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We present a complete phenomenological prospectus for thermal relic neutralinos. In-
cluding Sommerfeld enhancements to relic abundance and halo annihilation calculations,
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parameters M1, M2, |µ| < 4 TeV, that freeze out to the observed dark matter abundance,
with scalar superpartners decoupled. Much of the relic neutralino sector will be uncovered
by the direct detection experiments Xenon1T and LZ, as well as indirect detection with
CTA. We emphasize that thermal relic higgsinos will be found by next-generation direct
detection experiments, so long as M1,2 < 4 TeV. Charged tracks at a 100 TeV hadron col-
lider complement indirect searches for relic winos. Thermal relic bino-winos still evade all
planned experiments, including disappearing charged-track searches. However, they can be
discovered by compressed electroweakino searches at a 100 TeV collider, completing the full
coverage of the relic neutralino surface.
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I. INTRODUCTION

While it is sometimes claimed that no physics beyond the Standard Model need appear below
energy scales accessible to imminent experiments, this is not true for weakly interacting, thermally
produced neutralino dark matter. In the minimal supersymmetric standard model (MSSM), the
primary dark matter (DM) candidate is the lightest neutralino, which is an admixture of neutral
binos, winos, and higgsinos. Prior studies have considered which combination of these interaction
eigenstates freeze out to the observed relic abundance. Starting from these pure states, the relic
neutralino surface [1] is limited by abundance criteria to TeV-scale particle masses, which means
that dark matter could be unmasked at ongoing direct detection, collider, and indirect detection
experiments [2–65].

In this work, we advance these phenomenological e↵orts by including the Sommerfeld enhance-
ment to thermal freeze-out annihilation for the relic neutralino surface, i.e. M

1

, M
2

, |µ| . 4 TeV.
This enhancement substantially alters neutralino masses and experimental prospects whenever
M

2

& 1 TeV, a region which has often been omitted in prior work. In addition, we clarify some
facets of relic neutralino phenomenology:

• It is sometimes stated that future direct detection experiments will cover most MSSM neu-
tralino parameter space. We find that a preponderance of relic bino-wino parameter space
(M

2

⇠ M
1

' 0.2 � 2 TeV and |µ| & 2 TeV) cannot be probed by direct, indirect, or LHC
searches. The reason is that the lightest supersymmetric partner (LSP) contains only tiny
higgsino and wino fractions, so its annihilation cross-section, along with spin-independent
and spin-dependent scattering on nucleons are suppressed. In addition, the GeV-level bino-
wino mass splitting between the lightest chargino (CLSP) and the LSP renders collider
charged-track searches ine↵ective.

• As authors of this paper explored in prior work, the relic bino-wino region can be uncovered
with compressed electroweakino searches at a 100 TeV proton-proton collider [1]. We refine
these findings for the Sommerfeld-enhanced relic neutralino surface in Section V.
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• The well-known systematic uncertainty in the Milky Way’s dark matter halo density profile
obfuscates whether gamma ray searches can exclude, have excluded, or will exclude M

2

&
2 TeV thermal relic neutralinos. However, future charged track searches at a 100 TeV proton-
proton collider will be most sensitive to this wino-like LSP parameter space where gamma
ray constraints are weakest, namely when |µ| ⇠ 4 TeV and M

1

⇠ 2 � 4 TeV.

• Contrary to the common lore that higgsino dark matter is un-discoverable, we point out that
higgsinos that freeze out to the observed dark matter relic abundance (m

˜H ⇠ 1.1 TeV) will
be discovered by next-generation direct detection experiments so long as M

1,2 . 4 TeV.

Generally, we find that forthcoming experimental endeavors will be able to probe the entire relic
neutralino surface for M

1

, M
2

, |µ| . 4 TeV. Thus it seems that any “weak scale” MSSM neutralino
sector can be conclusively tested out in the coming decades [1, 66–68].

In the remaining sections of this paper, we will explore present and future experimental probes
of MSSM dark matter across the Sommerfeld-enhanced relic neutralino surface. In each section,
we show how neutralino phenomenology across the surface can be related to either some element
of the neutralino and chargino mixing matrices, or a mass splitting between electroweakino mass
eigenstates. Along the way, we indicate to what extent Sommerfeld-enhanced thermal freeze-out
alters neutralino phenomenology.

In Section II we introduce the Sommerfeld-enhanced relic neutralino surface, noting that the
parameter space boundary where the Sommerfeld e↵ect becomes substantial (>TeV mass neu-
tralinos) can be understood as a consequence of the wino fraction of the LSP, the tree-level wino
annihilation cross-section, and the LSP’s freeze-out temperature compared to the mass of the W
and Z bosons [69]. In Section III we show spin-independent and spin-dependent direct detection
prospects, which are determined by the higgsino and wino fractions of the LSP, respectively [66].
In Section IV, we display the present and future reach of searches for neutralinos annihilating to
gamma rays in the galactic center, which depends upon the wino fraction of the LSP. Section V
presents charged track and compressed �, `, /pT searches at a 100 TeV collider across the relic
neutralino surface. The charged track search depends on the mass splitting between the charged
lightest supersymmetric partner (CLSP) and the LSP, while the the mass splitting between the
LSP and the next to lightest neutral supersymmetric partner (NLSP) determines the e�cacy of
the compressed search. In Section VI we conclude.

