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We apply the Karhunen-Loéve methods to cosmic microwave background (CMB) data sets, and
show that we can recover the input cosmology and obtain the marginalized likelihoods in Λ cold
dark matter cosmologies in under a minute, much faster than Markov chain Monte Carlo methods.
This is achieved by forming a linear combination of the power spectra at each multipole l, and solv-
ing a system of simultaneous equations such that the Fisher matrix is locally unchanged. Instead
of carrying out a full likelihood evaluation over the whole parameter space, we need evaluate the
likelihood only for the parameter of interest, with the data compression effectively marginalizing
over all other parameters. The weighting vectors contain insight about the physical effects of the
parameters on the CMB anisotropy power spectrum Cl. The shape and amplitude of these vectors
give an intuitive feel for the physics of the CMB, the sensitivity of the observed spectrum to cosmo-
logical parameters, and the relative sensitivity of different experiments to cosmological parameters.
We test this method on exact theory Cl as well as on a Wilkinson Microwave Anisotropy Probe
(WMAP)-like CMB data set generated from a random realization of a fiducial cosmology, comparing
the compression results to those from a full likelihood analysis using CosmoMC. After showing that
the method works, we apply it to the temperature power spectrum from the WMAP seven-year
data release, and discuss the successes and limitations of our method as applied to a real data set.
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I. INTRODUCTION

Modern astrophysical data sets are getting ever larger.
This is driven in part by the increased size of the tele-
scopes allowing large astronomical surveys, as well as the
increase in the detector number, their sensitivity, and the
resolution. Future galaxy surveys like the Large Synoptic
Survey Telescope (LSST) and Euclid will observe on or-
der ∼ 109 galaxies, while current cosmic microwave back-
ground (CMB) experiments such as Planck, the South
Pole Telescope (SPT) and the Atacama Cosmology Tele-
scope (ACT) already map the microwave sky over more
than ∼ 107 pixels. Data compression and sophisticated
statistical methods applied to these extremely large data
sets have ushered us into the era of “precision cosmol-
ogy”, where the data is very well described by the simple
six parameter Λ cold dark matter (CDM) model.

The large size of today’s data sets often makes it im-
practical to carry out brute force likelihood calculations.
This has therefore motivated a number of data compres-
sion methods to be developed for use in statistical analy-
ses of galaxy redshift surveys [1] and CMB maps [2, 3]. A
common approach is to compress the data quadratically
into a number of power spectrum estimates; for galaxy
redshift surveys, the compressed data set is a set of power
spectrum estimates P (k) and for CMB experiments, it is
the anisotropy power spectrum of fluctuations Cl. To ob-
tain estimates of model parameters, one then performs a
Bayesian likelihood analysis using Markov chain Monte
Carlo (MCMC) methods.

The Karhunen-Loève (KL) eigenvalue method was pre-
viously applied to both CMB maps [4] and redshift sur-
veys [5]. The KL compression method can be general-

ized to two important examples for data sets with certain
noise properties: (i) the case where the mean is known
and independent of model parameters and (ii) the case
where the covariance is independent of model parame-
ters [6]. Here we consider the second case, when the data
vector is the power spectrum, Cl, itself.

This case was applied to galaxy spectra, where the
speedup in the likelihood computation was achieved us-
ing a set of orthonormal compression vectors [7, 8] (akin
to the Gram-Schmidt procedure, for which the order
of vectors matters). The same procedure was also ap-
plied to mock CMB data for only three parameters,
but it excluded experimental noise [9]. This covariance-
independent case has been shown to occasionally produce
multimodal likelihood peaks, in applications to planetary
transit light curves [10] and gravitational wave data anal-
ysis [11], though there are ways to mitigate these prob-
lems, albeit at an increase in computation time by as
much as a factor of 20.

More recently, minimizing the computational cost of
an exact CMB likelihood and power spectrum estimation
using linear compression was investigated in [12] using
Wilkinson Microwave Anisotropy Probe (WMAP) data
as an example, while in [13] the authors looked at effi-
ciently summarizing CMB data using two shift parame-
ters and the physical baryon density Ωbh2 to obtain dark
energy constraints. In [14], the authors showed that a
nonlinear transformation of cosmological parameters can
also serve as a form of data compression, which yields a
set of normal parameters with a Gaussian likelihood dis-
tribution, although in that case there is no reduction in
the number of parameters.

In this work we create the weighting vectors according
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to the prescription found in [6]. Instead of creating a set
of orthonormal vectors we create a linear combination of
all the data, such that the resulting mode holds the most
information on the parameter of interest, with the data
compression automatically marginalizing over all other
parameters. We carry out this procedure for six ΛCDM
parameters, although we have tested our methods on ex-
tensions to ΛCDM, e.g., by including the tensor-to-scalar
ratio r parameter.

In contrast to work carried out in [7, 8, 10, 11]
our method uses only one mode, offering a significant
speedup in obtaining the marginalized likelihoods, and
it does not depend on the order of the parameters. We
note that the choice of parametrization will matter when
investigating models with known or unknown degenera-
cies.

The paper is organized as follows: in Sec. II we in-
troduce the extreme compression (EC) method and de-
scribe its implementation on CMB spectra. In Sec. III
we implement the compression for a single parameter and
describe the marginalization procedure for the whole pa-
rameter space. In Sec. IV, we derive the compression vec-
tors and discuss their physical characteristics as applied
to the CMB. We then test our method on two mock data
sets, including experimental noise and compare against
results obtained using MCMC. As a further test, we an-
alyze the WMAP seven-year CMB specturm in Sec. V
and conclude in Sec. VI.

