
Shielding superconductors with thin films as applied to RF cavities for particle
accelerators

Sam Posen,1 Mark K. Transtrum,2 Gianluigi Catelani,3 Matthias U. Liepe,1 and James P. Sethna4

1LEPP, Physics Department, Newman Laboratory, Cornell University, Ithaca, NY 14853-2501∗
2Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602
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Determining the optimal arrangement of superconducting layers to withstand large amplitude
AC magnetic fields is important for certain applications such as superconducting radiofrequency
cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating
film/superconductor (SIS’) structure, a configuration that could provide benefits in screening large
AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must
be avoided, the superheating field of the structure is calculated in the London limit both numerically
and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters
we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of
the superheating field is possible, on the order of a few percent, for the SIS’ structure relative to a
bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

PACS numbers: 74.78.Fk, 74.25.Op, 64.60.Ht, 77.55.-g

I. INTRODUCTION

Can one engineer a better superconducting magnetic
shield? How can one optimally arrange materials to
maintain complete flux exclusion from a region, and what
is the maximum external field that can be screened? It
has long been known that superconducting films of width
d smaller than the London magnetic penetration depth
λ can remain superconducting at much higher magnetic
fields than bulk samples,[1] so it has been proposed that
films could be used to shield bulk superconductors.[2] In
this paper, we investigate the shielding properties of the
film/insulator/bulk (SIS’) structure and compare to the
single superconducting slab. The focus here is on AC
rather than DC shielding; the latter has already been
studied extensively.[3–7]

Superconducting radio-frequency (SRF) cavities are an
example of an application in which shielding of large-
amplitude high frequency magnetic fields is required.
This technology underlies particle accelerators used in
high-energy physics, nuclear physics, neutron sources,
and X-ray light sources. The large AC accelerating elec-
tric field of these cavities induces a correspondingly large
magnetic field. If the magnetic field exceeds the flux pen-
etration field of the material, it causes a quench in the
cavity. If SIS’ structures could enhance the flux pene-
tration field relative to that of a bulk superconductor,
it could allow these cavities to achieve higher accelerat-
ing fields.[8] This has motivated significant experimental
effort to fabricate such structures [9–11], although their
ability to screen large amplitude RF magnetic fields has
not yet been measured.
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In this paper, we examine the superheating fields Bsh
of these structures, where flux penetration would occur in
defect-free superconductors; below Bsh the whole struc-
ture can remain in the vortex-free (metastable) Meiss-
ner state. In fact, part of the motivation for this work
is that there has been significant confusion in the SRF
community regarding the maximum fields that SIS’ struc-
tures can screen; we hope that this study will clarify
the screening mechanism and its limitations. Our cal-
culations show modest shielding gains for SIS’ hetero-
laminates compared to bulk superconductors. The SIS’
structure may provide benefits in other ways for realistic
materials with surface defects,[12] but considering those
benefits is beyond the scope of the present work.

The paper is organized as follows: we start our analysis
by arguing in Sec. II that for an SIS’ structure, a signif-
icant enhancement of the flux penetration field could be
achieved only if a significant gradient in the phase of the
order parameter ∇φ can be established across the film
shielding the bulk. Since this would result in a level of
dissipation that is likely unmanageable, we restrict our
analysis to fields below Bsh, where both film and bulk
superconductor are in the (meta)stable Meissner state,
with no phase gradient across the film. In Sec. III, nu-
merical calculations are performed in the London limit.
The thin film regime is examined in Sec. IV with an ana-
lytical Ginzburg-Landau approach. In Sec. V, the results
are extended to films of intermediate thicknesses via a full
numerical Ginzburg-Landau analysis. We summarize our
work in Sec. VI.