II. SOMMERFELDED RELIC NEUTRALINO SURFACE

This section introduces the sommerfelded⇤ relic neutralino surface and shows that wino-like
LSPs will have enlarged freeze-out annihilation from Sommerfeld-enhancement (SE)[70]. Here-
after, we will focus on neutralinos in the MSSM, with all scalar superpartners decoupled. In our
numeric calculations with SuSpect, microMEGAs, DarkSUSY, MG5aMC@NLO, and DarkSE we fix all
scalar masses to 8 TeV, including that of the CP odd Higgs. For 100 TeV proton-proton collider
studies, in which t-channel squark exchange with a squark mass of 8 TeV can substantially increase
neutralino production, we remove sfermions entirely. For the whole set of neutralino and chargino
detection processes, decoupled squarks present a worst-case scenario, whereas for specific mixed
scenarios, the s-channel and t-channel contributions can almost entirely cancel each other. Heavy

⇤
From to sommerfeld, i.e. enhance through a Sommerfeld factor [70]. Another possibility would be sommerfelled

relic neutralino surface, but in spite of the better sound to it we find that this version might be less clear.
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Figure 1. Left panel: Combinations of neutralino mass parameters M1, M2, µ that produce the correct relic
abundance, accounting for Sommerfeld-enhancement, along with the LSP mass. The relic surface without
Sommerfeld enhancement is underlain in gray. Regions excluded by LEP are occluded with a white box.
Right panel: The wino fraction of the lightest neutralino.

sfermions are also motivated by models of split supersymmetry, where most scalar supersymmetric
partners are decoupled [71–84].

Neutralinos in the MSSM are mixtures of the spin-1
2

superpartners of the weak gauge bosons,
hypercharge gauge bosons, and Higgs bosons. After electroweak symmetry is broken, the neutral
and charged states mix to form neutralinos and charginos, respectively. We identify the neutralinos
as �̃0

i = Nij(B̃, W̃ 0, H̃0

u, H̃0

d) and the charginos as �̃±
i = Vij(W̃±, H̃±). Here B̃, W̃ , H̃0

d , H̃0

u, are the
bino, wino, and higgsino fields; Nij and Vij are the neutralino and chargino mixing matrices in the
bino-wino basis, such that i and j index mass and gauge respectively [85]. The bino, wino, and
higgsino mass parameters are M

1

, M
2

, and µ, and tan � defines the ratio of up- and down-type
Higgs boson vacuum expectation values in the MSSM.

Assuming that all scalar superpartners are heavy, when the universe cools to T
rad

< TeV during
radiation dominated expansion, MSSM neutralinos freeze out to a relic abundance determined by
their rate of annihilation to Standard Model particles. For neutralinos with masses below 1 TeV, it
is often su�cient to use tree-level annihilation cross-sections and ignore the initial state exchange
of photons and weak bosons between annihilating neutralinos. On the other hand, the exchange of
gauge bosons between two initial-state particles can substantially alter the annihilation probability
of neutralinos with masses above 1 TeV. At threshold this higher-order correction can diverge
like 1/v, where v is the relative velocity of the two incoming states. For a Yukawa-like potential,
mediated for example by a Z-boson, this e↵ect is cut o↵ at v ⇡ mZ/m�̃, leading to large e↵ects for
a large ratio of LSP vs weak boson masses. This non-relativistic modification of the potential of
two incoming states is called the Sommerfeld e↵ect. For freeze-out temperatures below the mass of
electroweak bosons (T

freeze-out

⌘ m�̃/20 . 0.1 TeV), and thus for lighter LSPs, the contribution of
W± exchange to the e↵ective potential of neutralino pairs is suppressed by factors of e�mW /Trad [69].

To understand when the Sommerfeld enhancement will a↵ect the freeze-out of mixed neutralinos,
it is useful to first consider the thermal relic abundance of pure neutralino states. With decoupled
scalars, two neutralinos or charginos can either annihilate through an s-channel Z or Higgs boson,
or through a t-channel neutralino or chargino. For the lightest neutralinos the relevant couplings
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given in terms of the usual weak gauge couplings, the Higgs mixing angle ↵, and the neutralino
and chargino mixing matrices.

Obviously pure bino states do not couple to gauge or Higgs bosons, so no direct annihilation
process exists, and their annihilation as well as Sommerfeld enhancement can only occur through
mixing and co-annihilation.