II. DEVELOPING THE FORMALISM

In this section we briefly review some special cases of
data compression presented in [6]. We then develop the
case where the covariance of the data is assumed to be
known and independent of the model parameters, and
apply this method to the CMB power spectrum.

A. Compressing the Fisher information matrix

The log-likelihood L for a Gaussian probability distri-
bution can be written as

−2L = nln 2π+ln det Cov+(x−µ)t
Cov

−1(x−µ), (1)

where the covariance matrix is Cov = 〈(x −µ)t(x − µ)〉
and µ is the mean 〈x〉. The Fisher information matrix is
defined as

Fij = −

〈

∂2L

∂θi∂θj

〉

= −〈L,ij〉, (2)

and is a measure of the curvature of the likelihood around
the maximum likelihood point θML. Working through
some matrix algebra it can be shown that the Fisher ma-
trix can be written as

Fij =
1

2
Tr[AiAj + Cov

−1
Mij ], (3)

where Ai = Cov
−1

Cov,i = (ln Cov),i and Mij =
〈D,ij〉 = µt

,iµ,j + µt
,jµ,i[5].

We can perform a linear compression on our data set
x with

y = Bx, (4)

where B is the compression matrix of size n′ ×n and y is
the resulting data set of dimension n′. It can be shown [6]
that for n = n′ and B invertible, the new Fisher matrix
after the linear compression, F̃ij , is given by

F̃ij =
1

2
Tr[B−t(AiAj + Cov

−1
Mij)Bt] = Fij . (5)

The Fisher matrix is thus unchanged. For n′ < n, the
matrix B is not invertible and each row of B specifies
one number in the new data set. For the simplest case
where only one linear combination of the data is selected
so that B has just one row, B = b

t the diagonal entries
of the Fisher matrix are

F̃ii =
1

2

(

b
t
Cov,ib

b
t
Cov b

)2

+

(

b
tµ,i

)2

(

b
t
Cov b

) . (6)

How can we use this result to estimate the value of
some parameter θi and the error ∆θi associated with it?
We wish to define b

t such that the compressed data set
carries as much information about parameter θi as possi-
ble. That is, we aim to minimize the error on θi. To do so,
we maximize the element of the Fisher matrix F̃ii. The
solution in general is nonlinear in b. Inspection of Eq. (6)
shows that the Fisher matrix now consists of two terms,
one of which depends on the derivative of the covariance
Cov,i and another that depends on the derivative of the
mean µ,i. Assuming that the CMB covariance matrix is
weakly dependent on the parameters, even though this
assumption is not quite correct at low multipoles, yields
an interesting result. In that case, the Fisher matrix is
just

F̃ii =

(

b
tµ,i

)2

(

b
t
Cov b

) . (7)

Maximizing this leads to the solution b = Cov
−1µ,i.

Our compressed data set, y = b
t
x, now consists of just

one number yi,

yi = µt
,iCov

−1
x. (8)

In this case the compressed Fisher matrix is given by

Fii = µt
,iCov

−1µ,i. (9)

B. Applying data compression to the CMB power

spectrum

The CMB temperature anisotropies form a scalar 2D
field on the sky and are often expanded in spherical har-
monics

∆T

T
(θ, φ) =

∑

l

∑

m

almYlm(θ, φ), (10)



3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 100  200  300  400  500  600  700  800  900

l(l
+

1)
/2

π 
C

lT
T

multipole l

Random Mock
Theory

FIG. 1. Temperature power spectrum obtained from a ran-
dom realization (solid blue) and the theory power spectrum
computed with the Boltzmann code CAMB [15] in solid black.
We ignore the effect of lensing on the CMB.

where ∆T is the temperature variation from the mean,
l is the multipole, Ylm(θ, φ) is the spherical harmonic
function of degree l and order m, and alm are the ex-
pansion coefficients or multipole moments. The variance
δll′δmm′Cl = 〈a∗

lmal′m′〉, where δll′ is the Kronecker delta
function, contains all the statistical information. Here
we use the temperature power spectrum so that the data
vector is

x =
1

2l + 1

m=l
∑

m=−l

|aT
lm|2, (11)

such that 〈x〉 = µ = Cl. We are therefore carrying out
a quadratic precompression [6]. In Fig. 1 we compare
the theory temperature power spectrum with that of a
random realization for a WMAP-like experiment. The
compressed data set for a given parameter θi is a single
linear combination of the Cl’s:

yi =
∑

l

∂Cl

∂θi
Cov−1(Cl, Cl)

1

2l + 1

m=l
∑

m=−l

|alm|2. (12)

The measurement of the angular power spectrum Cl

has characteristic uncertainty due to finite beam size and
a limit on the number of modes we observe on the sky
known as cosmic variance, with the variance at each mul-
tipole given by

Cov(Cl, Cl) =
2

(2l + 1)fsky
(Cl + Nl)

2, (13)

where fsky is the fraction of the sky covered by the exper-
iment. For maps made with Gaussian beams the noise
term Nl has the form [16]

Nl = (σθ)2el(l+1) θ2/8ln2, (14)

where σ and θ are the sensitivity (∆T/T ) and angular
resolution in radians respectively.

