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circular e+e− colliders such as CEPC and FCC-ee. Taking into account the impact of realis-

tic cut acceptance and detector effects, we forecast the precision of six angular asymmetries

at CEPC (FCC-ee) with center-of-mass energy
√
s = 240 GeV and 5 (30) ab−1 integrated

luminosity. We then determine the projected sensitivity to a range of operators relevant for

the Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular ob-

servables provide complementary sensitivity to rate measurements when constraining various

tensor structures arising from new physics. We further find that angular asymmetries provide

a novel means of both probing BSM corrections to the HZγ coupling and constraining the

“blind spot” in indirect limits on supersymmetric scalar top partners.
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1 Introduction

Following the discovery of a Standard Model-like Higgs at the LHC [1, 2], the study of Higgs

properties has become one of the highest priorities for current and future colliders. High-

luminosity electron-positron colliders are particularly well suited to this end, promising a

large sample of relatively clean Higgs production events and the ability to directly probe

Higgs properties in a model-independent fashion. Such precision tests of Higgs couplings will

provide a window into physics beyond the Standard Model (BSM) well above the weak scale.

Thus far much attention has focused on the potential of future e+e− colliders to probe

deviations in Higgs properties in terms of a re-scaling of Standard Model couplings [3–5],

with sensitivity exceeding the percent level in some channels. However, in general deviations

in Higgs properties may encode additional information, for example in the form of operators

with different tensor structure in the Higgs Effective Field Theory (EFT). Disentangling

contributions from these different operators provides a further handle on BSM physics by both

increasing the effective reach of e+e− colliders and distinguishing different BSM scenarios in

the event of deviations from the Standard Model.
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The ZH production cross section provides a particularly sharp tool, as it allows a model-

independent measurement of the Higgs-Z coupling in Higgsstrahlung events identified solely

by Z recoils. The relatively large number of ZH production events at proposed e+e− colliders

is expected to give sub-percent level precision in the measurement of the hZZ coupling,

providing sensitivity to a range of BSM scenarios [6–9]. But ZH production provides more

than just a probe of rescalings of the hZZ coupling. The measurement of angular observables

in ZH production provides sensitivity to a variety of tensor structures and therefore allows

discrimination among a range of BSM scenarios. In this paper we investigate the potential

for future circular e+e− colliders to discriminate between different BSM contributions to the

ZH production cross section through the use of angular asymmetries.

Needless to say, there is a long history of studying angular distributions of Higgs produc-

tion events at e+e− colliders, both at LEP and for the planned ILC [10–24]. In this work we

build on these previous studies by forecasting sensitivity to a complete basis of dimension-6

operators in the Higgs EFT at proposed future e+e− circular colliders such as CEPC and

FCC-ee, accounting for realistic cut acceptance and detector effects. We believe this is the

first comprehensive study of angular observables at proposed e+e− colliders of its kind.

Our paper is organized as follows: In Section 2 we first review aspects of the Higgs EFT

relevant for Higgsstrahlung, identifying a complete set of dimension-6 operators relevant for

characterizing deviations in e+e− → ZH. We construct a complete set of angular observables

in e+e− → ZH, closely following [23], and demonstrate their sensitivity to various dimension-

6 operators at
√
s = 240 GeV. In Section 3 we forecast the sensitivity to these angular

observables at proposed e+e− colliders, taking into account the effects of realistic cuts and

detector effects. We then consider the sensitivity of proposed e+e− colliders to a range of BSM

scenarios in Section 4, demonstrating the ability of angular observables to break degeneracies

in rate measurements. We conclude in Section 5 and reserve some details of the angular

observables and our statistical treatment for the Appendix.

2 Angular Observables

In this section we begin by reviewing aspects of the Higgs EFT relevant for the Higgsstrahlung

process, and identify a complete set of operators for characterizing various BSM contributions

to e+e− → ZH. We then construct a set of independent angular asymmetries suitable for

identifying contributions from different operators, following [23].

2.1 Higgs EFT for Higgsstrahlung

Given the apparent parametric separation of scales between the Higgs boson and new physics,

the Higgs EFT provides a useful framework for characterizing deviations in Higgs properties

from their Standard Model (SM) predictions. There are many independent operators at a

given order in power-counting, including 59 dimension-6 operators. The Lagrangian out to
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dimension 6 prior to electroweak symmetry breaking takes the form

Leff = LSM +
1

Λ2

59∑
i=1

αiOi (2.1)

Only a subset of these operators contribute to the e+e− → ZH process, and of these many

may be exchanged via field redefinitions or equations of motion.

Here we will work in terms of a minimal operator basis given in [23]; for a comparable

choice of basis, see [9]. The relevant operators defining our operator basis are given in Table 1.

Although there is no invariant meaning to a particular choice of basis, this basis is sufficient to

characterize all dimension-6 contributions to e+e− → ZH in the sense that all other operators

contributing to e+e− → ZH can be re-written in terms of this operator basis plus additional

operators irrelevant to e+e− → ZH.

OΦ� = (Φ†Φ)�(Φ†Φ) OΦW = (Φ†Φ)W I
µνW

Iµν

OΦD = (Φ†DµΦ)∗(Φ†DµΦ) OΦB = (Φ†Φ)BµνB
µν

O(1)
Φ` = (Φ†i

↔
DµΦ)(¯̀γµ`) OΦWB = (Φ†τ IΦ)W I

µνB
µν

O(3)
Φ` = (Φ†i

↔
DI
µΦ)(¯̀γµτ I`) O

ΦW̃
= (Φ†Φ)W̃ I

µνW
Iµν

OΦe = (Φ†i
↔
DµΦ)(ēγµe) O

ΦB̃
= (Φ†Φ)B̃µνB

µν

O4L = (¯̀γµ`)(¯̀γµ`) O
ΦW̃B

= (Φ†τ IΦ)W̃ I
µνB

µν

Table 1. A complete basis of dimension-6 operators contributing to e+e− → ZH. Here the τ I are

the Pauli matrices.

After electroweak symmetry breaking, these dimension-6 operators give rise to a variety

of interaction terms relevant for e+e− → ZH of the form

Leff ⊃ c
(1)
ZZhZµZ

µ + c
(2)
ZZhZµνZ

µν + c
ZZ̃
hZµνZ̃

µν + cAZhZµνA
µν + c

AZ̃
hZµνÃ

µν

+hZµ ¯̀γµ (cV + cAγ5) `+ Zµ ¯̀γµ(gV − gAγ5)`− gemQ`Aµ ¯̀γµ`, (2.2)

where h is the real CP-even Higgs scalar, Zµν and Aµν are the Z boson and photon gauge

field strengths, and Ṽ µν = εµναβVαβ. Here we again use the notation of [23] for clarity.