For pure wino states we need to include the lightest chargino, typically with a sub-GeV mass
di↵erence. Following Eq.(1) there will still be no s-channel annihilation process, but for example
the LSP can annihilate through the wino-like chargino in the t-channel. Because the two states are
highly mass degenerate, the computation of the current relic abundance has to include a combined
annihilation of the lightest neutralino and chargino. Neutralino-chargino co-annihilation proceeds
through an s-channel W exchange, while diagonal neutralino and chargino annihilation require a
t-channel diagram. In the chargino case the exchange of electroweak bosons between the two non-
relativistic incoming particles leads to a sizeable Sudakov enhancement: an increased cross section
in the numerator of Eq.(2) has to be compensated by a larger wino mass on the relic neutralino
surface,

⌦
˜Wh2 ' 0.12

⇣ m�̃

2.1 TeV

⌘
2

SE�! 0.12
⇣ m�̃

2.6 TeV

⌘
2

. (2)

In the top panel of Figure 1 this fact appears graphically — the sommerfelded surface, shown with
LSP masses colored, separates from gray points calculated without Sommerfeld enhancement when
m�̃ ⇠ 1.5 TeV, where the wino fraction is sizable.

Finally, pure higgsinos can annihilate e�ciently through an s-channel Z diagram. Co-
annihilation within the triplet of two neutralinos and one chargino sets the relic density. The
main distinction between this and the pure wino case, is that chargino pair annihilation con-
tributes much less to the complete annihilation process. Because higgsino annihilation is generally
more e�cient, and because the contribution of chargino pair annihilation with a possible elec-
troweak boson exchange between the incoming particles is suppressed, today’s relic density is given
by

⌦
˜Hh2 ' 0.12

⇣ m�̃

1.13 TeV

⌘
2

SE�! 0.12
⇣ m�̃

1.14 TeV

⌘
2

. (3)

This relatively small e↵ect is hardly visible in Figure 1. There are two reasons why the Sommerfeld
enhancement is significantly larger for the wino case: first, pure chargino co-annihilation with a
photon-induced Sommerfeld e↵ect is roughly three times more important for pure winos. Second,
as previously noted, the W, Z-induced Sommerfeld e↵ect is cut o↵ at v ⇡ mW,Z/m�̃ (compare this
to the freeze-out temperature, ⇠ m�̃/20), which means that it influences more phase-space for pure
winos at freeze-out.

To generate the sommerfelded surface shown in Figure 1, we first calculate electroweakino mass
parameters with SuSpect [86]. We include the loop-level, custodial-symmetry-breaking-induced
mass separation between the charged and neutral components of both the wino and higgsino, setting
these to 160 MeV [87–89] and 350 MeV [90–92] respectively, before diagonalizing electroweakino
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Figure 2. Top left panel: The spin-independent nucleon-scattering cross-section for relic neutralinos is
shown, as calculated by microMEGAs [96]. Top right panel: The coupling of neutralinos to the SM-
like MSSM Higgs boson. Bottom left panel: Relic neutralino exclusions from XENON100 and LUX and
prospects from XENON1T and LZ for tan � = 10. The boxed out area denotes the LEP exclusion. Bottom
right panel: The same for tan � = 2. Note that the bottom panels have a shared legend.

mass matrices. As we discuss further in Section V, the values of electroweakino mass parame-
ters can also substantially shift these charged-neutral mass splittings. With this electroweakino
mass spectrum, we require each point to satisfy ⌦�̃h2 ' 0.12 ± 0.005, calculating the sommer-
felded relic abundance using DarkSE [93, 94], which improves upon the relic density calculations of
DarkSUSY [39], and includes Sommerfeld contributions to each LSP annihilation channel, for up to
three charge-equivalent initial state pairs of electroweakinos.

As a comparison to the relic neutralino surface in Ref. [1], we also calculate the sommerfelded
surface in the pure wino approximation using microMEGAs and following the procedure in Ref. [95].
Without Sommerfeld enhancement, the calculated relic density di↵ers between the two programs
by about 10%, with microMEGAs giving the higher number. After including the Sommerfeld en-
hancement, the maximal wino-like LSP mass from microMEGAs is 2.5 TeV, compared to 2.6 TeV
from DarkSE. We also calculated parts of the surface for tan � = 2, and found that the resulting
relic neutralino surface had mass parameters by a negligible amount, . 0.1%.

III. DIRECT DETECTION

Detection of neutralinos via nuclear scattering experiments can be divided into two categories:
spin-independent (SI) and spin-dependent (SD). In the spin-independent case, neutralinos will
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scatter o↵ nucleons via the exchange of a Higgs boson, which couples to quarks and quark loops
within nucleons in atomic nuclei [29, 60, 97–100]. Following Eq.(1) this coupling is driven by bino–
higgsino and wino–higgsino mixing. The spin-independent scattering will be maximized when the
LSP is an even bino–higgsino or wino–higgsino mixture. Providing confirmation, Figure 2 shows
that the LSP-Higgs coupling is indeed proportional to the size of SI neutralino-nucleon scattering
over the relic neutralino surface — and that SI scattering cross-sections reach their apex on the
bino-higgsino and wino-higgsino slopes, M

1,2 ⇠ µ. The apparent proportionality between coupling
and scattering would be more exact if we incorporated the small but non-negligible contribution
of the heavy Higgs bosons.

