however the disagreement

between them increases with redshift and we found better accuracy with the Sheth &

Tormen (1999) parameters fitted by us. But, of course, one can also fit the Tinker

parameters to simulations instead of doing an interpolation and compare again these

models. We postpone this work to the future.

We measure the halo linear bias on scales where it is considered to be deterministic and

scale independent. We fit the matter correlation function ξmm(r) at a given z to the one

measured in the simulations ξhh using the Landy & Szalay (1993) estimator. We optimized

the Poisson error and made an estimation of the cosmic variance using the jackknife method.

Then we compare these measurements with the predictions of the Sheth & Tormen (1999)

and the Tinker et al. (2010) bias models as shown in Figure 2. We consider the difference

between these two models as a systematic uncertainty of our method. We note also that the

bias errors increase with increasing mass and redshift because the number of halos is lower.

5. Simulated cluster sample from photometric survey

We created cluster catalogs using the DESv1.02 halo mock catalog light cone mention

before. The dark matter halos of this simulations are populated with galaxies using a model

of HOD: We assign a richness N to dark matter halos by means of a conditional distribution

P (N |lnM) for a halo of mass M to contain N galaxies, where the mass-richness relation is
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given by Equation 1.

As discussed in Ikebe et al. (2002), Lima & Hu (2005) and Oguri & Takada (2011), we

assumed the scatter in the scaling relation to be log-normally distributed around the mean

scaling relations, i.e., Gaussian or normal in lnM . Thus, the probability of observing the

richness N given the true underlying mass M is given by

P (N |lnM, z) =
1√

2πσ2
lnM

exp
[
− 1√

2πσ2
lnM

(ln〈M |N〉 − lnM)
]
. (12)

In this work we assume the scatter σlnM does not vary neither with redshift or mass. Figure

3 shows the HOD distribution, P (N |lnM), with σlnM = 0.2. Each point represents the

number of galaxies that occupy a particular dark matter halo showing that the observable

is noisy. The true underlying mass M is the halo mass M200, where M200 is defined as the

mass enclosed in a sphere of radius R∆ whose mean density is ∆ = 200 times the threshold

density. The halo finder algorithm in the light cone defines spherical regions that are

overdense with respect to the critical density ρc. So the M200 mass is given by,

M200 =
4

3
π∆ρcR

3
200. (13)

6. Theoretical predictions for the richness bias using the Halo Model

In this section we define a model for the bias for a richness cut N > Nth to compare

with the measurements in simulations. This is given by,

b(Nth, z) =

∑∞
N=Nth

b(N, z)nmeas(N, z)∑∞
N=Nth

nmeas(N, z)
(14)

where nmeas(N, z) is the number of halos per redshift and richness value measured in the

simulations, and b(N, z) is calculated using the halo model of galaxy clustering

b(N, z) =
1

n̄

∫
dlnM

dn(M, z)

dlnM
P (lnM |N)b(M, z) (15)
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where n̄ is the mean number density of galaxies given by

n̄ =

∫
dM

dn(M, z)

dlnM
P (lnM |N) (16)

where P (lnM |N) is related to the distribution used to create the richness catalog with

scatter σlnM , P (N |lnM) given by Equation 12, using Bayes’ Theorem.

The scatter in the mass-richness relation changes the shape and the amplitude of the

mass function above an observable threshold significantly to provide an excess of clusters

scattering up (at N ≤ Nth) versus down (at N ≥ Nth). The steepness of the mass function

around the observable threshold determines the excess due to upscatters. As the observable

threshold reaches the exponential tail of the mass function, the excess of upscatter versus

downscatter can become a significant fraction of the total (Lima & Hu 2005) and decrease

the bias. The larger is the scatter the more the bias is decreased. Moreover, the impact of

the scatter will be significantly greater at high mass and redshift because the steepness of

the mass function is larger at high redshift and mass.

7. Likelihood analysis. Constraining the scatter

We divide the catalog in redshift bins ∆z and make cuts in richness to measure

the bias with the two point correlation function. Therefore, we have a set of n bias

measurements, bmeasi (N ≥ Nth, z) and their bias errors, σmeasbi
. We assume a model for the

bias, bmodel(Nth, z), with parameters θ = (Λ, αM |N , BM |N , σlnM) using Equations 14 and 15.

Since our goal is to constrain the scatter, we consider a one dimensional likelihood given by

the conditional probability distribution of the data, L = p(bmeas|θ = σlnM)

p(bmeas(Nth, z); θ) =
1√

2πσmeasb

exp
−(bmeas(Nth, z)− bmodel(Nth, z))

2

2σ2
bmeas

(17)

where we assume that the measurements are not correlated. Although this is not absolute

correct, our plan with data is to divide the catalog in richness bins in we have enough
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cluster. In this case the measurements won‘t be correlated. For n bias measurements, the

likelihood is the product of the probabilities of the individual measurements

L =
n∏
i=1

p(bmeasi (Nth, z); θ). (18)

Then we normalize the result to the unity. For simplicity, we assume flat priors. We

assume known the ΛCDM cosmological parameters of the simulations and we fix the mean

mass-richness relation parameters, α and B.