The couplings in this broken-phase effective Lagrangian may be straightforwardly ex-

pressed in terms of coefficients in the dimension-6 Higgs EFT. In this respect it is useful

to consider the following linear combinations of (dimensionless) dimension-6 operator coeffi-
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cients:

α
(1)
ZZ = αΦ� −

1

2
δ′GF

+
1

4
αΦD,

αZZ = c2
WαΦW + s2

WαΦB + sW cWαΦWB,

α
ZZ̃

= c2
WαΦW̃

+ s2
WαΦB̃

+ sW cWαΦW̃B
, (2.3)

αAZ = 2sW cW (αΦW − αΦB) + (s2
W − c2

W )αΦWB,

α
AZ̃

= 2sW cW (α
ΦW̃
− α

ΦB̃
) + (s2

W − c2
W )α

ΦW̃B
,

αAA = s2
WαΦW + c2

WαΦB − sW cWαΦWB.

where δ′GF
= −α4L + 2α

(3)
Φ` and δGF

= v2

Λ2 δ
′
GF

. These are convenient linear combinations in

the sense that they may be simply related to the coefficients of the broken-phase effective

Lagrangian via

c
(1)
ZZ = m2

Z(
√

2GF )1/2
(

1 + α̂
(1)
ZZ

)
,

c
(2)
ZZ = (

√
2GF )1/2α̂ZZ ,

c
ZZ̃

= (
√

2GF )1/2α̂
ZZ̃
, (2.4)

cAZ = (
√

2GF )1/2α̂AZ ,

c
AZ̃

= (
√

2GF )1/2α̂
AZ̃
.

where for convenience we have defined the dimensionless hatted coefficients via α̂i = αi
v2

Λ2 .

Written in this way, the coefficient c
(1)
ZZ decomposes into the Standard Model prediction

parameterized in terms of the input parameters mZ , GF , αem(q2 = 0) plus corrections given

by new physics encoded in the Higgs EFT. The remaining coefficients are zero at tree-level

in the Standard Model, and so the leading contributions are taken to be those from the

dimension-6 operators. Note that the CP-even coeficients are generated at one loop in the

Standard Model.

Similarly, for the hZ`` contact terms in Eq. (2.2) it is useful to form the linear combina-

tions

α̂VΦ` = α̂Φe +
(
α̂

(1)
Φ` + α̂

(3)
Φ`

)
α̂AΦ` = α̂Φe −

(
α̂

(1)
Φ` + α̂

(3)
Φ`

)
. (2.5)

which are simply related to the coefficients in Eq. (2.2) by

cV =
√

2GFmZ α̂
V
Φ`

cA =
√

2GFmZ α̂
A
Φ` (2.6)

There are also shifts in the couplings between gauge bosons and leptons relative to the Stan-

dard Model prediction, given by

gV =
mZ

2
(
√

2GF )1/2
[(

1− 4s2
W

)
− δgV

]
gA =

mZ

2
(
√

2GF )1/2 (1 + δgA) (2.7)
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Figure 1. Definition of the angles θ1, θ2, and φ in the e+e− → ZH production process relevant for

the construction of angular observables. See text for further details.

Again, this decomposes into the tree-level Standard Model contributions plus dimension-6

contributions encoded in the linear combinations

δgV = −α̂VΦ` +
α̂ΦD

4
+
δGF

2
+

4s2
W

c2W

[
α̂ΦD

4
+
cW
sW

α̂ΦWB +
δGF

2

]
δgA = −α̂AΦ` −

α̂ΦD

4
− δGF

2
(2.8)

This combination of direct interactions, contact terms, and shifts in the Higgs-gauge couplings

accounts for the effects of the Higgs EFT on the process e+e− → ZH up to dimension-6.

2.2 Angular observables in ZH production

In general, these effective operators contribute to a shift in the cross section for e+e− → ZH,

so that a linear combination of Wilson coefficients can be constrained to high precision by

future e+e− colliders [9]. However, there is additional information available in Higgsstrahlung

events that allows us to constrain independent linear combinations of Wilson coefficients. This

independent information can be effectively parameterized in terms of angular observables. In

this paper we will work in terms of the parameterization in [23], although other definitions of

angular observables are possible and in principle may prove more efficient in isolating specific

Wilson coefficients.

We define the angles cos θ1, cos θ2 and φ as follows: the z direction is defined by the

momentum of the on-shell Z boson in the rest frame of the incoming e+e− pair. The xz

plane is the plane defined by the momentum of the outgoing Z boson and its `− decay

product. Then θ1 is the angle between the momentum of the outgoing `+ and the z axis. θ2

is the angle between the momentum of the incoming e+ and the momentum of the outgoing

h along the z axis. Finally, the angle φ corresponds to the angle in the xy plane between the

planes defined by the incoming e+e− and the outgoing `+`−, respectively. These angles are

illustrated in Fig. 1.

In terms of these angles, we parameterize the triple differential cross section for e+e− →
Z(→ `+`−)h as

dσ

d cos θ1d cos θ2dφ
=

1

210(2π)3

1√
rγZ

√
λ(1, s, r)

s2

1

m2
h

J (q2, θ1, θ2, φ) , (2.9)
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where r = m2
Z/m

2
h ≈ 0.53, γZ = ΓZ/mh ≈ 0.020, s = q2/m2

h, λ(a, b, c) = a2 + b2 + c2 − 2ab−
2ac− 2bc, and the function J contains nine independent angular structures with coefficients

J1, . . . , J9 decomposed as

J (q2, θ1, θ2, φ) = J1(1 + cos2 θ1 cos2 θ2 + cos2 θ1 + cos2 θ2) + J2 sin2 θ1 sin2 θ2

+J3 cos θ1 cos θ2 + J4 sin θ1 sin θ2 sinφ+ J5 sin 2θ1 sin 2θ2 sinφ . (2.10)

The explicit form of the Ji in terms of the EFT coefficients and Standard Model parameters

was computed by [23] and for convenience is given in Appendix A. The total integrated cross

section for e+e− → ZH is given in terms of the Ji simply by

σ(s) =
32π

9

1

210(2π)3

1√
rγZ

√
λ(1, s, r)

s2

1

m2
h

(4J1 + J2) . (2.11)

It is useful to isolate various combinations of terms in the differential cross section through

the following angular observables Ai, normalized to σ:

Aθ1 =
1

σ

∫ 1

−1
d cos θ1 sgn(cos(2θ1))

dσ

d cos θ1

= 1− 5

2
√

2
+

3J1√
2(4J1 + J2)

(2.12)

A(1)
φ =

1

σ

∫ 2π

0
dφ sgn(sinφ)

dσ

dφ
=

9π

32

J4

4J1 + J2
(2.13)

A(2)
φ =

1

σ

∫ 2π

0
dφ sgn(sin(2φ))

dσ

dφ
=

2

π

J8

4J1 + J2
(2.14)

A(3)
φ =

1

σ

∫ 2π

0
dφ sgn(cosφ)

dσ

dφ
=

9π

32

J6

4J1 + J2
(2.15)

A(4)
φ =

1

σ

∫ 2π

0
dφ sgn(cos(2φ))

dσ

dφ
=

2

π

J9

4J1 + J2
(2.16)

Here sgn(±|x|) = ±1. In addition to these five angular observables, it is also useful to define

the forward-backward asymmetry

Acθ1,cθ2 =
1

σ

∫ 1

−1
d cos θ1 sgn(cos θ1)

∫ 1

−1
d cos θ2 sgn(cos θ2)

d2σ

d cos θ1d cos θ2

=
9

16

J3

4J1 + J2
. (2.17)

Although there are nine Ji, only six are independent, leading to six independent angular

observables corresponding to the six independent form factors in the e+e− → ZH amplitude.

Each of the angular observables is sensitive to a different linear combination of coefficients in

the dimension-6 Higgs EFT.

From Eq. (2.11)–(2.17), it is straightforward to write down the numerical expressions

for the asymmetry observables (as well as the total cross section) as a function of Wilson

– 6 –
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Figure 2. The sensitivity of σ, Aθ1 and Acθ1,cθ2 to different Wilson coefficients at
√
s = 240 GeV,

corresponding to Eq. (2.18)–(2.20). Each row shows the value of ∂f
∂α̂i
|α̂=0, where f is the observable

and α̂i is the Wilson coefficient labeled on the left side of the plot.

coefficients in the HEFT. We choose to parameterize deviations from the Standard Model

in terms of the input parameters mZ , GF and αem(q2 = 0), which are very well measured.