The SI neutralino-nucleon cross-sections in Figure 2 are obtained from microMEGAs [96]. The
lower panels of Figure 2 also display the current exclusions on spin-independent neutralino-nucleon
scattering from Xenon100 [101] and LUX [102], along with projected exclusions from Xenon1T
and LZ [103]. These projections indicate that all relic neutralinos lighter than 4 TeV, except a
large swathe of bino-winos (addressed in Section V), will be probed by upcoming direct detection
experiments. In the right panel of Figure 2, there are isolated regions of “red” points around
M

1

= M
2

= 2 TeV and |µ| & 2 TeV, where the spin-independent cross-section dips and rises
sharply. This corresponds physically to parameter space where, as its mass is increased, the
LSP flips from being mostly bino-like to being mostly wino-like (see Figure 5 for the LSP wino
fraction). The intervening mixed bino-wino LSP has sizable, mutually-canceling bino and wino
gauge eigenstate contributions to spin-indepedent scattering. Note also that, as discussed in e.g.
Ref. [67], when µ < 0 and µ sin 2� ' M

1,2, the higgs-mediated cross-section for neutralino-nucleon
scattering diminishes.

The cross-sections found for SI scattering here match to within a factor of two, recent studies
of neutralino-nucleon scattering in a particular decoupling limit, Refs. [98–100].† Even taking
M

1

! 1 or M
2

! 1 as in [98], the resulting 1.1 TeV mass higgsino appears to be within reach of
LZ [104], so long as M

2

< 4 TeV or M
1

< 4 TeV.

In the case of spin-dependent scattering, which occurs through Z-boson exchange, and thus
depends upon the spin of the nuclear scattering target, the detection of neutralinos depends solely
on the higgsino fractions of the neutralino (i.e. what portions are Hu, Hd). As shown in Eq.(1),
binos and winos do not couple to the Z boson. Moreover, if |N

13

| = |N
14

|, which happens for pure
Higgsinos, the neutralino spin-dependent scattering cross-section vanishes. In Figure 3 we show the
spin-dependent neutralino-nucleon scattering cross-section, as well as the LSP-Z coupling across
the relic neutralino surface. The correspondence is striking — the size of the Z-neutralino coupling
determines the size of the spin-dependent cross-section. Constraints from the current generation
of spin-dependent scattering of relic neutralino dark matter at experiments like SIMPLE [105],
COUPP [106], Xenon100 [107], and PICO2L [108], are less stringent than spin-independent con-
straints. However, future experiments like PICO250 [103] will be able to probe TeV-mass thermal
relic bino-higgsinos.

†
In our work, the least coupled higgsino-like LSP point shown in Figure 2 has a cross-section,

(M1 = 4 TeV,M2 = 4 TeV, |µ| = 1.1 TeV) ! �(SI)
n�̃ ' 10

�46
cm

2.

For this point, matching Eq. (1) to the higgs-LSP coupling of Ref. [98], and using this to determine  in Ref. [98]

yields

�(SI)
n�̃ ' 7⇥ 10

�47
cm

2.
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Figure 3. Left panel: The spin-dependent nucleon-scattering cross-section for relic neutralinos, as calcu-
lated by microMEGAs [96]. Right panel: The proportional coupling of neutralinos to the Z boson.

IV. INDIRECT DETECTION

Gamma ray surveys of the galactic center have bounded dark matter annihilation to photons,
�̃0

1

�̃0

1

! ��, Z�, or intermediate particles which decay to photons, �̃0

1

�̃0

1

! W+W�. However,
these bounds remain somewhat uncertain, because they depend upon the Milky Way’s DM density
profile. The flux of photons �� arising from dark matter annihilating inside an observed cone of
solid angle �⌦ is

d��

dE�
=

h�vi
8⇡m2

X

dN�

dE�

Z

�⌦

d⌦

Z

line of sight

dl ⇢2�̃(l) , (4)

where E� is the energy of the photon, h�vi is the averaged DM annihilation cross-section, N� is
the number of photons produced per annihilation, and l is the distance from the observer to the
DM annihilation event.