The expected value 〈yi〉 is then

〈yi〉 =
∑

l

∂Cl

∂θi
Cov−1(Cl, Cl) Cl, (15)

and 〈yi〉 carries all the information contained in the data
on θi. We can define the coefficients αi

l to be

αi
l =

∂Cl

∂θi

Cov−1(Cl, Cl), (16)

so that

〈yi〉 =
∑

l

αi
l Cl. (17)

For a given parameter θi, the coefficients αi
l describe

the combination of multipoles that carry the information
about θi.

The variance of 〈yi〉 is

σ2
〈yi〉 = 〈y2

i 〉 −
∑

l,l′

αi
lα

i
l′ClCl′ . (18)

Since the alm are Gaussian fields, the resulting four-point
functions are easily evaluated and

σ2
〈yi〉 =

∑

l=1

αi
l Cov(Cl, Cl) αi

l . (19)

Using the expected value and variance of 〈yi〉 we can
rewrite the compressed Fisher matrix given by Eq. (9) as

Fy
ii =

(

dy

dθi

)2
1

σ2
〈yi〉

. (20)

We can compare the error bars obtained from the ex-
tremely compressed Fisher matrix above to the error bar
obtained with Eq. (9), which is identical to the Fisher
information matrix for the CMB as

FCMB
ij =

∑

l

∂Cl

∂θi

Cov−1(Cl, Cl)
∂Cl

∂θj

. (21)

III. IMPLEMENTATION

A. One parameter example

Using the prescription in the previous section we are
now able to compress the CMB temperature power spec-
trum into just a handful of numbers. To illustrate the
procedure we first choose a simple one parameter exam-
ple focusing on the scalar power spectrum normalization
parameter As. Using Eq. (16) and choosing a fiducial
point at which to compute the derivative of Cl with re-
spect to ln(1010As), we obtain the weighting vector on
As, which is plotted in Fig. 2. In general, we expect the
weights to start with a small amplitude at low l, where
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FIG. 2. The compression vector on the scalar power spectrum
amplitude As. The discontinuity at l ∼ 600 is due to a drop
in the WMAP experimental noise.

cosmic variance is high, then to increase until the experi-
mental noise starts to dominate. For WMAP, this starts
at l ∼ 900, with the weights decreasing to zero between
an l of 900–1200. A simple test of this compression is to
use the theory Cl’s as the data vector, and with WMAP-
like noise, compute the likelihood for As. This is depicted
in Fig. 3. The one curve there is actually three curves,
(i) the likelihood computed using a single mode yAs

:

− 2lnL =
(yAs

− ȳAs
)2

2σ2
〈yAs

〉
, (22)

(ii) the likelihood using the full set of Cl’s, and (iii) the
Fisher (Gaussian) approximation with the variance ob-
tained from Eq. (20). All three approaches give the same
answer, showing that in this simple case, the compression
works well.
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FIG. 3. Unmarginalized likelihood for the log power of the
primordial curvature perturbations. The data used here is the
exact theory Cl.

B. Two parameter model example

In the previous section we showed how to compress a
data set and obtain the likelihood for a single parameter.
As can be seen in Fig. 3, the likelihood is quite nar-
row, and the error on ln(1010As) is very small. In this
section, we will show how to compress accounting for a
second parameter, obtaining marginalized distributions
very quickly.

Each compressed data set yi, by design, carries all the
information on the parameter of interest θi. However, it

will also have some sensitivity to the other parameter, a
sensitivity that we would like to remove. We now show
with this simple two-dimensional example how to remove
the unwanted sensitivity, essentially marginalizing over
the remaining parameter.

We begin by forming a linear combination of y1 and y2

for the first parameter as

y
′

1 = c1y1 + c2y2, (23)

with y1 =
∑

l α1
l Cl and y2 =

∑

l α2
l Cl, where c1 and c2

are chosen by the requirement that y′
1 does not depend

on θ2. For this to be independent of θ2 we require that
the derivative of y

′

1 with respect to θ2 vanishes. We then
obtain

∂y
′

1

∂θ2

= c1

[

∑

l

α1
l

∂Cl

∂θ2

]

+ c2

[

∑

l

α2
l

∂Cl

∂θ2

]

= 0. (24)

The quantities in square brackets are just the Fisher ma-
trix elements so that the equation for y

′

1 is

∂y
′

1

∂θ2

= 0 = c1F12 + c2F22. (25)

This fixes the ratio of the two coefficients, and c1 can be
set to unity, so that the new, marginalized vector y′

1 is

y
′

1 =
∑

l

α
′1
l Cl (26)

with

α
′1
l = α1

l −
F12

F22
α2

l . (27)

Repeating the procedure for the second parameter yields
the weighting vector

α
′2
l = α2

l −
F12

F11
α1

l . (28)

We note that in two dimensions, this particular exam-
ple is equivalent to the common approach of creating an
orthonormal basis using the Gram-Schmidt process in
quantum mechanics. More specifically, the dot product
(defined by b

t
Cov b) is only zero for the combinations

of α2′

Cov α1 and α1′

Cov α2 with α2′

Cov α1′

6= 0.
As an example, consider the compressed data set for

ns and As. All the information about each parameteris
contained in a single χ2; e.g.,

χ2
ns

=
(y

′

ns
− ȳ

′

ns
)2

2σ2
〈y′

ns
〉

(29)

is a function of ns only. With information on the other
parameter removed, we need explore only one dimension
to get the marginalized posterior. This is why the method
is much faster than spanning the full two-dimensional
likelihood space. If we sample each dimension 20 times,
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FIG. 4. Marginalized likelihoods on the spectral index ns

and the scalar power spectrum amplitude As using extreme
compression (solid blue) and the exact result from MCMC
(solid red) for the two parameter toy model. Marginalization

is achieved using the solutions for α
′
1

l and α
′
2

l and Eqs. (27)
and (28). The unmarginalized case is shown in solid black for
reference. The data used is the exact theory Cl.

the full likelihood is obtained with only 2 × 20 = 40
samples instead of 202 = 400. And of course, as the
parameter space gets larger, the difference becomes much
more pronounced. In Fig. 4, we show the ns and As

marginalized likelihoods for exact theory Cl from the full
likelihood and the compression given by Eqs. (27) and
(28).