II. FLUX EXCLUSION

The fundamental link between superconducting order
and magnetism is the fact that the free energy and prop-
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erties of the system are governed not by the gradients∇ψ
of the superconducting order parameter, but by a ‘covari-
ant’ derivative Dψ = (∇ − e∗iA/~)ψ, where e∗ = 2e is
the Cooper pair charge and A is the magnetic vector
potential.[1] If we write the complex order parameter in
terms of two real functions as ψ = |ψ| exp(iφ), the co-
variant derivative becomes

Dψ = [∇|ψ|+ i|ψ|(∇φ− e∗A/~)] exp(iφ) (1)

= [∇|ψ|+ i|ψ|(m∗vs/~)] exp(iφ), (2)

where the gauge-invariant combination

(~/m∗)(∇φ− e∗A/~) = vs (3)

is called the supercurrent velocity. Magnetic fields cause
“stress” in superconductors indirectly through A, which
induces screening supercurrents. Due to these supercur-
rents, a weak magnetic field exponentially decays inside
a superconductor over the penetration depth λ. As a
crude approximation, the superconductor can support a
certain maximum stress, characterized by a maximum su-
percurrent velocity vmaxs . The superconductor can only
screen A values larger than vmaxs m∗/e∗ if it passes vor-
tex lines through its boundary. For example, if a vortex
line is passed through a hollow superconducting cylinder
in a parallel external field, this will bring flux inside the
cylinder and φ will wind by a factor of 2π, lowering the
stress in the superconductor.
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FIG. 1. Example of a SIS’ structure. The amplitudes of the
magnetic field, the vector potential, and the Gibbs free energy
are plotted as a function of distance into the structure.

Now let us consider a single thin superconducting film
separated from a bulk superconductor by a thin insu-
lator, shown in Figure 1. In a ‘thin’ superconductor of
thickness d� λ the critical fields are enhanced; for exam-
ple, for the parallel thermodynamic critical field we have
Hc‖ = 2

√
6Hcλ

d .[1] The Meissner state requires A → 0
deep in the bulk, and A is continuous across the insu-
lating gap. Therefore, the vector potential at the film
surface is tied to that of the bulk superconductor sur-
face; however, the insulating gap offers the opportunity
to decouple the phase gradient across the film from that

in the bulk. If many vortex lines pass through the film,
the superconducting film could be relatively unstressed,
supplementing the native superheating field of the film
material.

In the DC limit, it should be possible to screen a bulk
from very large fields using a compound film with many
layers of alternating thin superconducting and insulating
films with magnetic flux trapped between each of them.
However, in AC applications, filling the insulators with
magnetic flux demands the transfer of ∇φ/π fluxoids per
unit length across the screening film in each cycle. The
AC response of a superconductor with vortices has been
considered before—see e.g. Refs. 13–15. Here we sim-
ply note that as they pass through the film, the vortices
would experience strongly dissipative drag,[2] generating
levels of heating that are likely unmanageable for most
applications.[16]

As we are focusing on RF applications, we impose the
restriction that flux must never pass into the supercon-
ducting regions. With this restriction, the SIS’ structure
would offer an advantage over a single thick supercon-
ducting slab if it could withstand higher magnetic fields
without flux penetration. Since the frequencies we are
interested in are much smaller than the gap, the super-
conducting order parameter depends only on the instan-
taneous value of the magnetic field. The flux-free state
is only intrinsically stable below Bc1, the lower critical
field. However, there is good evidence that real mate-
rials can withstand RF fields well above Bc1.[17, 18] As
the field is pushed above Bc1 and then again below it, the
superconductor does not have time to relax to its equilib-
rium (mixed) state, but is rather in a metastable Meiss-
ner state. In this metastable regime, an energy barrier
prevents flux from penetrating, a barrier that is reduced
to zero at Bsh for a defect-free material (thermal fluctu-
ations at cryogenic temperatures are much smaller than
the condensation energy, so they cannot create excita-
tions above the barrier). Bsh is the ultimate AC mag-
netic limit; this is especially important for SIS’ films, as
they are always in the metastable state.[16] We will use

BSIS
′

sh to denote the maximum metastable field of a SIS’
structure to distinguish it from the superheating field of
the bulk material, Bsh,b, and the bulk superheating field
of the film material, Bsh,f (i.e. the value it would have
if it were not a thin film). In the next three sections
we present and compare three approaches to calculate
BSIS