Because Eq.(4) is proportional to ⇢2�̃, any annihilation constraint relies on assumptions about
the Milky Way’s DM density profile. Assuming a steeper DM halo profile, i.e. DM density increas-

r (kpc)

ρDM (GeV/cm3)

0.01 0.1 1 10

1

10

100

1000
J Factor

Einasto 2

NFW 1

Burkert 1/70

Dark Matter Halo Profiles

Figure 4. Dark matter galactic halo profiles, including standard Einasto and NFW profiles along with
a Burkert profile with a 3 kpc core. J factors are obtained assuming a spherical DM distribution and
integrating over the radius from the galactic center from r ' 0.05 to 0.15 kpc. J factors are normalized so
that J(⇢NFW) = 1.
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Figure 5. Left panel: The neutralino annihilation cross-section to �� and 1
2Z� is given for Milky Way

velocities, as detailed in the text. Right panel: Relic neutralino parameters excluded by the H.E.S.S.
gamma ray line search, assuming Einasto, NFW, and cored (Burkert, 3 kpc) profiles, along with the projected
CTA exclusion for an Einasto profile.

ing more rapidly towards the core of the Milky Way, results in a more stringent bound on DM
annihilation. We consider three DM halo density profiles that are increasingly flat towards the
center of the Milky Way. The generalized Navarro-Frenk-White (NFW) profile [109] is given by

⇢
NFW

(r) =
⇢�

(r/R) (1 + r/R)2
, (5)

where r is the distance from the galactic center, and we assume a characteristic scale R = 20 kpc,
solar position DM density ⇢(r�) ⌘ 0.4 GeV/cm3, and r� = 8.5 kpc throughout this study. Second,
we consider the Einasto profile,

⇢
Ein

(r) = ⇢� exp


� 2

↵

⇣⇣ r

R

⌘↵ � 1
⌘�

, (6)

where we take ↵ = 0.17 and R = 20 kpc. This is the halo profile model that best fits micro-lensing
and star velocity data [110, 111]. Third, we consider a Burkert or “cored” profile, with constant
DM density inside radius rc = 3 kpc,

⇢
Burk

(r) =
⇢�

(1 + r/rc) (1 + (r/rc)2)
, (7)

For this profile, rc sets the size of the core — we assume rc = 3 kpc. Assuming such a large core
results in very di↵use dark matter at the galactic center, and therefore yields the weakest bound
on neutralino self annihilation. On the other hand, assuming a core of smaller size (e.g. 0.1 kpc)
only alters DM annihilation constraints by an O(1) factor [112].

In Figure 4, we illustrate the three halo profiles. The impact on gamma ray flux of di↵erent
dark matter halo profiles is conveniently parameterized with a J factor,

J /
Z

�⌦

d⌦

Z

l.o.s.
dl ⇢2�̃(l) ⇠

Z
dr ⇢2�̃(r). (8)

We show J factors integrating over the approximate H.E.S.S. galactic center gamma ray search
range, r ' 0.05 to 0.15 kpc, and normalizing so that J(⇢

NFW

) = 1.
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Figure 6. Top panel: The mass splitting between the NLSP and LSP. Right panel: The mass splitting
between the lightest chargino (CLSP) and lightest neutralino (LSP). Parameters excluded by LEP are
occluded with a black box. If the CLSP-LSP mass splitting is below roughly 1 GeV, the point is accessible
with charged track searches; if CLSP-LSP and NLSP-LSP mass splittings are between 10-60 GeV, the point
is accessible with compressed electroweakino searches.

Galactic center gamma ray bounds on MSSM neutralinos depend on our knowledge of the
cross-sections for neutralino annihilation to electroweak bosons. Neutralino annihilation rates to
photons and Z bosons are known including one-loop corrections [113–116]. In addition, neutralinos
annihilating non-relativistically with masses greater than ⇠ TeV will again exhibit a Sommerfeld
enhancement [69, 95, 117–125]. This can enhance pure wino annihilation to photons and weak
bosons by orders of magnitude for m�̃ = 1 � 5 TeV with a typical Milky Way DM velocity
v ⇠ 0.001 [126–128].

While a number of papers have addressed galactic center constraints including sommerfelded
pure winos [129–133], we provide indirect bounds on mixed neutralinos. We use the following
prescription: if the neutralino LSP is more than 90% wino (N2

12

> 0.9), we use the sommerfelded,
pure wino one-loop results of Ref. [122] for ��̃�̃!�� and ��̃�̃!�Z . If the neutralino LSP is less
than 90% wino we compute these cross-sections with micrOMEGAs4 [134], which utilizes one-loop
results [113–116]. Because micrOMEGAs4 does not include Sommerfeld enhancement for neutralino
parameter space where (N2

12

< 0.9), this prescription produces conservative bounds.