C. Generalizing to higher dimensions

Based on the results of the previous section we now
present the general problem for n parameters along with
the solutions. The most general linear combination of all
the data in a model with n parameters can be written as

y
′

1 = c1y1 + c2y2 + · · · + cnyn, (30)

such that the compressed mode y
′

1 carries all the infor-
mation on the first parameter θ1, with information on all
other parameters removed. To obtain the extreme com-
pressed θ1 mode, y

′

1, we must solve the matrix problem











F22 F23 · · · F2n

F32 F33 · · · F3n

...
...

. . .
...

Fn2 Fn3 · · · Fnn





















c2

c3

...
cn











=











−F12

−F13

...
−F1n











. (31)

This yields n−1 unique constants on the n−1 coefficients
ci(i > 1) and c1 can be set to unity. The same procedure
holds for all other modes: for mode i = α, the coefficients
are determined by the general equation

F′
α,ijcj = −Fαi, (32)

where F′
α is the Fisher matrix with row and column α

removed.
In the next section we calculate the weighting vectors

for a WMAP-like experiment, and apply the compression
method to mock WMAP data sets.

IV. TESTS ON A WMAP-LIKE EXPERIMENT

We now apply this formalism to obtain marginalized
likelihoods from synthetic data from a WMAP-like ex-
periment (mock data sets with WMAP noise) to see how
well we can recover the parameters using extreme com-
pression. We use the same parametrization as CosmoMC,
with 100 ∗ θMC, an approximation for rs(z⋆)/DA(z⋆), the
angular scale of the sound horizon at last scattering, re-
placing ΩΛ or H0 due to a known geometric degeneracy
in the CMB (see Appendix A). The fiducial cosmology
assumed is: ωc = Ωch2 = 0.1109, ωb = Ωbh

2 = 0.02258,
100 ∗ θs = 1.039485, ns = 0.963, ln(1010As) = 3.1904
and τ = 0.088. We first obtain the posterior distribu-
tions assuming that the data vector is the exact theory
Cl, and then test on a more realistic mock data set using
a random realization of the fiducial cosmology.

A. WMAP weighting vectors

In Sec. II B, we showed that to achieve locally loss-
less compression of our CMB data set we need to com-
pute the covariance of the data (where data is the spec-
trum Cl) and the derivative of the data with respect
to the cosmological parameters in the ΛCDM model.
To calculate the weighting vectors for the CMB power
spectrum, we obtain the six derivatives of the power
spectrum with respect to the parameter vector Θ =
{ωc, ωb, 100θs, ns, As, τ}. We use a double sided deriva-
tive formula with a step size of 3% (we use 0.5% for the
derivative with respect to θs).

In Fig. 5 we show the compression vectors for all the
parameters. Due to cosmic variance the data at lower
multipoles is given a low weight, while for l > 900 the
amplitude of the vectors tends to zero due to the ex-
perimental noise. For a WMAP-like experiment, there-
fore, the vectors all peak in the range l ≈ 330 − 440,
with WMAP being cosmic variance limited up to around
l ∼ 550. The jump at l ∼ 600 is due to a discontinuity
in the WMAP noise.

We have already seen that the mode that captures the
amplitude As is as shown in the middle bottom panel:
uniformly positive, but weighing the higher signal to
noise modes most heavily. The mode that captures the
baryon density differences the heights of the first and sec-
ond peaks, as expected. The sound horizon angle is cap-
tured by its alternating effect on peaks and troughs. The
dark matter density leaves its imprint on the first peak,
normalized to the most constrained value at l ∼ 400.
The optical depth is essentially the inverse vector of the
amplitude because it enters the temperature spectrum
via Ase−2τ , while the mode that captures the spectral
index ns is sensitive to the decrease in Cl amplitude as
the spectral index increases, up to the first peak.

In Fig. 6 we show the marginalized vectors with other
parameters removed and compare them to vectors from
Fig. 5. We find that many of the qualitative features
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FIG. 5. The six ΛCDM weighting vectors αi

l for a CMB experiment with WMAP noise and sky coverage. Each vector is used
to compress the temperature power spectrum CT T

l , into a single number yi that carries all the information on each parameter
θi. A general feature of these vectors, is that their amplitudes are small at low-l, where cosmic variance is large [Eq. (13)], and
at high-l, where experimental noise dominates. The weights go down to zero between l = 900 and l = 1200. All six vectors
reach their maximum amplitude between l of 330-440. The jump at l ∼ 600 is due to a discontinuity in WMAP noise.
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FIG. 6. Comparison of the compression vectors αi

l for WMAP before (solid black lines) and after marginalization (solid red
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parameters.

remain, but the vectors are reduced in amplitude. This
is the cost of removing the information about other pa-
rameters: information degenerate with those parameters
about the parameter of interest is also removed.