However, we must be somewhat careful about the scale at which we evaluate couplings in

physical observables. Ideally, one should evaluate the couplings at the relevant scale of the

process, 240 GeV; but in practice, such a procedure would face two difficulties. First, taking

count of the running effects would require a careful modification of the parameterizations in

Section 2.1, which are only valid at tree level. Second, new physics that modifies the Higgs

effective Lagrangian would in principle also contribute to the running of the gauge couplings

above the scale mh. A proper treatment of the running requires one to consistently account

for the one-loop modification of beta functions for the electroweak gauge couplings in the

presence of dimension-6 operators [25]. On the other hand, by direct evaluating couplings

at zero momentum one would omit the large logarithmic terms due to running from me to

mZ which could significantly change the results. For the purposes of this study, we therefore

choose an intermediate scale, the Z-pole, at which the couplings are well-determined and the

large logarithmic terms due to running from zero momentum are (mostly) accounted for.

The numerical values of the input parameters are chosen as follows. We use the Particle

Data Group (PDG) values for mZ , GF [26]. We also use the PDG value αem(m2
Z)−1 =

127.940±0.014 , which is obtained by RG evolving αem(q2 = 0) to the Z-pole in the modified

subtraction (MS) scheme. For consistency, we use the value of sin2 θW directly calculated

from the input parameters in the MS scheme [27], sin2 θW = 0.23124(6). This is very close to

the SM best fit value from PDG, sin2 θW = 0.23126(5), an indication that SM is in very good
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Figure 3. Same as Fig. 2 but for A(1)
φ , A(2)

φ , A(3)
φ and A(4)

φ , which corresponds to Eq. (2.21)–(2.24).

agreement with experiments up to the Z-pole. The cross section and angular observables also

depend on the Higgs boson mass, mh, for which we use the value from [28]1. The numerical

values of the parameters are summarized in Table 2. The uncertainties in sin2 θW and mh

have the largest effects on the results, though they remain at the sub-percent level. For

simplicity, we will ignore the uncertainties in Table 2 in our study.

1The cross section also depends on the total width of the Z boson, ΓZ = 2.4952± 0.0023 GeV, which only

contributes to the overall normalization and has no impact on our results.
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mZ [GeV] GF [GeV−2] αem(m2
Z)−1 sin2 θW mh [GeV]

91.1876± 0.0021 1.1663787(6)× 10−5 127.940± 0.014 0.23124(6) 125.09± 0.24

Table 2. The numerical values of the input parameters used in our study, taken from [26], [27]

and [28].

Working only to linear order in the Wilson coefficients, at
√
s = 240 GeV the dependence

of the total cross section on the hatted coefficients α̂i in the unbroken-phase HEFT is

σ[fb] ≈ 7.96
(
1 + 2.00 α̂Φ� − 0.70 α̂ΦD + 8.90 α̂ΦW + 2.03 α̂ΦB + 3.35 α̂ΦWB

+ 16.9 α̂
(1)
Φ ` + 10.2 α̂

(3)
Φ ` − 14.6 α̂Φ e + 3.39 α̂4L

)
, (2.18)

Similarly, the dependence of the angular observables on the hatted coefficients α̂i in the

unbroken-phase HEFT is

Aθ1 ≈ − 0.448 + 0.30 α̂ΦW + 0.069 α̂ΦB + 0.15 α̂ΦWB , (2.19)

Acθ1,cθ2 ≈ − 0.0075 + 0.13 α̂ΦD − 0.37 α̂ΦW + 0.37 α̂ΦB + 0.85 α̂ΦWB

− 0.73 α̂
(1)
Φ ` − 0.20 α̂

(3)
Φ ` − 0.85 α̂Φ e − 0.26 α̂4L , (2.20)

and likewise

A(1)
φ ≈ 0.20 α̂

ΦW̃
− 0.16 α̂

ΦB̃
− 0.088 α̂

ΦWB̃
, (2.21)

A(2)
φ ≈ 0.46 α̂

ΦW̃
+ 0.11 α̂

ΦB̃
+ 0.22 α̂

ΦWB̃
, (2.22)

A(3)
φ ≈ 0.0136− 0.24 α̂ΦD + 0.58 α̂ΦW − 0.58 α̂ΦB − 1.50 α̂ΦWB

+ 1.32 α̂
(1)
Φ ` + 0.37 α̂

(3)
Φ ` + 1.53 α̂Φ e + 0.47 α̂4L , (2.23)

A(4)
φ ≈ 0.0959 + 0.091 α̂ΦW + 0.021 α̂ΦB + 0.044 α̂ΦWB . (2.24)

We present Eq. (2.18)–(2.24) graphically in Figs. 2 & 3. The inclusive cross section σ is un-

surprisingly sensitive to all CP-even operators, with particular sensitivity to operators that

shift the couplings between gauge bosons and leptons, as well as those that generate new

hZ`` contact terms. The asymmetry variables Aθ1 and A(4)
φ provide independent sensitiv-

ity to the operators OΦW ,OΦB,OWB, which are also the operators in this basis that are

constrained by measurements of h → γγ. The forward-backward asymmetry Acθ1,cθ2 and

the angular asymmetry A(3)
φ are sensitive to independent linear combinations of the CP-even

operators (excepting OΦ�, whose contribution has been eliminated by construction in the

angular asymmetries). Finally, the asymmetries A(1)
φ and A(2)

φ are sensitive to independent

linear combinations of CP-odd operators.

It is also helpful to connect the cross section and angular observables directly to the

broken-phase effective Lagrangian in Eq. (2.2). We choose the basis with the following 9

independent coefficients:

α̂ZZ , α̂
(1)
ZZ , α̂VΦ` , α̂AΦ` , α̂AZ , δgV , δgA , α̂

ZZ̃
, α̂

AZ̃
, (2.25)
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Figure 4. Same as Fig. 2 but for the sensitivity of σ, Aθ1 and Acθ1,cθ2 to the coefficients in Eq. (2.25)

at
√
s = 240 GeV, corresponding to Eq. (2.26)–(2.28).

which are related to the couplings in Eq. (2.2) by Eqs. (2.5), (2.6) and (2.7). In terms of the

coefficients in Eq. (2.25), at
√
s = 240 GeV the cross section scales as

σ[fb] ≈ 7.96
(
1 + 10.9 α̂ZZ + 2.00 α̂

(1)
ZZ + 0.88 α̂VΦ` − 11.8 α̂AΦ`

+ 0.59 α̂AZ − 0.30 δgV + 3.98 δgA
)
, (2.26)

while the angular observables scale as

Aθ1 ≈ − 0.448 + 0.37 α̂ZZ + 0.020 α̂AZ , (2.27)

Acθ1,cθ2 ≈ − 0.0075− 0.0088 α̂ZZ − 0.59 α̂VΦ` − 0.044 α̂AΦ`

− 0.44 α̂AZ + 0.20 δgV + 0.015 δgA , (2.28)

and

A(1)
φ ≈ 0.040 α̂

ZZ̃
+ 0.20 α̂

AZ̃
, (2.29)

A(2)
φ ≈ 0.57 α̂

ZZ̃
+ 0.031 α̂

AZ̃
, (2.30)