In Figure 5 we indicate bounds on relic neutralino dark matter from gamma ray line searches con-
ducted by H.E.S.S. [135] along with those projected for the Cerenkov Telescope Array (CTA) [136]
(see also HAWC [137]). We vary the dark matter profiles. Excluding pure wino dark using H.E.S.S.
and Fermi-LAT data, assuming Einasto or NFW profiles, has been studied extensively, in e.g. [129–
131]. The right panel of Figure 5 shows that, for mixed electroweakinos, wino-like LSPs with a
small bino or higgsinos component and mass above 2 TeV can be excluded under the assumption
of an Einasto or NFW profile. However, the assumption of a more cored profile lifts bounds on
some heavier relic bino-winos and wino-higgsinos. Comparing the LSP wino fraction in Figure 1
with Figure 5 shows that exclusions on relic neutralino annihilation increase with wino fraction.
It is also interesting to note that, under the assumption of an Einasto profile [110, 111], CTA will
probe the entire wino-higgsino surface, and all bino-winos for which the LSP is wino-like.
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V. 100 TEV COLLIDER

Because most models of dark matter are weakly-coupled to Standard Model particles, generic
collider dark matter searches focus on events with large missing transverse momentum (/pT ), arising
when weakly-interacting dark matter recoils o↵ Standard Model particles (i.e. jets, photons, lep-
tons). On the other hand, collider searches directed at a relic, co-annihilating neutralino–chargino
sector benefit from searching for electroweak radiation, emitted in inter-electroweakino decays.

For a nearly pure wino LSP, almost mass-degenerate charginos decaying to neutralinos deposit
electroweak radiation as charged tracks. Around the wino plateau, the mass splitting between the
lightest chargino and the lightest neutralino becomes compressed, as shown in Figure 6. For these
points, the chargino-neutralino mass di↵erence is set by loop e↵ects, the chargino-neutralino decay
width decreases, and the chargino lifetime is long enough for the chargino to leave noticeable paths
in the detectors. Thus, typical mass splittings around 100 MeV shown in Figure 6 are ideal for
disappearing charged track searches [87, 138–149].

Recently, a number of strategies for compressed electroweakino searches have been developed,
targeting supersymmetric dark matter with 10 � 60 GeV inter-electroweakino mass splittings [1,
146, 150–161]. These searches require a half to a fifth of the /pT required by straightforward jet
plus /pT searches, but add the requirement of pT ⇠ 10�60 GeV photons and leptons, which appear
in the electroweakino decays.

The small mass splittings between electroweakinos, utilized by compressed and charged track
searches, are a consequence of requiring that they freeze-out to the observed dark matter relic
abundance with the help of co-annihilation processes. For co-annihilation to contribute significantly
to the LSP annihilation, the CLSP or NLSP state must be abundant in the thermal bath when the
LSP freezes out — so smaller NLSP-LSP and CLSP-LSP mass splittings increase co-annihilation.
Partly because of this, nearly-pure winos, with a chargino-neutralino mass splitting of 160 MeV, are
the most massive thermal relic neutralinos. In the case of bino-wino neutralinos with M

2

< 2 TeV,
where the LSP is bino-like, the NLSP-LSP masses cannot be further apart than m�̃0

2
� m�̃0

1
=

10 � 40 GeV. Figure 6 illustrates this point, showing that precisely the regions inaccessible to
direct (Figure 2), indirect (Figure 5), and present collider searches, could be tested by compressed
electroweakino searches [1] at a 100 TeV proton-proton collider [162–182].

A. Charged track search

The disappearing charged track search strategy relies on an enhanced lifetime of charginos which
are around 100 MeV heavier than the dark matter agent. When the mass di↵erence is below 1 GeV,
the dominant decay mode is �̃±

1

! �̃0

1

⇡±, which is not calculated in many of the publicly available
SUSY decay codes. Using the procedure detailed in Section II we determine which points on the
relic neutralino surface have a mass splitting smaller than 1 GeV and calculate their chargino-
neutralino decay widths based on Ref. [183]. The resulting decay lengths range from 1-50 mm,
for these points on the relic neutralino surface. Thus, even before a possible boost is taken into
account, many of these charginos travel macroscopic distances before decaying. The neutralino
takes the majority of the momentum of the decay products, leaving the pion with too little energy
to be seen. The result is a charged track which disappears without leaving deposits of energy in
the calorimeters.

To begin our study, we first calibrate our method based on the ATLAS search for disappearing
tracks at 8 TeV [145]. We study a simplified model in which the chargino is 160 MeV heavier than
the neutralino and has a lifetime of 0.2 ns. We generate all combinations of chargino production
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with up to two extra partons in the final state using MG5aMC@NLO [184]. These events are then
showered, matched, and hadronized using Pythia6.4 [185] with the MLM matching scheme [186].
Finally, they are passed through DELPHES3 [187] using the default ATLAS card. Jets are defined
using the anti-kT algorithm [188] with R = 0.4 as implemented in FastJet [189] and are then
required to have pT,j > 20 GeV and |⌘j | < 2.8. The signal also requires a lepton veto; electron
candidates are defined with pT,e > 10 GeV and |⌘e| < 2.47 while muon candidates are also defined
with pT,µ > 10 GeV but |⌘µ| < 2.4. Following the ATLAS jet and lepton definition protocol [145],
to enforce lepton isolation we remove any jet candidate within �Rj` < 0.2 of a lepton, from jet
candidates. After this, any lepton within �R = 0.4 of remaining jet candidates is incorporated
into that jet.