7.1. Forecast and error estimation using likelihood analysis

Before we study our method in simulations, we make a forecast of the precision

that our method can achieve without including the systematics errors coming from the

uncertainty in the theoretical bias and mass function model. Instead of the values measured

in simulations, bi
meas, we use the theory predictions for a fiducial model with scatter σtruelnM .

We model the bias using using Equations 14 and 15 for 3 samples of richness threshold

Nth ≥ 7,8, 9 at six redshifts z = 0.3, 0.5, 0.7, 0.9, 1.1, 1.3. We assign each point an expected

experimental error, σbmeasuredi
, obtained from the fits to the correlation function using the

simulations.

Since we perform the likelihood to obtain the best value, we calculate how the richness

bias varies with the scatter for a given catalog using Equations 14 and 15. Figure 4 shows

the richness bias as a function of the scatter and richness threshold at z = 0.3 using the

richness catalog created with σtruelnM = 0.2, where nmeasured(N, z) is measured.

Figures 5 and 6 show the recovered values of the scatter, σlnM and their 68% errors,

σ(σlnM). We obtain the same results using Sheth & Tormen (1999) and Tinker et al.

(2010) models. Our conclusion is that we may estimate the scatter with a standard

deviation or expected error, σ(σlnM) (68%C.L), of approximatley 0.04, 0.03 and 0.025 for
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σtruelnM = 0.1, 0.2, 0.4 respectively. The precision to measure the scatter is better at larger

values because of the slope of the mass function. The larger the scatter the more the bias

decreases, in other words, the second derivative of the bias with the scatter is negative,

δ2b(Nth,z)
δ2σlnM

.

Although the dominant systematic uncertainty in our method comes from the halo

mass and bias function, another source of systematics is the mass resolution of the light

cone simulations. The minimum halo mass introduces a systematic that affects our richness

bias model predictions especially when our observable mass is closer to the minimum. Since

we are removing halos from the left side of the lognormal distribution where the bulk of

the values lies, the decreasing slope of the bias with the scatter is lower than when we

don’t remove them. Thus, we will loose precision to recover the scatter as the results show.

Moreover, the larger the scatter the larger the disagreement between the two cases and the

minimum halo mass systematic is more significant. As an example, when σtruelnM = 0.4 the

precision decreases, or the expected error increases from σ(σlnM) = 0.012 to σ(σlnM) = 0.025

(68% C.L.).

There are some preliminary results about the mass-richness relation and the scatter

using the redMaPPer cluster finder. We want to see if our method will be precise enough

for the estimated scatter value in DES. Rykoff et al. (2012) provide a rough calibration

of the mass-richness relation using the redMaPPer cluster finder with maxBCG clusters.

They give an estimation of the scatter which can be used as the expected value for the

DES survey and we can determine the precision of our technique. In addition, early results

from the DES SVA data given by Melchior et al. (2015) and Saro et al. (2015) also give

an estimation of this quantity. Using these results, we estimate that the intrinsic scatter

of the mass-richness relation for the DES survey using redMaPPer is σlnM ∼ 0.18 − 0.3

depending of the richness although further work benefiting from a larger region will improve
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the constraints. Therefore, using our technique we may constrain the scatter with an

expected error, σ(σlnM) = 0.031− 0.027 (68% C.L) using our technique as our predictions

show. Moreover, the accuracy will be sufficient for the dark energy parameters not to be

significantly biased.

7.2. Scatter constrains on simulations

Now that we have studied the bias in halos in the simulations and have made a

forecast, we study how well our method can constrain the scatter of the scaling relation

using the light cone simulations. Here we add the uncertainty in the theoretical models

when we compare with simulations. We perform a likelihood calculation comparing the

bias prediction with the measurements for the three catalogs created using dark matter

simulations. We assume we know the mean mass-richness relation parameters, α and B, and

the ΛCDM cosmological parameters of our simulations. Figures 7 and 8 show the scatter

constraints and their 68%(C.L) errors for the two theoretical models. As predicted by the

forecast, at the largest scatter value, σtruelnM = 0.4, we obtain the best precision and accuracy

and the two halo bias prescriptions agree, σlnM = 0.399 ± 0.031 (68% C.L.). However,

for lower values there is a discrepancy between them. When the scatter is σtruelnM = 0.1 we

can not recover the true value in any case while we recover it for σtruelnM = 0.2 using the