These vectors can be a useful tool to determine the
relative importance of obtaining cosmic variance limited

measurement of the power spectrum versus a higher sen-
sitivity measurement Cl at smaller scales. A recent ex-
ample is the apparent need for a precise measurement of
the reionization bump in order to break parameter de-
generacies and obtain the best constraints on the sum of
neutrino masses from a stage 4 CMB experiment [17].
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FIG. 7. How well can we recover the Fisher matrix using the new compressed data set? We show that the compressed Fisher
matrix (Sec. II A) is the same as the full matrix in Eq. (21). Shown is the ratio between the error from the compressed
Fisher matrix and the Fisher matrix using all the data as a function of the value of the parameter assumed when computing
the coefficients αi

l . By construction the Fisher matrix is unchanged at the fiducial value of a parameter (and in this case the
maximum likelihood point θML). Since the Fisher matrix remains the same, the compression is locally lossless. Some plots have
been scaled since the ratios are very small. When computing the Cl derivative with respect to θs, we keep ωc and ωb constant
(ΩΛ and H0 are changed to keep a flat universe). In general, when computing the derivatives with respect to ωc and ωb, we
hold θs constant. However in the plots on ωc and ωb above, we do not keep θs constant.
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FIG. 8. We plot the recovered likelihoods for the case where
the weighting vectors are computed with a different fiducial
cosmology, and note the excellent agreement between the two
compressions shown in dashed black and solid blue.

B. Sensitivity to fiducial choice

The vectors shown in the previous section are solu-
tions to an eigenvalue problem that minimizes the error
on each parameter, and leaves the Fisher matrix locally
unchanged. At the fiducial point, at which the derivatives
and the covariance are computed, we expect the errors
from the compressed Fisher matrix using the extreme
compression to equal those from the full Fisher matrix.
But how well can we recover the parameters if the coef-
ficients αi

l are chosen away from the fiducial point, and
how much does the error bar increase?

In Fig. 7, we show the ratio of the error from the Fisher
matrix obtained with the extreme compression Fy

ii to the

error obtained using the full data set from Eq. (21). Even
over a wide range of parameter space (roughly the same
as the expected width of the marginalized posteriors from
WMAP) we find that ∆θi changes by less than 0.2% for
parameters ns, As and τ , while the errors increase by
at most 2% for ωb and θs. For the physical cold dark
matter density ωc, the error change is less than 8%. At
the fiducial point, the compression is locally lossless.

Another important question that we address is whether
the fiducial cosmology used in the compression affects
the results. To test whether the choice of the fiducial
point matters, we created a new set of compression vec-
tors αi

l computed at a different cosmology, denoted as
EC 2, with the following values for the cosmological pa-
rameters: ωc = 0.12, ωb = 0.0235, 100 ∗ θs = 1.0485995,
ns = 0.98, ln(1010As) = 3.258, and τ = 0.085. We then
marginalized over all other parameters and used the new
marginalized vectors to compress an exact theory Cl data
set with WMAP-like noise.

In Fig. 8, we plot the recovered likelihoods when com-
pressing the data with our fiducial cosmology denoted as
EC 1 (solid blue lines), and the new cosmology as EC 2
(solid black lines). Figure 8 shows that no matter what
the fiducial point we choose, we still get back the correct
answer.
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FIG. 9. Comparison between the recovered WMAP posteriors from a single compression vector in blue and the marginalized
likelihoods from a MCMC analysis in red. The data used here is the exact theory temperature power spectrum Cl, with the
fiducial cosmology set to WMAP seven-year best-fit parameter values (gray vertical lines). The constraints on the optical depth
τ from the temperature spectrum Cl alone are weak, which is reflected in the wide likelihood distribution, although even in this
case the recovered likelihood peaks at the fiducial value of τ = 0.088. Since the parameter combination Ase−2τ determines the
overall amplitude of the observed CMB anisotropy, the recovered value of ln(1010As), the log power of the primordial curvature
perturbations is slightly biased. Here, we reach the hard limit in the sampler inserted for the redshift of reionization zre = 40,
which corresponds to τ ∼ 0.6. This signals that the temperature data alone does not constrain the full six parameter ΛCDM
model very well.

C. How does extreme compression compare to a

MCMC calculation?

Once we form the compression vectors, it is easy and
very fast to compute the likelihood for each parameter,
with a typical time of less than a minute. To test the
method and to see how well we can recover the posterior
probabilities, we first analyze a mock data set, where the
observed data set is the set of theory Cl’s. In this case,
we expect an unbiased estimate of the input cosmology
from both our method and the MCMC.

Since the spherical harmonic coefficients alm are Gaus-
sian random variates and are statistically isotropic, the
likelihood function for the temperature power spectrum
is a Wishart distribution with P(Ĉl|Cl) ∝ L(Cl|Ĉl) and

χ2
eff =−2lnL(Cl|Ĉl) =

lmax
∑

l=2

(2l + 1)

(

Ĉl

Cth
l

+ ln

(

Cth
l

Ĉl

)

− 1

)

,

(33)

where Ĉl is the observed data set [18–20]. The above
likelihood is a general case for an experiment with no
noise and a full-sky coverage. In practice, experiments
have noise and observe only a fraction of the sky. We

modify Eq. (33) by replacing Cth
l with Cth

l +Nl, and by
decreasing the number of modes on the sky from (2l + 1)
to (2l+1)fsky. Both Cth

l and Nl appear in the likelihood
because they are both Gaussian random fields. Note that
the likelihood above is normalized such that χ2

eff = 0,

when Ĉl = Cth
l .