The final object needed for the search is the disappearing track. While DELPHES details charged
final states with an ⌘ and pT dependent e�ciency, the charginos are not considered a final state.
Pythia does propagate the chargino, but it does not include the e↵ect of the magnetic field. This
should have little e↵ect as the charginos are typically boosted enough that their tracks can be
reconstructed [145]. As such, we take the final location of the chargino and compute the transverse
length traveled. To count as an isolated track, there must also be no jets with pT,j > 45 GeV
within �Rj track = 0.4. Moreover, the sum of the pT of all tracks with pT > 400 MeV and within a
cone of �R = 0.4 is required to be less than 4% of the pT of the candidate isolated track. Finally,
the considered chargino track must have the highest pT of all isolated tracks.

To extract the signal ATLAS then applies a series of cuts:

1. leading jet pT,j > 90 GeV

2. missing transverse momentum /pT > 90 GeV

3. ��
j,/pT > 1.5. For extra jets with pT,j > 45 GeV this applies to the leading two jets.

4. isolated track with transverse length = 30 � 80 cm

5. pT,track > 15 GeV and 0.1 < |⌘
track

| < 1.9.

Before applying the last cut, ATLAS provides a benchmark for a 200 GeV chargino: with 20.3 fb�1

of integrated luminosity, they obtain 18.4 Monte Carlo events passing all other cuts. In our
simulation, 23.9 events pass. We take the corresponding ratio ✏

track

= 0.77 as a flat e�ciency for
measuring a disappearing track with 0.1 < |⌘| < 1.9 and pT > 15 GeV, and a track length between
30 and 80 cm. The visible cross section is then defined as

�
vis

= �
MC

⇥ ✏
cuts

⇥ ✏
track

. (9)

The background for a disappearing track search is complex, because it is not dominated by a
Standard Model process. Instead, it is very detector dependent and involves charged hadrons
interacting with the detector material with large momentum exchange and pT -mis-measured tracks.
ATLAS makes a measurement of the pT -mis-measured tracks and fits the shape as d�/dpT,track =
p�a
T,track where a = 1.78 ± 0.05. Following the example of Refs. [146] and [147], we normalize this

to the total background of 18 events with pT,track > 200 GeV with 20.3 fb�1 of data.

Extrapolating this search to a 100 TeV collider requires some assumptions. First, since the
background is detector dependent, we conservatively choose a default ATLAS setup and detector
card in DELPHES.

We assume that the e�ciency for detecting these disappearing tracks remains at a constant
✏
track

= 0.77 across the range of parameters. Furthermore, we assume that the shape of the
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background remains the same at 100 TeV collisions as it was at 8 TeV. This assumption can be
tested at the 13 TeV run of the LHC. The background normalization we use rescales the background
found at ATLAS, by using the ratio of the Z(⌫⌫̄)+jets cross sections that pass initial analysis cuts
on pT,j , /pT , and ��

j,/pT , at
p

s = 8 TeV and 100 TeV, respectively.

The same steps are used in Refs. [146] and [147] to estimate the background for the disappearing
track signature at a 100 TeV collider. Both references acknowledge the large amount of uncertainty
and present their searches for the pure wino as a band with the background 20% to 500% as large
as the estimated value. Both find that a pure wino could be discovered at the 100 TeV collider,
although Ref. [147] uses di↵erent cuts, resulting in improved discovery prospects. Here we combine
these searches with the constrains from the observed dark matter relic abundance, including slightly
mixed binos. To this end, we use the optimized cuts of Ref. [147] and scan over a representative
sample of the relic neutralino surface. The optimized cuts are

pT,j1 > 1 TeV pT,j2 > 500 GeV

/pT > 1.4 TeV pT,track > 2.1 TeV , (10)

All other cuts are identical to the ATLAS analysis. For each of the data points we calculate the
Gaussian significance

#� =
Sp

B + ↵2B2 + �2S2

, (11)

where S and B are the number of signal and background events passing the cuts assuming 15 ab�1

of data. The systematic uncertainties on the background and signal are conservatively given as
↵ = 20% and � = 10% [146, 147]. As we are scanning over a range of model parameter space with
di↵erent characteristics, there is no good way to display a band of significances for the 20 � 500%
backgrounds. Instead, we will only quote the central background estimate. The left panel of
Figure 7 shows the representative sample of points that we used mapped on the surface as well as
the calculated significance. It appears that most of the wino plateau is covered and that the search
works better for larger values of |µ|.

For the points on the relic neutralino surface, if the decay length is less than 15 mm, the
charginos have almost no chance of traveling far enough to be registered as a track. We find that
for tracks longer than this, at least in the range we are considering, the points can be fit well
by a cubic function. We focus on the relic neutralino points with a mass di↵erence between the
chargino and the neutralino smaller than 0.5 GeV and find their significance based on the best fit
cubic curve. We then plot the points that can be discovered at 5� and those which can be excluded
at 2�. The result is shown in Figure 7. We see that most of the wino plateau is within reach,
but as mixing with bino and higgsinos grows, so does the chargino-neutralino mass splitting. The
chargino decay length then decreases, making the search less e↵ective.