A(3)
φ ≈ 0.0136− 0.0041 α̂ZZ + 1.06 α̂VΦ` + 0.080 α̂AΦ`

+ 0.69 α̂AZ − 0.36 δgV − 0.027 δgA , (2.31)

A(4)
φ ≈ 0.0959 + 0.11 α̂ZZ + 0.0060 α̂AZ , (2.32)

These results are represented graphically in Figs. 4 & 5. The information is equivalent

to that in Figs. 2 & 3, but provides a stronger indication of the relevant physics in the
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Figure 5. Same as Fig. 4 but for A(1)
φ , A(2)

φ , A(3)
φ and A(4)

φ , which corresponds to Eq. (2.29)–(2.32).

broken-symmetry phase. The total cross section is most sensitive to operators of the form

hZµZ
µ, hZµνZ

µν , the axial contact term hZµ ¯̀γµγ5`, and shifts in the axial Z-lepton coupling

Zµ ¯̀γµγ5`. The asymmetry variables Aθ1 and A(4)
φ are particularly sensitive to hZµνZ

µν . The

forward-backward asymmetry Acθ1,cθ2 and the angular asymmetry A(3)
φ are particularly sensi-

tive to hZµνA
µν , the vector contact term hZµ ¯̀γµ`, and shifts in the vector Z-lepton coupling

Zµ ¯̀γµ`. The asymmetries A(1)
φ and A(2)

φ are sensitive to complementary CP-violating terms

hAµνZ̃
µν and hZµνZ̃

µν , respectively.
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It is worth pointing out that the choice of scales at which the couplings are evaluated

has a significant impact on the central values of asymmetry observables. In particular, A(1)
φ ,

A(3)
φ , and Acθ1,cθ2 are proportional to the coupling combination

(
gV gA
g2V +g2A

)2
, which is quite

sensitive to the value of sin2 θW . Evaluating the couplings at ∼ 240 GeV instead of the Z-

pole, the central values of asymmetry variables varies by O(10%). Although our choice of

scales is adequate for forecasting sensitivity to asymmetry variables, a careful treatment of

the Standard Model prediction for these asymmetry observables will ultimately be required

in order to extract useful information from angular observables at future e+e− colliders.

3 Angular Observables at CEPC and FCC-ee

Having defined the set of angular variables relevant for probing the Higgs EFT in e+e− → ZH,

we now develop projections for the sensitivity attainable at various proposed Higgs factories.

In particular, we study the reach in angular observables at two proposed future e+e− colliders:

the Circular Electron-Positron Collider (CEPC) and the e+e− mode of the CERN Future

Circular Collider (FCC-ee). Both of these colliders are designed to produce large numbers of

e+e− → ZH events at the center-of-mass energy
√
s = 240 GeV. With a proposed luminosity

of 2 × 1034 cm−2s−1 per Interaction Point (IP), the integrated luminosity at CEPC will be

5 ab−1 over a running time of 10 years with 2 IPs [5, 29]. The machine parameters of FCC-ee

[30] project that its luminosity can reach 6× 1034 cm−2s−1 at
√
s = 240 GeV, which is three

times that of CEPC. In addition, there is a factor of 2 increase in luminosity on account of the

projected 4 IPs at FCC-ee, bringing the total FCC-ee luminosity to six times that of CEPC.

Considering the same running time of 10 years, we therefore take the integrated luminosity

at FCC-ee to be 30 ab−1 for the purpose of our projections.

3.1 Expected precision and statistical uncertainty

In Table 3 we list the theoretical expectations for all the relevant asymmetry observables

assuming only Standard Model contributions, as well as the 1σ errors (σA) calculated from

Eq. (B.4) for various integrated luminosity benchmarks. We consider only the process with

Z → µ+µ−/e+e− and H → bb̄, which is almost entirely background-free. According to

Section 3.3.3.1 in the pre-CDR of CEPC [5], the number of events after basic cuts in both

µ+µ− and e+e− channels is 11067 + 11033 = 22100 for 5 ab−1. We assume for simplicity

that FCC-ee will conduct a very similar study on this channel, and consequently scale the

statistics up directly to 30 ab−1 for FCC-ee.

We emphasize that our study is very conservative by focusing only on the Z → µ+µ−/e+e−

decays, which comprise only about 7% of all Z decays. A more comprehensive study could

employ other visible Z boson decays to improve signal statistics, albeit at the cost of requiring

a detailed background analysis. If all visible decays of the Z boson – about 80% of the total

branching ratio – and additional decay channels of the Higgs beyond bb̄ can be included, it

is in principle possible to gain a factor of ten improvement in the statistics for our analysis.
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Precision σA
observable SM expectation 5 ab−1 30 ab−1

Full Stat.
CEPC FCC-ee

Aθ1 -0.448 0.0060 0.0025 0.00078

A(1)
φ 0 0.0067 0.0027 0.00087

A(2)
φ 0 0.0067 0.0027 0.00087

A(3)
φ 0.0136 0.0067 0.0027 0.00087

A(4)
φ 0.0959 0.0067 0.0027 0.00086

Acθ1,cθ2 -0.0075 0.0067 0.0027 0.00087

Table 3. The SM expectation at
√
s = 240 GeV for the asymmetry observables and the standard

deviation (σA) calculated from Eq. (B.4) for different sample sizes. We consider the process with

Z → µ+µ−/e+e− and H → bb̄, which is almost entirely background-free. According to Section 3.3.3.1

in the CEPC pre-CDR [5], the number of events after basic cuts is 22100 for 5 ab−1. We use this

number here and also scale it up with luminosity for 30 ab−1 and the full statistics scenario detailed

in text.

Selection Aθ1 A(1)
φ A(2)

φ A(3)
φ A(4)

φ Acθ1,cθ2
Initial -0.46 0.0013 0.00076 0.013 0.093 -0.0054

10◦ < θµ < 170◦ -0.46 0.0013 0.00063 0.012 0.057 -0.0053

10 GeV < pT (µ+µ−) < 90 GeV -0.46 0.0011 0.00070 0.012 0.058 -0.0054

81 GeV < mµ+µ− < 101 GeV -0.46 0.0009 0.00055 0.012 0.058 -0.0056

120 GeV < mrecoil < 150 GeV -0.46 0.0009 0.00055 0.012 0.058 -0.0056

Table 4. The summary of asymmetry observables for SM after selection cuts at
√
s = 240 GeV

using simulation sample using Madgraph5. The production process is e+e− → HZ, with H → bb̄ and

Z → µ+µ−.

Therefore, although we do not perform such an analysis here, to demonstrate the full diag-

nostic power of asymmetry observables we consider a third benchmark with ten times larger

statistics than the FCC-ee case with only the dilepton channel.2 We refer to this as the “Full

Statistics” (FS) benchmark with an eye towards the maximum sensitivity obtainable by using

additional Z and H decay products.

3.2 Simulation procedure and detector effects

At
√
s = 240 GeV, the dominant Higgs production process will be e+e− → ZH. As discussed

above, we choose the low-background, precisely-measurable process e+e− → ZH → µ+µ− bb̄

to demonstrate the diagnostic power of angular observables and their complementarity to

inclusive observables such as the rate measurement.