In our WMAP mock MCMC likelihood calculations
we assume that the fraction of the remaining sky after
applying the WMAP mask KQ85y7 is 78.3% [21]. When
analyzing the WMAP seven-year data however, we use
the sky fraction contained in the WMAP likelihood code,
which varies with the multipole l.

We show our results in Fig. 9, where we plot the
MCMC posteriors in solid red and the result using our
compressed vectors in solid blue. Because the Thom-
son scattering optical depth due to reionization is not
well constrained by the temperature spectrum alone, the
MCMC posterior has a wide, non-Gaussian distribution
and the 95% C.L. upper limit for τ is 0.36. The extreme
compression formalism implicitly assumes Gaussian dis-
tributions for the parameters, so the τ distribution offers
a nice test of the impact of the breakdown of this as-
sumption on the full analysis. Figure 9 shows that the
impact falls mainly on the parameter As with which τ
is degenerate (recall that the amplitude of the pertur-
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FIG. 10. Same as Fig. 9 but with τ held fixed. The posterior distributions from the MCMC (solid red lines) agree well
with the distributions from the EC analysis (solid blue lines). We also plot the likelihood obtained with weighting vectors
which are computed with a different fiducial cosmology (dashed black lines), and note the excellent agreement between the two
compressions. To compute a second set of weighting vectors we use the following set of parameters: ωc = 0.12, ωb = 0.0235,
100 ∗ θs = 1.0485995, ns = 0.98, ln(1010As) = 3.258, and τ = 0.085.
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FIG. 11. Same as Fig. 10 but for a WMAP-like experiment where the CMB power spectrum data set is generated from a
random realization of a fiducial cosmology. In Appendix B we show how we generate our random data set. In the case above,
we do not expect the posterior distributions (solid blue or solid red lines) to peak at the fiducial parameter input values shown
with dashed gray lines.

bations is roughly Ase−2τ ). The ensuing bias on As is
small: relative to the mean µ from MCMC, the value

of ln(1010As) is biased low by 0.88σ, where the error on
ln(1010As) is σ = 0.0814. Note that in general the en-
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TABLE I. Bias in the recovered values of ln(1010As) using
extreme compression relative to both the mean µ and the
best fit (the maximum likelihood point θML) from MCMC.

Model &
Parameters

Bias relative
to µ

Bias relative
to θML

Standard
Deviation σ

TH τ free −0.88σ −0.43σ 0.0814

TH τ fixed −0.07σ 0.15σ 0.0492

RN τ fixed −0.05σ 0.20σ 0.0508

suing biases are smaller when the maximum likelihood is
used, as opposed to the mean likelihood. In Table I, we
show the bias on ln(1010As) for exact theory Cl and a
random catalog.

If we fix the optical depth to its fiducial value of τ =
0.088, we obtain the results shown in Fig. 10, and then
the likelihood results from the MCMC and EC are in very
good agreement. In this case the MCMC means and the
estimates from EC coincide with the input cosmology.

Figure 10 also illustrates that the EC method is insen-
sitive to the choice of fiducial parameters. The dashed
black curves show the likelihoods when the coefficients
αi

l are chosen assuming the nonfiducial parameter set:
ωc = 0.12, ωb = 0.0235, 100 ∗ θs = 1.0485995, ns = 0.98,
ln(1010As) = 3.258 and τ = 0.085. The figure shows that
shifts of this order leave no imprint on the final likelihood.

Before analyzing real data, we investigate how our
method performs on a random mock. We create a re-
alistic mock for a full-sky CMB experiment with WMAP
noise. We discuss random mock generation in Appendix
B. Figure 11 shows the posteriors in a ΛCDM model with
τ fixed at its fiducial value. Again the two distributions
agree very well.

In the next section we apply the methods discussed
so far to the seven-year WMAP temperature spectrum,
and compress the temperature spectrum to estimate the
cosmological parameters with WMAP precision.

V. RESULTS

In the previous section we analyzed mock data to
see how well we can recover the input cosmology, and
we compared the results of the extreme compression to
the MCMC means and best-fit (maximum likelihood)
MCMC results. In this section we apply the methods
to a real data set and as an example choose the seven-
year WMAP temperature spectrum. Although this is
not the most up-to-date CMB data set, it is a useful test
which will inform further development of the EC method.
For this analysis, we formulate the vectors that compress
the WMAP spectrum using the same WMAP noise and
fraction of the sky observed as in the WMAP likelihood.
Since the WMAP likelihood is not a simple Gaussian,
and consists of a number of components, we review the
likelihood briefly in the next section. We discuss how this

will affect our results in Sec. V B.

A. WMAP likelihood

The full WMAP likelihood is made up of ten compo-
nents, four of which form part of the temperature analy-
sis. The analysis is split up into low-l and high-l compo-
nents. For multipoles l ≤ 32, there is a choice between
a direct evaluation of the likelihood in pixel space and
one using Gibbs sampling (see [22] and the references
therein). The default is Gibbs sampling, where the spec-
trum is obtained using a Blackwell-Rao estimator applied
to a chain of Gibbs samples. For multipoles l ≥ 33, the
likelihood uses the spectrum derived from the MASTER
pseudo-Cl quadratic estimator and a covariance matrix
[23, 24]. In addition, there are terms in the likelihood
due to uncertainty in determining the WMAP beam and
the error in the extragalactic point source removal (for
details see the appendix of [24]).