′

sh . We study this limit quantitatively, to evaluate
how useful these structures would be for real applica-
tions. We will show that the SIS’ structure leads to a
small increase in the maximum field, much smaller than
the manifold increase in the parallel critical field of thin
films mentioned above and that motivated the proposal
in Ref. [2].
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III. SUPERHEATING FIELD IN THE LONDON
LIMIT

To make a rough estimate of the superheating field of
the SIS’ structure, we consider the Gibbs free energy G in
the London limit; that is, we assume that both film and
bulk superconductors are strongly type II materials, with
penetration depths much longer than coherence lengths.
We denote by λf the film’s material penetration depth
and by ξf its coherence length. The thickness d of the
film is assumed to be much larger than ξf ; in particular,
for the vortex core to be accommodated in the film one
needs d & 1.8ξf [19, 20]. The film is separated from a
bulk superconductor with with penetration depth λb by
an insulating film of thickness δ. The superconducting
film is screening the bulk from a parallel magnetic field
with amplitude B0. The screened field between the film
and the bulk has amplitude Bi. In our geometry, the
x-axis is perpendicular to the film, pointing into it, with
origin at the interface with the exterior. The z-axis is
aligned with the magnetic field.

The Gibbs free energy of a vortex in a superconduc-
tor can be determined from the value of two magnetic
fields evaluated at the vortex location r0: the Meissner-
screened external field BM and the field generated by the
vortex in the film BV :[21]

G =
φ0
µ0

(BV (r0)/2 +BM (r0)) , (4)

where φ0 is the flux quantum and µ0 the magnetic con-
stant. The field BM can be found by minimizing the free
energy in the structure when no vortex is present; we re-
mind that in the London limit the Meissner field in the
bulk superconductor decays exponentially and hence it
equals Bie

−(x−(d+δ))/λb . This procedure gives:

BM =
B0 +Bi

2

cosh x−d/2
λf

cosh d
2λf

− B0 −Bi
2

sinh x−d/2
λf

sinh d
2λf

, (5)

where Bi is given by

Bi = B0

[
δ + λb
λf

sinh
d

λf
+ cosh

d

λf

]−1
. (6)

Explicit formulas for BV are available for thin (d �
λf ) and thick (d� λf ) films.[21] To study the full range
of thicknesses, we use the more general expression of
Ref. 30 (this expression assumes r0 = (x0, 0)):

BV =
2φ0
λ2d

∞∑
n=1

∞∫
−∞

dk

2π
eiky

sin(πnx/d) sin(πnx0/d)

k2 + (πn/d)2 + 1/λ2
(7)

Equations (5)-(7) give the fields in the structure, and
Eq. (4) gives the Gibbs free energy as shown in Fig. 1.
The barrier to flux penetration is due to the positive
slope of G inside the superconducting regions near the

Material λ [nm] ξ [nm] Bc1 [T] Bc [T] Bsh [T]

Nb 40 27 0.13 0.21 0.25

Nb3Sn 111 4.2 0.042 0.50 0.42

NbN 375 2.9 0.006 0.21 0.17

MgB2 185 4.9 0.017 0.26 0.21

TABLE I. Materials parameters of niobium and three
promising alternative SRF materials. The penetration depth
λ is calculated using Eq. 3.131 in Ref. 1. The correlation
length ξ is calculated using the equations in Ref. 22. For
Nb a RRR of 100 was assumed. For MgB2, λ and ξ are not
calculated, as the experimental values are given in the ref-
erence. For calculations, Bc = φ0/(2

√
2πξλ) is used.[1] Bc1

for Nb found from power law fit to numerically computed
data from Ref. 23 and 24 and for strongly type II materi-
als is found from Eq. 5.18 in Ref. 1. Bsh is calculated using

Bsh ' Bc
(√

20
6

+ 0.5448√
κ

)
from Ref. 25. Nb data from Ref. 26,

Nb3Sn data from Ref. 27, NbN data from Ref. 28, and MgB2

data from Ref. 29. Note that the two gap nature of MgB2

may require more careful analysis than is performed here.