2This corresponds to 300 ab−1 integrated luminosity of the dilepton channel alone.
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To understand the detailed effects of selection cuts on BSM contributions, we perform a

numerical study on the signals using Madgraph5 [31] with dimension-six operator model file

generated via FeynRules [32]. The signal process is very clean. For our study, we employ

the event selection of CEPC preCDR analysis [5] for this channel, including lepton angular

acceptance of 10◦ < θµ < 170◦, lepton pair pT of 10 GeV < pT (µ+µ−) < 90 GeV, lepton

pair on-shell condition of 81 GeV < mµ+µ− < 101 GeV, recoil mass of 120 GeV < mrecoil <

150 GeV and b-tagging.3 After applying these cuts, the background is negligible and the

dominant uncertainty is due to signal statistics.

Table 4 shows the cut flow for the 6 angular observables at each stage of event selection.

As shown in the line 3 of this table, the acceptance of the polar angle can greatly change

some anglular observables. This suggests, among other things, that the power of angular

observables might be improved at future e+e− colliders by enlarging the detector acceptance

for charged leptons beyond current projections.

The signal selection cuts also shift the central value of the observable asymmetries, which

likewise effects their diagnostic power in the event of a BSM contribution. In Fig. 6 we show

the asymmetry observable and cross section values resulting from our analytical calculation;

our simulation before cuts; and our simulation after cuts, in each case following the input

parameter choices discussed in Section 2. To demonstrate the impact of realistic cuts on

different values of the dimension-6 operator coefficients, we choose to plot these predictions

as a function of ĉΦB, the coefficient one of the higher dimensional operators only constrained

by precision Higgs measurements. The operator OΦB affects all CP-even observables σ, Aθ1 ,

A
(3)
φ , A

(4)
φ and Acθ1,cθ2 , and is a reasonable proxy for the impact of cuts on various BSM

contributions to the angular asymmetries.

We can see in Fig. 6 that our simulation before cuts agrees well with our analytical

calculation, and the cuts alter the asymmetries consistently for different values of ĉΦB. The

central values of the asymmetry variables for different values of the coefficients ĉΦB before

and after cuts are shown in blue and red lines. Unsurprisingly, the asymmetries change as

a result of the cuts, ranging from sub-percent level for most asymmetry variables to around

40% (reduction) for A
(4)
φ . Crucially, the slopes of the asymmetries as a function of the Wilson

coefficient do not change much before and after cuts. This allows us greatly simplify our

forecasting, as it demonstrates that realistic cuts do not alter how asymmetry observables

respond to new operators in the regime of interest.

To study the impact of realistic cuts and detector acceptance on asymmetry observables

we compare our Madgraph5 analysis result with the data sample from the CEPC Pre-CDR

study ground for the SM expectations. Their sample data is generated using Whizard [33, 34]

for the process of e+e− → HZ, with H → bb̄ at
√
s = 240 GeV. A fast simulation of detector

effects using the energy resolution and acceptance in polar angle of the CEPC detector is

applied as well. Our study with the Madgraph5 sample and with the CEPC preCDR sample

3We do not include the cut on Higgs polar angle | cos(θH)| < 0.8 for the Z → µ+µ− sample, which is used

in the CEPC study inherited from Z → e+e− sample to suppress the Bhabha background. This cut is not

necessary for the Z → µ+µ− sample from our perspective.
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Figure 6. Asymmetry observable Aθ1 (left panel) and A
(4)
φ (right panel) as a function of the coefficient

of operator OΦB . The blue and red lines indicate the simulated results at parton level before and after

cuts. The green and yellow band is projected precision for corresponding observable with CEPC 5

ab−1, assuming measured values follow SM. The numbers are the slope of the asymmetry observable

with respect to coefficients ĉΦB at parton level, after cuts and in theory, respectively.

agree well in the values of the asymmetries under selection cuts, after taking into account the

difference caused by different SM input parameters. With the initial state radiation the initial

state e+e− and the intermediate Higgs boson and Z boson are no longer coplanar, causing

ambiguities in the definition of asymmetries. We compare the asymmetry values obtained in

the lab frame and the e+e− → ZH collision center of mass frame. We find the difference are

negligibly small for the precisions of symmetries at CEPC.

Following our simulation study and the validation of CEPC pre-CDR data sample, we

judiciously apply a universal 5% penalty factor for the sensitivities of asymmetry observables

to Wilson coefficients under consideration. This penalty factor is to account for detector

effects and other systematics.

In Fig. 6 we also show the one- and two-sigma bands (green and yellow) indicating the

constraint that can be placed at CEPC assuming a Standard Model-like central value. Here

we see that the angular variable Aθ1 places an order-of-magnitude stronger bound on OΦB

compared to A
(4)
φ . This is unsurprising given our discussion in Section 2, but also owes in

part to the different precision attainable in the two asymmetries after cuts. We reserve a

more complete discussion of the constraints on Wilson coefficients for Section 4.

Apart from the systematic impact of cuts and acceptance discussed above, there are

several other sources of uncertainty to consider in a realistic treatment of angular asymmetries

at future colliders:

• There are instrumental uncertainties related to uncertainty in the integrated luminosity

which affect the cross section measurement, but this cancels for asymmetry observables

by construction.

• Instrumental uncertainty from beam energy resolution affects the cross section measure-
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ment, but this can be calibrated well by other processes, and its effect on asymmetry

observables is very small due to the weak dependence on center-of-mass energy exhibited

in [23].

• Instrumental uncertainty from initial-state-radiation4 affects the reconstruction of the

scattering plane, but we have verified that the size of this effect is small at the level of

our Whizard simulation and is well within the size of our conservatively-assigned overall

uncertainty. To verify this in detail, we use the signal events for the same process

from the CEPC Pre-CDR study ground with initial-state-radiation, reconstruct the

angular observables ignoring such effects (i.e., assuming lab frame and c.m. frame are

identical) and compare the values of these observable with the true asymmetry using the

radiated photon information. Uncertainties resulting from these effects are numerically

sub-dominant.

• Instrumental uncertainty from particle reconstruction energy resolution is also small

because the leptons can be measured very precisely and our asymmetry observables

rely only on the lepton momentum. This may become a more significant uncertainty if

asymmetries are constructed from non-leptonic decay products, or if more information

from the decay of the Higgs is employed.

• Theoretical uncertainties such as uncertainties on input parameters and electroweak

corrections are very important for the precision measurement of angular observables. We

consider them to be factorizable from other systematics and note that these uncertainties

can be significantly improved in the near future. Current estimates place uncertainties

due to NLO electroweak corrections at the (sub)percent level. While they may be

somewhat higher in angular observables, substantial improvements may be realized by

the advent of future Higgs factories. We note that some angular observables such as

A
(3)
φ and Acθ1,cθ2 are highly sensitive to the values of input parameters, and the central

values of Standard Model predictions can be altered by as large as a factor of three by

different choices of SM input parameters. This makes clear the need for a careful future

treatment of Standard Model predictions for these observables.

4 Applications

Given our estimates for the sensitivity attainable in angular observables at future e+e− collid-

ers, we now consider the implications of this sensitivity for a variety of BSM physics scenarios.

Broadly speaking, angular observables both improve the overall reach for BSM physics and

constrain linear combinations of Wilson coefficients in the dimension-6 HEFT orthogonal to

those constrained by coupling measurements alone.

For the purposes of forecasting, we assume the experimental results are SM-like and

obtain the expected constraints on new physics using a simple χ2 fit. For the sake of con-

4We ignore the beamstrahlung effect here, following the prescription of CEPC preCDR study [5].
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creteness, we focus on the channel e+e− → ZH → `+`− bb̄ at CEPC with
√
s = 240 GeV

and 5 ab−1 integrated luminosity, although we also forecast sensitivity for several scenarios at

FCC-ee. As we have justified in Section 3, statistical uncertainties dominate for the angular

observables in this channel. As such, in this section we neglect systematic uncertainties and

consider only statistical uncertainties based on a sample size of 22100 events (the expected

number of events collected by CEPC after selection cuts with 5 ab−1 integrated luminosity).