B. Compressed search

Our compressed bino-wino search is directed at neutralinos with mass eigenstates separated by
1 � 40 GeV and follows the previous study of Ref. [1]. It targets events with missing transverse
momentum, photons, and leptons emitted in the decay of heavier neutralinos. The dominant
production and decay process on the relic neutralino surface is

pp ! (�̃0

2

! ��̃0

1

) (�̃±
1

! `±⌫`�̃
0

1

)j ! �̃0

1

�̃0

1

`±⌫`�j , (12)
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Figure 7. Left panel: Points on the relic neutralino surface, which will be excluded or discovered using
a disappearing track search with 15 ab�1 at a 100 TeV collider. At smaller values of |µ| the higgsino still
mixes enough to cause the mass splitting of the wino plateau to be too large for the disappearing track
search to be e↵ective. Right panel: Points which will be excluded or discovered using a compressed search
for pp ! `±�j/pT .

where the one-loop radiative decay of �̃0

2

will be more probable as the neutralino mass splitting
decreases.

As noted in the introduction to this section, for M
2

. 2 TeV, thermal relic neutralino mass
states are arranged so that a wino-like NLSP is 10 � 40 GeV heavier than a bino-like LSP. This
electroweakino spectrum is especially amenable to searches at a 100 TeV proton-proton collider,
because the lepton and photon in the dominant Standard Model background process pp ! W±�j !
⌫``

±�j tend to have higher transverse momenta whenever the final state neutrino carries enough
momentum to fulfill a hard /pT & TeV requirement. The cuts we employ in this study are

pT,` = [10 � 60] GeV |⌘`| < 2.5

pT,� = [10 � 60] GeV |⌘� | < 2.5 �R`� > 0.5

pT,j > 0.8 TeV |⌘j | < 2.5 M
(�,`)
T2

< 10 GeV

/pT > 1.2 TeV . (13)

The cut on the lepton-photon separation, �R`� , reduces background events in which the lepton
or W± radiates a photon. The upper limit on the stransverse mass [190–193] of the lepton and

photon, M
(�,`)
T2

, removes W�j background events: in these events the photon direction is less
correlated with /pT than for a decaying neutralino, �̃0

2

! ��̃0

1

. Particularly, while the lepton and
photon momentum vectors are more evenly distributed in background W�j events, the requirement
of significant missing momentum in signal events results in a collimated pair of neutralinos, and
therefore collimated decays to a low momentum lepton and photon pair, with a corresponding
stransverse mass that peaks at low values. We specifically use the bisection-based asymmetric
MT2

algorithm of [194], with test masses set to zero GeV.
To reject hadronic backgrounds, events with more than two jets with pT,j > 300 GeV are vetoed.

To reject electroweak backgrounds, events with more than one lepton or photon are rejected. For a
lengthy discussion of this search, including the e↵ect of background events with jets faking photons,
see Ref. [1].

In the right panel of Figure 7 we show the significance attained, assuming 5% signal and
background uncertainty (↵ = � = 0.05), after 15 ab�1 luminosity at a 100 TeV collider, ob-
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Figure 8. A combination of 2� exclusions from future indirect (CTA and HAWC), direct (XENON1T and
LZ), and collider searches (charged tracks and compressed events at 100 TeV) are shown over the surface of
thermal relic neutralinos.

tained by simulating the signal given in Eq.(12) with the dominant W�j background. In this
collider study, supersymmetric masses are set with SuSpect [86] (without loop corrections, but
with inter-chargino-neutralino mass splittings manually determined using loop-level custodial sym-
metry breaking mass splittings, as described in Section II). The decay widths are computed with
SUSY-HIT [195], and events are generated at tree-level in MG5aMC@NLO [184] and Pythia6.4 [185].
Jets are clustered using the anti-kT algorithm [188] in Delphes3 [187], with the Snowmass 100 TeV
detector card introduced in Ref. [196].

VI. CONCLUSIONS

We have systematically studied the phenomenology of the thermal relic neutralino dark matter
surface, incorporating the e↵ect of Sommerfeld-enhancement in setting the relic abundance at
neutralino freeze-out. Spin-independent direct detection experiments will explore much of the
relevant parameter space, including that of nearly-pure higgsino LSP, so long as M

1

, M
2

< 4 TeV.
Regions of nearly-pure wino LSP will be probed by future galactic center gamma ray searches, and
also with charged track searches at a future 100 TeV hadron collider. Regions with a bino-like LSP,
and particularly the bino-wino space with M

1,2 < 2 TeV and |µ| & 1.5 TeV can only be accessed
with future compressed electroweakino searches at a 100 TeV collider (or a

p
s � 4 TeV electron-

positron machine [197]). We plot 2� exclusions of di↵erent futures experiments in Figure 8, finding
a solid coverage of the sommerfelded thermal relic neutralino surface.
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