interfaces. We can find BSIS
′

sh by finding the field
at which the barrier is reduced to zero in any of the
superconductors[31]. In Fig. 2, BSIS

′

sh is plotted as a func-
tion of superconducting film thickness for various SIS’
structures. Various insulator thicknesses are considered,
including the thin layer limit, for illustrative purposes as
it gives the highest fields. The materials analyzed are
those that are promising for SRF cavities, with proper-
ties given in Table I.
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FIG. 2. Maximum field below Bsh of both the film and the
bulk as a function of film thickness for various film materials in
a SIS structure with Nb. The effect of varying the insulator
thickness δ is shown for the Nb3Sn film, as is the effect of
splitting the film thickness d over 5 equally thick multilayers
with thin separating insulators. All calculations done in the
London limit.

The structures plotted in Figure 2 can be divided into
two types: homolaminates, in which the film is the same
material as the bulk, and heterolaminates, in which they
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are different. Calculations show that for a homolami-
nate like Nb3Sn/insulator/Nb3Sn, the film is the weak
point: it always reaches its Bsh before the bulk, and the
thinner the film, the lower its Bsh. Homolaminates with
films that are so thick that they behave like a bulk super-
conductor have the highest BSIS

′

sh . To better understand
this, consider the magnetic forces on a vortex [which can
be derived from Eq. (4)]. The boundary condition im-
posed by BV can be satisfied by an image antivortex
outside of the boundary, which creates a force that pulls
the vortex out of the film.[32] As the film thickness is
reduced, BM remains approximately unchanged, but the
image antivortex on the insulator side of the film used to
satisfy BV has a stronger effect, as shown in Figure 3.
This lowers the barrier to penetration.

Meissner-screened external 
field (pushes vortex into SC)

Image 
antivortex 
(attracts 
vortex)

Bulk SCThin Film SCExterior Insulator

……

Image 
antivortex 
(attracts 
vortex)

Vortex

FIG. 3. Forces on a vortex in a homolaminate. As the film is
made thinner, the image antivortex to the right of the film has
a stronger pull on the vortex, lowering the barrier to vortex
penetration.

The differing penetration depths in the layers of a het-
erolaminate cause it to behave differently than a homo-
laminate. Here we consider structures in which the bulk
has a smaller penetration depth than the film. For such
structures, if the film is very thin, it does not provide
much screening for the bulk, and Bi reaches the bulk’s
Bsh before the thin film barrier disappears. As with a
homolaminate, a very thick film behaves like a bulk, and
reaches that material’s bulk Bsh while Bi is still relatively
small. However, between these two extremes, there is a
situation in which the film provides some screening, so
that Bi is large but still smaller than B0. In this case, a
benefit can be realized – the small penetration depth of
the material in the bulk causes Bi to be larger than with
the exponential decay expected for a thick film [Eq. (6)].
This in turn reduces the magnitude of the negative gra-
dient in BM , bolstering the barrier to flux penetration
(Eqn. 4). This increase in the barrier is depicted in Fig. 4.
The dark curves show BM , BV , and G for a Nb3Sn thin
film/insulator/Nb bulk SIS structure with 10 nm thick
insulator and d/λf = 0.64 (the peak of the cyan curve
in Fig. 2). The light curves show calculations for a bulk
Nb3Sn film (for this case, the dark shaded region repre-
senting the insulator does not apply). In this example,
B0 = 300 mT. The Gibbs free energy of the SIS’ struc-
ture is still sharply peaked, showing a relatively robust
energy barrier, but that of the bulk film is almost flat,
showing that flux penetration is likely to occur at slightly
higher fields.
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The impact of this is a modest increase in BSIS
′

sh for
these structures compared to the bulk value of the film
material. However, the range of film thicknesses over
which the increase is appreciable (& few %) is relatively
small, and the gain decreases as the thickness of the in-
sulating layer increases.