To compensate the omission of systematics, we judiciously apply a universal 5% penalty

factor for the sensitivities of asymmetry observables to Wilson coefficients, as mentioned in

Section 3. For the uncertainty in the cross section, we adopt the values in the preCDR [5],

which are 0.9% for the µ+µ−bb̄ channel and 1.1% for the e+e−bb̄ channel. The combined

precision for the e+e− → ZH → `+`− bb̄ channel is therefore 0.7%, assuming statistical

uncertainties dominate.

In what follows we will also neglect theory uncertainties in the Standard Model predic-

tions for the total cross section and for angular observables. Recent forecasts for precision

measurements of the associated production cross section suggest that uncertainties on the

order of O(0.5%) are realistic. For angular observables the situation is somewhat less clear,

but we expect substantial progress in the study of NLO corrections to angular variables in

anticipation of a future e+e− collider.

The χ2 from the rate measurements (χ2
rate), the angular measurements (χ2

angles) and the

cominbation of all measurements (χ2
total) are defined as5

χ2
rate =

(XNP −XSM)2

σ2
X

, (4.1)

χ2
angles =

∑
i

(AiNP −AiSM)2

σ2
Ai

, (4.2)

χ2
total = χ2

rate + χ2
angles , (4.3)

where XSM and AiSM are the “measured” values which we assume to be SM-like; XNP and

AiNP are the predictions of new physics, which can be written as functions of the Wilson

coefficients as e.g. in Eq. (2.18)–(2.20); and the Ai are summed over Aθ1 , A(1)
φ , A(2)

φ , A(3)
φ , A(4)

φ

and Acθ1,cθ2 . Here σX and σAi are the 1σ uncertainties for the rate and angular observables,

respectively. We have also neglected the correlations among (the experimental measurements

of) the observables, which we expect to be small.

The formulation in Eq. (4.1–4.3) is also applicable to the discrimination of different new

physics cases, for which one could assume the measured values of the observables are given by

some benchmark new physics scenario. The changes in the expected precisions are negligible,

unless the NP predictions are dramatically different from the SM ones (in which case the

effective theory description will break down). Since there is no additional information, we

will focus on forecasting in the scenario that the experimental results are SM-like.

5It is unfortunate that the conventions for the cross section and the standard deviation are both σ. Here

to distinguish the two we denote the total cross section as X.
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The rest of this section is organized as follows: In Section 4.1, we present the constraints

on the Wilson coefficients in the Higgs effective Lagrangian with a model-independent ap-

proach. In Section 4.2, we discuss in detail the constraints on the HZγ coupling, for which

angular observables provide sensitivity comparable to that of direct measurement at e+e−

colliders. In Section 4.3, we demonstrate how the constraints from angular observables can

be applied to specific models of new physics, using light stops as an example.

4.1 Constraining Wilson coefficients

In this section we present the model-independent constraints on the Wilson coefficients in the

Higgs effective Lagrangian, Eq. (2.2), parameterized the 9 Wilson coefficients in Eq. (2.25),

which are

α̂ZZ , α̂
(1)
ZZ , α̂VΦ` , α̂AΦ` , α̂AZ , δgV , δgA , α̂

ZZ̃
, α̂

AZ̃
.

Treating the 9 coefficients as independent parameters, there are totally 7 constraints from

the rate and the six asymmetry observables, less than the number of unknowns. Therefore,

one cannot obtain independent constraints on the Wilson coefficients without making further

assumptions. However, with a reduced set of coefficients the angular observables can break

the degeneracy of the rate measurement, which by itself could only constrain one linear com-

bination of the Wilson coefficients. To illustrate this point, we focus on two coefficients at a

time while setting the rest to zero. One of the coefficients is always chosen to be α̂
(1)
ZZ , which

parameterizes a modification of the SM HZµZµ interaction and is most strongly constrained

by the rate measurement. The angular observables, being normalized to the total cross sec-

tion, are independent of α̂
(1)
ZZ by construction. In Fig. 7, we show the expected constraints in

the two-dimensional parameter space consisting of α̂
(1)
ZZ and one of the remaining coefficients,

assuming SM-like measurements. The total combined constraints from both rate and angular

measurements are shown along with the ones from the rate measurements or the (combined)

angular observables alone. From Fig. 7, it is clear that the rate measurement alone only

constrains a linear combination of the two coefficients. The inclusion of angular observables

typically allows considerable discrimination between Wilson coefficients. In particular, in

Fig. 7 it is apparent that angular observables have appreciable discriminating power for the

coefficients α̂VΦ`, α̂AZ , δgV , α̂ZZ̃ , and α̂
AZ̃

. Note that the angular obervables A(1)
φ ,A(2)

φ depend

only on CP-odd operators, which are zero in the Standard Model and thus entirely dominated

by contributions from the dimension-6 EFT. The remaining angular observables depend only

on CP-even operators, which generally accumulate radiative contributions in the Standard

Model.

In principle, precision e+e− colliders could be used to set appreciable bounds on CP-odd

operators via measurements of the observables A(1)
φ ,A(2)

φ . However, these operators are much

more strongly constrained by bounds on the electron EDM, as they contribute at one-loop

order through Barr-Zee type diagrams [35]. In [36] the corresponding bounds on OΦB, OΦW ,

and OΦWB were computed using |de|/e < 1.05 × 10−27. Recently the ACME experiment
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improved this bound to |de|/e < 8.7 × 10−29 [37]. Accounting for the improved limit, for

Λ = 1 TeV, this corresponds to bounds of αΦB < 1.4 × 10−4, αΦW < 3.6 × 10−5, and

αΦWB < 6.7 × 10−5 when the operators are considered independently. For αi = 1, this

equivalently corresponds to bounds on the scales of the dimension-6 operators OΦB, OΦW ,

and OΦWB of Λ > 83, 167, and 122 TeV. Thus we conclude that potential limits on A(1)
φ ,A(2)

φ

at e+e− colliders, while appreciable, are far from competitive with existing bounds coming

from the electron EDM.

While sensitivity to the CP-odd observables is not competitive with EDM experiments,

sensitivity to α̂VΦ`, α̂AZ , and δgV provides meaningful improvement over bounds from rate

measurements alone. We will discuss the particular utility of the α̂AZ constraint in the next

subsection.

Of course, the combination of angular observables is not universally useful, and in some

cases (namely α̂ZZ , α̂AΦ` and δgA), the inclusion of angular observables provides little addi-

tional information relative to the rate measurement. It should be noted that for these cases

we have chosen quite large plot ranges for the sake of illustration; in reality, for large Wilson

coefficients the effective theory description would break down.

In addition to the constraints in two-dimensional parameter spaces, we provide in Table 5

the constraints on individual Wilson coefficients with the assumption that all other coefficients

are zero. Table 5 shows the 1σ uncertainties for each Wilson coefficient (setting others to

zero) from the rate measurements only, the angular observables measurements only, and the

combination of the two. We use “∞” to denote coefficients for which no constraint can be

derived within our procedure. In particular, the angular observables are insensitive to α̂
(1)
ZZ

by construction, while the rate measurements are independent of the CP-odd operators at

leading order in the Wilson coefficients.