For a large l, Eq. (33) can be approximated as Gaussian
ln LGauss, but since the likelihood function for the power
spectrum is slightly non-Gaussian, this gives a biased es-
timator. Although [18] suggest using a log-normal distri-
bution LLN, both the Gaussian and the log-normal dis-
tributions are found to be biased estimators for WMAP
[25]. The approximation for the Cl likelihood used in the
WMAP analysis, consists of a Gaussian and a log-normal
distribution, where

ln L =
1

3
ln LGauss +

2

3
ln L′

LN . (34)

Clearly the likelihood in the real analysis is not trivial
and since we do not account for such corrections, we ex-
pect that our results will differ from those obtained with
MCMC. An interesting question is by how much? How
well does a simple method fare against the full, more
complex likelihood? We explore these questions in the
next section.

B. Analyzing WMAP seven-year data

We analyze the WMAP seven-year temperature power
spectrum, using the vectors shown in solid red, in Fig. 6.
This analysis differs slightly from those in previous sec-
tions, in that here we use the sky fraction contained in
the WMAP likelihood, which varies with l, rather than a
fixed value of fsky = 0.783. The spectrum range included
in the analysis is 2 − 1200, and we neglect the effect of
lensing on the CMB. We fix the Sunyaev-Zel’dovich (SZ)
amplitude parameter in the MCMC, and we hold the he-
lium fraction constant and equal to YHe = 0.24.
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FIG. 12. Results of the EC analysis on the WMAP seven-year temperature data only (solid blue lines) and the full likelihood
evaluations with MCMC (solid red lines) in a ΛCDM model. Since the temperature data is not constraining enough to measure
τ , the posterior for the optical depth is wide, resulting in a biased result for ln(1010As).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.09  0.1  0.11  0.12  0.13

Li
ke

lih
oo

d

ωc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0205  0.0215  0.0225  0.0235  0.0245

Li
ke

lih
oo

d

ωb

MCMC EC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.03  1.035  1.04  1.045

Li
ke

lih
oo

d

θs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.92  0.95  0.98  1.01

Li
ke

lih
oo

d

ns

 0

 0.2

 0.4

 0.6

 0.8

 1

 3.05  3.15  3.25  3.35

Li
ke

lih
oo

d

ln(1010 As)

FIG. 13. Same as Fig. 12 but with τ held fixed. Although the distributions are a closer match, there is still some residual bias
in the estimated parameters. We quote the bias on each parameter in Table II.

1. ΛCDM including optical depth τ

In Fig. 12, we compare the results from extreme com-
pression with MCMC assuming the WMAP likelihood
in Eq. (34). As we showed in Fig. 9, we do not ex-

pect that the posteriors from both methods will agree
exactly, in part because of the degeneracies due to poor
constraints on the optical depth τ . We also do not expect
to obtain parameter estimates equal to those of the base
WMAP+SZ+LENS model, since we do not include po-
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larization data. In this sense, we are using compression
vectors without assuming a “correct” fiducial model (as
was done in Sec. IV, Figs. 9 and 10). Further, we saw
when analyzing mock data that the non-Gaussianity of
the τ likelihood leads to a bias in As in the EC method.
Nonetheless, the biases shown in Fig. 12 are still rela-
tively small, with those estimated from the maximum
of the likelihood significantly less than the statistical er-
ror. We show the bias between the EC method and the
MCMC results in Table II, where we calculate the dif-
ference between the peak in the EC likelihood and the
MCMC mean µ and the best-fit (θML) point, relative to
the standard deviation σ from MCMC.

2. ΛCDM and fixed optical depth τ

In Fig. 13 we show constraints from the compressed
data set and MCMC results using the entire WMAP
CMB temperature anisotropy power spectrum. The
agreement is best for ns and θs, with the other param-
eters experiencing a bias of less than ∼ 0.5σ. We show
the results from the EC method and any bias in deter-
mining the posterior mean and the maximum likelihood
(ML) point in Table II. As pointed out in Sec. V A, the
likelihood used in the full WMAP analysis is not a simple
Gaussian. In addition, we do not take into account in our
compression method the intricacies involved with beam
corrections and point source subtraction. Neither do we
account for non-Gaussianity of the data at the lowest
multipoles. The fact that WMAP uses Gibbs sampling
for the lowest multipoles also means that our results will
not be the same. Crucially, if we modify the code to
either model the likelihood as a full Gaussian, by dis-
carding log-normal part in Eq. (34) or do not use Gibbs
sampling and restrict the analysis to modes with l > 30,
the resulting shifts in each of the parameter posteriors
cause much larger differences than the ones quoted above.
So, the biases introduced in the EC method are smaller
than those that emanate from much milder assumptions
about the likelihood.

VI. CONCLUSION

We have shown that a locally lossless extreme compres-
sion of modern CMB data sets gains significant speedup
in the computation of marginalized likelihoods in ΛCDM
models. By requiring that the Fisher information matrix
is unchanged, we derived the weighting vectors for the
CMB that can estimate cosmological parameters in less
than a minute, much faster than MCMC. The method re-
quires computations of the likelihood for one parameter
at a time, instead of having to explore the whole param-
eter space with MCMC. We therefore achieve extreme
data compression by (i) compressing the entire data set
into just a few numbers, and (ii) reducing the dimension-
ality of the parameter space that needs to be explored.