Sheth & Tormen (1999) prescription. In this case the result is σlnM = 0.206 ± 0.035 (68%

C.L.). Apart from the redshift uncertainty that we will study soon, we conclude that the

theoretical model is the main systematic of this method. Although we can not recover

the scatter for the lowest values we still can measure it for the expected value of the DES

cluster survey with very good precision.
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8. Conclusions

In summary, the new method proposed is a promising and powerful method to

constrain the scatter using only large optical cluster surveys such as DES, LSST and the

Euclid project. This method is complementary to self-calibration and cross-calibration

techniques such as the direct method employed by Saro et al. (2015) with a small subset of

galaxy clusters. In that study, the mass-richness relation for SZE selected galaxy clusters in

the DES Science Verification Area has been preliminarily calibrated. They cross-match the

SPT catalog with the redMaPPer and VT cluster catalog. Although this is a very promising

technique to use, one of the drawbacks is that it is limited to calibrate SPT-SZE clusters.

Our new technique can be used as a cross-check method to compare with those results. In

addition, one of the advantages of our method is that it only uses optical clusters and we

can measure the scatter in a broader mass range than the SZE clusters. In a near future,

the mass-richness relation will be also calibrated in the DES cluster catalog with other mass

proxies such as stacked weak lensing shear. At that time we can use this relation as a prior

on the mass-richness relation parameters as a function of redshift instead of the one we use

from maxBCG clusters.

The main systematic error we have found is the uncertainty in mass function and bias

prescription. The difference between the Sheth & Tormen (1999) and Tinker et al. (2010)

models is a systematic error. At σlnM = 0.4 both models agree but at lower values the

difference increases until it is equal to the statistical precision σ(σlnM). We can not recover

the scatter value when the true value is σlnM = 0.1 in any case while we can recover it for

σlnM = 0.2 using the Sheth & Tormen (1999) model with our fitted values for p and q. A

next step is to perform a calibration of the Tinker parameters in the simulations we used

and see if there is still this difference.

Our plan is to implement the new analysis technique in the DES cluster catalogs



– 19 –

to reduce the uncertainty in cosmological parameters coming from an uncertainty in the

cosmological parameters. This will be done using the clusters found with the VT cluster

finder algorithm and the redMaPPer cluster catalog. Since the DES expected value is

around 0.18− 0.3 with redMaPPer catalog, and higher with VT, we conclude that we can

measure it precisely enough so that the dark energy parameters won’t be significantly

biased.

In this work we ignore the effect of the uncertainty of the redshift of the clusters.

The effect on the three dimensional correlation function is a smearing of the acoustic peak

(Estrada et al. 2009) and a relative damping of power on small scales that reduces the

bias. One possible advantage of using clustering of clusters is that the photometric error is

lower than it is for galaxies. We postpone a careful study of how this systematic error will

affect the bias measurement and the precision of the scatter measurements. This will allow

us to use the spatial correlation function (3D) and compare the results with the angular

correlation function, ω(θ).

For future cluster surveys we expect that the statistical errors will be reduced at high

mass and redshift because the number of clusters will increase considerably. With this, we

forecast higher precision to measure the scatter including the lower values.
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Böhringer, H., Voges, W., Huchra, J. P., et al. 2000, ApJS, 129, 435

Bonamente, M., Joy, M., LaRoque, S. J., et al. 2008, ApJ, 675, 106

Cataneo, M., Rapetti, D., Schmidt, F., et al. 2015, Phys. Rev. D, 92, 044009

Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. 2012, Phys. Rep., 513, 1

Copeland, E. J., Sami, M., & Tsujikawa, S. 2006, International Journal of Modern Physics

D, 15, 1753

http://arxiv.org/abs/1502.07357


– 22 –

Crocce, M., Fosalba, P., Castander, F. J., & Gaztañaga, E. 2010, MNRAS, 403, 1353
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Fig. 1.— Systematic error ∆ dn
dM

compared with the statistical error σ for the six redshift

bins from the light cone simulations. Black dots are the values with the Sheth & Tormen

(1999) model with the best p and q values and red dots are the Tinker et al. (2008) model .
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Fig. 2.— Comparison of the halo bias model with the measurements in the light cone for the

six redshift bins z = 0.2−0.4, z = 0.4−0.6, z = 0.6−0.8, z = 0.8−1, z = 1−1.2 (black, red,

green, blue,cyan and pinks dots respectively). The solid curves are the values of the Sheth

& Tormen (1999) model with the best p and q values and the dashed curves the Tinker et

al. (2010) model. The random catalog is 5 times denser than the catalog, NR = 5ND to

optimize the Poisson noise.
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Fig. 3.— HOD distribution, P (N |M), when σtruelnM = 0.2
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