α̂ZZ α̂
(1)
ZZ α̂VΦ` α̂AΦ` α̂AZ δgV δgA α̂

ZZ̃
α̂
AZ̃

rate 0.00064 0.0035 0.0079 0.00059 0.012 0.023 0.0018 ∞ ∞
angles 0.016 ∞ 0.0058 0.078 0.0087 0.017 0.23 0.012 0.036

total 0.00064 0.0035 0.0047 0.00059 0.0070 0.014 0.0018 0.012 0.036

Table 5. 1σ uncertainties for individual Wilson coefficients, with the assumption that all other

coefficients are zero. The second row shows the constraints from the rate measurements only, the third

row shows the constraints from measurements of angular observables (combined) only, and the last

row shows the total combined constraints from both rate and angular measurements. If no constraint

could be derived within our procedure, a ∞ is shown.

As discussed in Section 3, with the same running time FCC-ee is able to deliver a sample

size 6 times larger than that of CEPC. It is also reasonable to expect that statistical uncer-

tainties dominate for the e+e− → ZH → `+`− bb̄ process at FCC-ee as they do at CEPC.

Furthermore, the inclusion of additional decay modes of H and Z would increase the statis-

tics and could potentially significantly increase the constraining power. While the reaches of

other channels would require further study, to illustrate their potential usefulness we perform
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Figure 7. Expected constraints from the e+e− → ZH → `+`− bb̄ process at the CEPC with√
s = 240 GeV and 5 ab−1 data, assuming SM-like results. Each plot shows the constraints for α̂

(1)
ZZ

and one of the other Wilson coefficients in Eq. (2.25), while the rest are set to zero. The purple con-

tours show the constraints from the rate measurements only, the cyan contours show the constraints

from measurements of angular observables (combined) only, and the black contours show the total

combined constraints from both rate and angular measurements. The solid (dotted) lines corresponds

to 68%(95%) confidence level (CL). The green dot at (0, 0) indicates the SM prediction.

a naive scaling of statistics from the FCC-ee e+e− → ZH → `+`− bb̄ process by another factor

of 10, and denote this scenario as FCC-ee FS (full statistics). A comparison of the reaches

of the three scenarios, CEPC, FCC-ee and FCC-ee FS, is shown in Fig. 8 for a selection

of Wilson coefficients. Here we use the e+e− → ZH → `+`− bb̄ process at
√
s = 240 GeV

with sample sizes of 22100, 132600 and 1326000 events for CEPC, FCC-ee and FCC-ee FS,

respectively.
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Figure 8. Expected constraints on the Wilson coefficients for different collider scenarios, assuming

SM-like results. The constraints from the measurements of rate and angular observable are combined

together. Each plot shows the constraints for α̂
(1)
ZZ and one of the other Wilson coefficients in Eq. (2.25),

while the rest are set to zero. The black contour shows the constraints for CEPC, the blue dashed

contour shows the constraints for FCC-ee, and the red dot-dashed contour shows the constraints for

FCC-ee FS. The three scenarios all use the e+e− → ZH → `+`− bb̄ process at
√
s = 240 GeV, with

a sample size of 22100, 132600 and 1326000 events for CEPC, FCC-ee and FCC-ee FS, respectively.

All contours correspond to 68% CL. The green dot at (0, 0) indicates the SM prediction.

4.2 The HZγ coupling

As we have seen, angular observables in e+e− → ZH provide an additional means of probing

α̂AZ , thereby constraining anomalous contributions to the hZγ coupling. To date, much

attention has been devoted to constraining the hZγ coupling in decays h → Zγ (which can

be observed at the LHC) and in the production mode e+e− → γh (which can be observed

at future e+e− colliders). However, the contribution of the hZγ to e+e− → ZH via an

intermediate photon provides a complementary probe at e+e− colliders that is not sensitive

to the potentially complicated backgrounds faced by e+e− → γh.

This is perhaps not surprising. In general, one expects angular observables to provide

a powerful handle on small deviations in the hZγ coupling, insofar as BSM contributions

appear at O(αAZ) via interference with the tree-level SM process e+e− → ZH, whereas in

e−e− → γh they arise either directly at O(α2
AZ) or at O(αAZ) via interference with the

loop-level SM process e+e− → γh.6

The limits on hZγ that may be obtained by precision measurement of both the rate

and angular distributions of e+e− → ZH (→ `+`− bb̄) is shown in Table 5, amounting to

−0.0070 ≤ α̂AZ ≤ 0.0070 at CEPC. By comparison, direct measurement of the e+e− → γh

process at CEPC (scaling up the result of [38] to 5 ab−1) leads to a projected bound of

−0.008 ≤ α̂AZ ≤ 0.003. While this is somewhat better than the projected bound from

e+e− → ZH, the analysis in [38] includes only the backgrounds from hard processes e+e− →
γbb̄. In general one expects additional backgrounds from beamstrahlung that are more difficult

6We note that our analysis is restricted to tree-level processes in the Standard Model, while the SM

contribution to the hZγ coupling arises at one loop. Including the SM contribution would not substantially

alter our analysis, as it only shifts the central value of the angular observables.
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to characterize and may further complicate the direct measurement. At the very least, it is

clear that angular observables provide a surprising and competitive avenue for probing the

hZγ coupling at future e+e− colliders.

4.3 Stops

As a final example of the discriminating power of angular observables, we consider a con-

crete weakly-coupled model that may be constrained with precision measurements at e+e−

colliders: scalar top partners (stops) in supersymmetric extensions of the Standard Model.

For simplicity, we will consider stops with degenerate stop soft masses m2
t̃

= m2
Q̃3

= m2
t̃R

plus mixing terms of the form Xt = At − µ cotβ. The mass scale of the effective operators is

Λ = mt̃. Wilson coefficients for this scenario were computed in [39], while the constraint on

the stop parameter space due to rate measurements at e+e− colliders was determined in [9].

Here we include the additional sensitivity contributed by angular observables by translating

the results of [9, 39] into our preferred basis of Wilson coefficients and applying the results of

the previous section.

In Fig. 9 we show the sensitivity provided by rate measurements and the inclusion of

angular observables in the plane of the two stop mass eigenvalues M1 and M2, which are

functions of m2
t̃

and Xt given by the stop mass mixing matrix. For definiteness we have set

tanβ = 10, while the results are insensitive to tanβ as long as tanβ & few.
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Figure 9. Expected constraints in the (M1,M2) plane for different collider scenarios, assuming

SM-like results. M1 and M2 are the two mass eigenvalues of the left- and right-handed stops. The

three scenarios, CEPC, FCC-ee and FCC-ee FS are described in Section 4.1. We set tanβ = 10.

The blue contours show the constraints from the rate measurements only and the red contours show

the total combined constraints from the measurements of rate and the angular observables . The solid

(dotted) lines corresponds to 68%(95%) CL. The region in the upper-right part of each plot is allowed

by projected coupling measurements.

The features of the exclusion provided by rate measurements were discussed extensively

in [9]. The most noteworthy feature of the rate measurements is the so-called “blind spot”

along the line M2 = M1+
√

2mt where the shift in the hZZ rate is zero. Such blind spots arise

more generally in stop corrections to various Higgs properties such as hgg, hγγ couplings and
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precision electroweak observables. Each blind spot corresponds to a zero in physical linear

combinations of Wilson coefficients. While the exact zeroes in observables arise in different

places in the M1 −M2 plane, they are collected around the line in which the coupling of the

lightest stop mass eigenstate to the Higgs goes to zero.