IV. THIN FILMS IN THE GINZBURG-LANDAU
APPROACH

Calculating Bsh using London theory, as done in the
previous section, fails to take into account 2D instabil-
ities in the order parameter, therefore overestimating
Bsh in many circumstances. The problem of calculat-
ing Bsh for bulk samples while taking into account 2D
instabilities has a long history (see, e.g., Ref. 25) and
has mostly been tackled in the Ginzburg-Landau (GL)
framework. Only recently calculations beyond GL theory
were performed;[33, 34] they showed that while the GL
results cannot be trusted quantitatively at low tempera-
tures, they give a qualitatively correct estimate. There-
fore, for simplicity we restrict ourselves to GL theory
even in the low-temperature regime where its quantita-
tive predictions are not exact.

The approach we use to find Bsh is described in de-
tail in Ref. 25: we first extremize the GL free energy, a
functional of the spatially dependent order parameter ψ
and supercurrent velocity vs, and then study its stabil-
ity against small perturbation of these functions. In the
present case, the GL free energy is the sum of the con-
tributions for the bulk and the film. The boundary con-
ditions are the usual ones for the order parameter (van-
ishing of its derivatives at all surfaces); the supercurrent
velocity vanishes deep into the bulk, and its derivative
at the external film surface is proportional to the ap-
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plied magnetic field. Similarly, the field between the film
and the bulk is proportional to the derivatives of the su-
percurrent velocities at the two surfaces. However, this
internal field is not externally imposed, but must be cal-
culated consistently with Maxwell equations; this gives
the final condition of continuity of the vector potential
across all surfaces. Hence for a very thin insulating bar-
rier the supercurrent velocities at the bulk surface and
the internal film surface coincide, while the film super-
current velocity would be higher for a thicker insulator.

For an analytical estimate of the SIS’ superheating
field BSIS

′

sh , we consider the simplest possible case of a
strongly type II bulk material (GL parameter κGL � 1)
shielded by an insulator of negligible thickness and a
strongly type II thin film with ξf � d � λf . With a
thin film, the difference between the internal field (at the
bulk surface) and the applied field (outside the film) is
small, and the maximum possible field is reached when
the internal field coincides with the bulk superheating
field Bsh,b. Indeed, within GL theory and at linear order
in d/λf , using the boundary conditions discussed above
we find [see Appendix A]:

BSIS
′

sh = Bsh,b

[
1 +

√
6

5

λb
λf

(
1−

v2s,r
3

)
d

λf

+
1

2

(
1− v2s,r

)( d

λf

)2
]
,

(8)

where vs,r = vmaxs,b /vmaxs,f is the ratio of the maximum
supercurrent velocities for bulk and film material, re-
spectively. This ratio can be written in terms of critical
fields and penetration depths as vs,r = Bc,bλb/Bc,fλf ,
and as a necessary condition for metastability it must
satisfy vs,r < 1: since in the bulk material the supercur-
rent velocity has already reached its maximum possible
value at the surface, the film material must be able to
support a higher supercurrent velocity. We stress again
that for sufficiently thin films (below the critical thick-
ness discussed in the next paragraph), as the applied

field becomes larger than BSIS
′

sh , the bulk becomes un-
stable, while the film is still (meta)stable. As qualita-
tively expected, Eq. (8) shows that for better screening
a thicker film should be used, and that as the film ma-
terial penetration depth increases, its screening power
decreases. Also, the need of small vrs implies that the
film material critical field should be sufficiently large,
Bc,f > Bc,bλb/λf . Interestingly, based on the values
reported in Table I, this condition can be met if using
Nb3Sn or MgB2 to shield Nb.

We note, however, that there is in principle a limit
on how thick the film can be made: since the supercur-
rent velocity at the film external surface increases with
thickness, if the film is too thick it will become unsta-
ble at a field below that predicted by Eq. (8). Within
our approximations, we find that the critical thickness
for the film to also become unstable at BSIS

′

sh is dc =

λf
√

6/5(1 − vs,r)Bc,f/Bc,b. We see that the condition

d < dc can severely restrict the maximum film thickness
only in the regime Bc,f � Bc,b, λf � λb. For the ma-
terial parameters in Table I our formula gives dc ∼ λf ,
but films of this thickness are beyond the approximate
analytical treatment that leads to Eq. (8). Therefore, to
study the screening properties of films of intermediated
thickness, d ∼ λf , in the next section we resort to nu-
merical calculations that also account for the finite value
of κGL.