In general, the addition of angular observables does not lead to immense improvements

over the rate measurement in generic regions of parameter space. This is not surprising,

since the relevant Wilson coefficients well-constrained by angular observables are generated

at one loop and thus are small for all values of the stop masses. However, it is apparent in

Fig. 9 that the addition of angular observables provides significantly improved sensitivity in

the blind spot of the hZZ rate measurement. This is simply because the Wilson coefficients

contributing to angular observables are suppressed but nonzero along the line where the ZH

cross section shift is zero, and so provide complementary sensitivity at small M1,M2 provided

sufficient statistics. This demonstrates the value of angular observables even in the case of

BSM scenarios that are generally well-constrained by rate measurements.

5 Conclusions

Future e+e− provide unprecedented opportunities to explore the Higgs sector. The large

sample size of clean Higgs events may be used to constrain not only deviations in Higgs

couplings, but also non-standard tensor structures arising from BSM physics. While the

former are readily probed by rate measurements, the latter may be effectively probed using

appropriately-constructed angular asymmetries. In this work we have initiated the study

of angular observables at future e+e− colliders such as CEPC and FCC-ee. We have taken

particular care to account for the impact of realistic cut acceptance and detector effects on

angular asymmetries.

Our primary result is a forecast of the precision with which angular asymmetries may

be measured at future e+e− colliders. We have translated this forecast into projected sensi-

tivity to a range of operators in the dimension-6 EFT, where angular measurements provide

complementary sensitivity to rate measurements. Among other things, we have found that

angular asymmetries provide a novel means of probing BSM corrections to the hZγ cou-

pling beyond direct measurement of e+e− → hγ. We also apply our results to a complete

model of BSM physics, namely scalar top partners in supersymmetric extensions of the Stan-

dard Model, where angular observables help to constrain the well-known “blind spot” in rate

measurements.

There are a wide range of interesting future directions. In this work we have focused

on ZH events with Z → `+`− and h → bb̄ in order to obtain a relatively pure sample of

signal events without significant background contamination. Of course, there will be far

more events involving alternate decays of the Z and Higgs which, while not background-

free, could add considerable discriminating power. It would be useful to conduct a realistic

study of these additional channels to determine the maximum possible sensitivity of angular

asymmetries. Although we have taken care to account for the impact of cut acceptance
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and detector effects on angular asymmetries, our work has neglected the possible impact of

theory uncertainties in the Standard Model prediction for angular asymmetries. A detailed

estimate of current and projected theory uncertainties in the Standard Model prediction for

Higgsstrahlung differential distributions would be broadly useful to future studies. More

generally, this work serves as a starting point for investigating the full set of Higgs properties

accessible at future e+e− colliders.
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A Angular coefficients

For completeness, here we list the various Ji coefficients computed first in [23]. These coeffi-

cients are conveniently expressed in terms of components of the matrix element as

J1 = 2rs
(
g2
A + g2

V

) (
|H1,V |2 + |H1,A|2

)
(A.1)

J2 = κ
(
g2
A + g2

V

) [
κ
(
|H1,V |2 + |H1,A|2

)
+ λRe

(
H1,VH

∗
2,V +H1,AH

∗
2,A

)]
(A.2)

J3 = 32rsgAgV Re
(
H1,VH

∗
1,A

)
(A.3)

J4 = 4κ(rsλ)1/2gAgV Re
(
H1,VH

∗
3,A +H1,AH

∗
3,V

)
(A.4)

J5 =
1

2
κ(rsλ)1/2

(
g2
A + g2

V

)
Re
(
H1,VH

∗
3,V +H1,AH

∗
3,A

)
(A.5)

J6 = 4(rs)1/2gAgV
[
4κRe

(
H1,VH

∗
1,A

)
+ λRe

(
H1,VH

∗
2,A +H1,AH

∗
2,V

)]
(A.6)

J7 =
1

2
(rs)1/2

(
g2
A + g2

V

) [
2κ
(
|H1,V |2 + |H1,A|2

)
+ λRe

(
H1,VH

∗
2,V +H1,AH

∗
2,A

)]
(A.7)

J8 = 2rsλ1/2
(
g2
A + g2

V

)
Re
(
H1,VH

∗
3,V +H1,AH

∗
3,A

)
(A.8)

J9 = 2rs
(
g2
A + g2

V

) (
|H1,V |2 + |H1,A|2

)
(A.9)
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where to O(1/Λ2) the Hi are given by

H1,V = −2mH(
√

2GF )1/2r

r − s
gV

(
1 + α̂eff

1 −
κ

r
α̂ZZ −

κ

2r

Q`gem(r − s)
sgV

α̂AZ

)
(A.10)

H1,A =
2mH(

√
2GF )1/2r

r − s
gA

(
1 + α̂eff

2 −
κ

r
α̂ZZ

)
(A.11)

H2,V = −2mH(
√

2GF )1/2

r − s
gV

[
2α̂ZZ +

Q`gem(r − s)
sgV

α̂AZ

]
(A.12)

H2,A =
4mH(

√
2GF )1/2

r − s
gAα̂ZZ (A.13)

H3,V = −2mH(
√

2GF )1/2

r − s
gV

[
2α̂

ZZ̃
+
Q`gem(r − s)

sgV
α̂
AZ̃

]
(A.14)

H3,A =
4mH(

√
2GF )1/2

r − s
gAα̂ZZ̃ (A.15)

with Q` = −1 and κ ≡ 1− r − s.
Note that only six of the Ji functions are independent, so that e.g. J5, J7, J9 can be

eliminated in terms of the remaining Ji by the relations

J5 =
κ

4
√
rs
J8

J7 =

√
rs

2κ

(
κ2

2rs
J1 + J2

)
(A.16)

J9 = J1

B Statistical uncertainties of the Asymmetry observables

In this appendix we derive the statistical uncertainty of an asymmetry observable A as a

function of its expectation value Ā and the size of the statistics N . Assuming a fixed number

of events N , one could divide the events into two sets, with N+ events satisfying some criteria

(e.g. for A(3)
φ it is cosφ > 0) while N− events fail to satisfy the same criteria, with N =

N+ +N− . An asymmetry observable A can be defined as

A ≡ N+ −N−
N+ +N−

=
2N+

N
− 1 . (B.1)

Assuming each event has a probability p to be counted into N+, then N+ has a binomial

distribution with standard deviation σN+ =
√
N p(1− p), which transforms to a standard

deviation of A as

σA = 2

√
p(1− p)
N

. (B.2)

The value p is directly related to Ā, the expectation value of A. From Eq. (B.1) one has

Ā = 2p− 1, which gives

p =
1 + Ā

2
. (B.3)
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Combining Eq. (B.2) and Eq. (B.3), we obtain

σA =

√
1− Ā2

N
. (B.4)

In the ideal case with only statistical uncertainty and no background, no systematic error, and

with perfect resolution, for the asymmetry observables considered in this paper, Ā is given by

the theoretical predictions in Eq. (2.19–2.20). The SM expectations and the corresponding

uncertainties are listed in Table 3. If detector effects are included, Eq. (B.4) still applies, but

Ā has to be modified accordingly to take count of that. In practice, as long as Ā is not too

large, σA ≈ 1/
√
N would be a good approximation. It should be noted that, as discussed in

Section 3, the detector effects can affect the sensitivity of the asymmetry observables to new

physics, which is not shown in Eq. (B.4).
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