V. FILMS OF INTERMEDIATE THICKNESS

For films of intermediate thickness, numerical tech-
niques are needed to accurately estimate the effective
superheating field of SIS structure in Ginzburg-Landau
theory. Here, we follow closely the methods described in
Ref. 25. It is shown there that in the bulk, three quan-
tities characterize the system: coherence length ξ, pen-
etration depth λ, and thermodynamic critical field Bc,
which we give in Table I for some materials of interest.

The Ginzburg-Landau equations are solved in each
domain separately and then boundary conditions are
matched. In order to improve numerical stability, we im-
plement the boundary conditions as follows: at the film
surface the gradient of the order parameter is fixed to
zero while the magnitude is allowed to vary, effectively
defining the applied magnetic field implicitely in terms
of the order parameter. We also allow the value of the
order parameter and the vector potential on the film side
of the interface to vary. On the bulk side of the interface,
the gradient of the magnetic field is fixed to zero while
its magnitude is allowed to vary. Infinitely deep in the
bulk the order parameter is fixed to one and the vector
potential vanishes. This configuration introduces three
parameters for the boundary conditions: the magnitude
of the order parameter on either side of the interface and
the magnitude of the vector potential on the film side of
the interface. These three parameters are varied until the
gradient of the order parameter vanishes on the film side
of the interface and both the magnetic vector potential
and the magnetic field are continuous at the interface.

Having found a solution, we next solve the eigenvalue
problem associated with the stability of the solution to
infinitesimal fluctuations of wavenumber k as in Ref. 25.
These solutions are also found numerically using bound-
ary conditions similar to those just described. The mag-
nitude of the applied magnetic field and the wavenumber
are then varied simultaneously to identify the least sta-
ble fluctuation and the applied magnetic field at which
it just becomes unstable (i.e., at which the eigenvalue
becomes zero). In this way we identify the superheat-
ing field and the critical wavenumber that characterizes
the unstable fluctuations. These calculations are sum-
marized in Fig. 5 in which we plot BSIS

′

sh as a function
of film thickness for various materials. Note that the
dashed lines start from thicknesses of about 50 nm. For
films with thickness less than this, numerical results be-
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come increasingly difficult, presumably due to the ex-
tremely separated length scales involved. Interestingly
this thickness coincides with approximately twice the
depth

√
λfξf of the fluctuations[25], suggesting that in-

teractions between the fluctuations of both films surfaces
may become relevant. Moreover, numerical solutions in-
dicate that at finite κ, the nature of the of the instability
itself may change from 2D to 1D as the thickness de-
creases. Although beyond the scope of the present work,
these indications deserve further investigation.
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FIG. 5. Bsh in a SIS’ structure as a function of film thickness.
The insulating layer is assumed to be very thin. London limit
calculations are compared to Ginzburg-Landau analytical and
numerical calculations. For reference, the dashed vertical line
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√
λfξf . We remind that the results

of Secs. III (solid lines) and IV (dot-dashed line) are valid
for films thick compared to ξf . Calculations and simulations
were done using materials parameters from Table I.

The Ginzburg-Landau calculations show good qualita-
tive agreement with the London calculations from Fig. 2,
also shown in this figure. There are some quantitative
differences, likely due to the approximations used in the
London limit. For instance, the difference in the calcu-
lated bulk Bsh of the film material, which is approached
as the film becomes a few λf thick, is due to finiteness
of κ. For the heterolaminate, in both cases as the film
thickness increases, BSIS

′

sh shows a peak near d ∼ λf ,
then decreases to the superheating field of the film ma-
terial as the film becomes very thick. The thickness at
which the peak occurs is somewhat smaller for the Lon-
don limit, but the two plots are otherwise very similar in
shape.

VI. CONCLUSIONS

In this study, we analyzed the magnetic shielding prop-
erties of superconductors at high fields and high fre-
quencies. To prevent strong vortex dissipation due to
drag, the analysis was restricted to a regime where flux
penetration is not allowed. The London-limit numeri-

cal results were verified against analytical and numeri-
cal Ginzburg-Landau calculations. We showed that the
SIS’ structure can produce a modest enhancement of the
maximum screening field compared to a single supercon-
ducting slab for certain materials and film thicknesses,
see the maxima in Fig. 5.
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Appendix A: Derivation of Eq. 8

In the case of large GL parameter κGL � 1, the cal-
culation of the metastability field, Eq. 8, is greatly sim-
plified: for κGL → ∞, the spatial profile of the order
parameter is fully determined by that of the supercur-
rent velocity, and the differential equation for the latter
is local, albeit non-linear.[25] Indicating with q0 the di-
mensionless supercurrent velocity, for the geometry we
are considering it obeys the equation:

q′′0 = q0 − q30 (A1)

and the metastability condition takes the simple form
q20 < 1/3.[25] The dimensionful velocity is proportional
to q0 multiplied by the critical field and the penetration
depth, vs ∝ Bcλ, and we will not need the proportional-
ity constant in what follows.

For simplicity, in this Appendix we use a coordinate
system in which x-axis perpendicular to the film has its
origin in the middle of the film and measure lengths in
units of the film material penetration depth λf . We also
take the insulator thickness to be negligible, δ = 0, as this
gives the highest possible metastable field. As discussed
in Secs. III and IV, the instability happens at the bulk
surface; this fixes the values of the supercurrent velocity
at the interior surface of the film to be:

q0

(
d

2λf

)
= −

√
1

3
vs,r , vs,r =

Bc,bλb
Bc,fλf

. (A2)

Clearly, a necessary condition for the metastability of the
film is vs,r < 1. In fact, since the supercurrent velocity
at the outer surface is larger, we will further need to
check that q20(−d/2λf ) < 1/3. In addition to the above
boundary condition, we also need the field between film
and bulk to coincide with the bulk superheating field:

q′0

(
d

2λf

)
=

Bsh,b√
2Bc,f

. (A3)

The task is now to find the external field at which these
two boundary conditions are satisfied,

BSIS
′

sh =
√

2Bc,f q
′
0

(
− d

2λf

)
. (A4)
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To solve Eq. A1, thanks to the assumption d� λf , we
can proceed by a Taylor expansion of the function q0(x)
near x = 0:

q0(x) = qc + b0x+ b1
x2

2
+ b2

x3

3
+ . . . (A5)

Substituting the expansion into Eq. A1 and matching the
terms on the two side of the equality we find

b1 = qc
(
1− q2c

)
, b2 =

1

2
b0
(
1− 3q2c

)
, (A6)

showing that only two parameters of the expansion, qc
and b0, are left undetermined and thus can be fixed by the
boundary conditions. Moreover, Eq. A4 can be written
in the form

BSIS
′

sh = Bsh,b−
√

2Bc,fqc(1−q2c )
d

λf
+O

(
d

λf

)3

, (A7)

and hence to calculate BSIS
′

sh to second order in d/λf we
only need to know qc to first order. We can therefore use

the boundary condition (A3) at lowest order to obtain

b0 = Bsh,b/
√

2Bc,f and the boundary condition (A2) at
first order to find

qc = −
√

1

3
vs,r −

Bsh,b√
2Bc,f

d

2λf
. (A8)

Substituting this expression into Eq. A7 and keeping only
terms up to second order we find

BSIS
′

sh = Bsh,b

[
1 +

1

2

(
1− v2s,r

)( d

λf

)2
]

+
√

2Bc,f

√
1

3
vs,r

(
1−

v2s,r
3

)
d

λf
.

(A9)

To put this equation in the form given in Eq. 8 we
use the relationship[25] Bsh,b =

√
5Bc,b/3 between su-

perheating and critical fields. Finally, by considering
at linear order in d/λf the metastability requirement

q0(−d/2λf ) > −1/
√

3, we obtain the critical thickness
dc reported at the end of Sec. IV.
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