The compression vectors for the CMB are also very
useful since their shape and amplitude provide an intu-
itive feel for the physics of the CMB, the sensitivity of
the observed spectrum to cosmological parameters. They
can also inform about the relative sensitivity of different
experiments to cosmological parameters.

We have tested our method on exact theory Cl as well
as on a WMAP-like CMB data set generated from a ran-
dom realization of a fiducial cosmology. By comparing
our results to those from full likelihood analyses using
CosmoMC, we have been able to show that the method

TABLE II. Bias in the recovered parameter values using ex-
treme compression relative to the MCMC results. We com-
pare the parameter value at the peak of the likelihood ob-
tained with the EC method, to both the mean µ and the best
fit (the maximum likelihood point θML) from MCMC. The
fourth column, is the standard deviation σ of the MCMC
samples.

Model &
Parameters

Bias relative
to µ

Bias relative
to θML

Standard
Deviation σ

Theory τ
free

ωc 0.67σ 0.01σ 0.0095
ωb −0.66σ 0.09σ 0.0014
θs −0.48σ 0.03σ 0.0036
ns −0.71σ 0.04σ 0.0460

ln(1010As) −0.88σ −0.43σ 0.0814
τ −0.69σ 0.08σ 0.1033

Theory τ
fixed

ωc −0.02σ 0.10σ 0.0054
ωb 0.06σ −0.17σ 0.0006
θs 0.04σ −0.10σ 0.0027
ns 0.08σ −0.12σ 0.0137

ln(1010As) −0.07σ 0.15σ 0.0492

Random τ
fixed

ωc −0.04σ 0.24σ 0.0054
ωb 0.00σ −0.18σ 0.0006
θs 0.01σ −0.15σ 0.0027
ns −0.03σ −0.21σ 0.0142

ln(1010As) −0.05σ 0.20σ 0.0508

Data τ
free

ωc 1.29σ 0.35σ 0.0084
ωb −1.19σ −0.43σ 0.0012
θs −0.82σ −0.44σ 0.0035
ns −1.09σ −0.25σ 0.0399

ln(1010As) −1.56σ 0.06σ 0.0858
τ −1.21σ 0.16σ 0.0972

Data τ
fixed

ωc 0.45σ 0.40σ 0.0055
ωb −0.56σ −0.63σ 0.0006
θs −0.19σ −0.19σ 0.0027
ns −0.08σ −0.09σ 0.0131

ln(1010As) −0.37σ 0.34σ 0.0470
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performs very well, and is able to recover the maximum
likelihood estimates for parameters even if the posterior
is not Gaussian. If the posterior is Gaussian, then the
extreme compression method can recover the posterior
means to better than 0.1σ.

We have applied the compression method to the tem-
perature power spectrum from the WMAP seven-year
data release, and have found that even though the like-
lihood for WMAP is nontrivial and non-Gaussian, our
method is in good agreement with the posteriors from
a full MCMC analysis. The biases in our estimates of
cosmological parameters, compared to the mean are: ωb

bias is −0.56σ, ωc bias is 0.45σ, θs bias is −0.19σ, ns is
−0.08σ, As is −0.37σ. The biases relative to the best fit
(the maximum likelihood) are comparable.

Furthermore, given the nontrivial nature of the likeli-
hood, it is possible that the method may also work well
with newer data and a more complicated Bayesian anal-
ysis, e.g., the Planck likelihood. We will address this in
a future investigation.

Additionally as a bonus, including polarization data
and extending the parameter space is not going to in-
crease the computational costs. The vectors can be pre-
computed and stored, and the calculation of the likeli-
hood is limited only by the speed of one call to CAMB,
times the number of samples we wish to obtain. The
increase in parameter space, can be accommodated by
running each compression separately, one after another,
or at the same time using n nodes. In this case, the time
for the likelihood computation for the entire parameter
space is no longer than a computation for a single pa-
rameter, which takes less than a minute
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Appendix A: CHOOSING THE RIGHT

PARAMETRIZATION IN A MODEL

If there exist known degeneracies in the data, e.g., the
geometric degeneracy in the CMB, then the choice of
parametrization will matter. For the CMB, we find that
a bad parametrization may have an adverse effect on the
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FIG. 14. The extent of the geometric degeneracy in MCMC
samples between the cosmological constant density parameter
ΩΛ and the Hubble expansion rate H0. The color scale shows
the values of 100θMC, an approximation for rs(z⋆)/DA(z⋆),
the angular scale of the sound horizon at last scattering. The
data used in this case were exact theory Cl.

compression and therefore the recovered posterior dis-
tributions may be non-Gaussian and/or multimodal. In
the specific case of the CMB, we found that using ΩΛ in-
stead of θs results in a bimodal distribution for ΩΛ with
all other parameters not affected (that is, their posteri-
ors were all correct). The root of the problem can be
seen in Fig. 14, where we plot the geometric degener-
acy between H0 and ΩΛ. The color coding shows var-
ious values of 100 θs. The optimal parameter vector is
Θ = {ωc, ωb, 100θs, ns, As, τ}.

Appendix B: CMB DATA GENERATION

We generate two kinds of data sets using the Boltz-
mann code CAMB, computing the temperature power
spectrum Cl up to l = 1200. For the first data set (re-
ferred to as exact theory Cl), we assume white isotropic
noise and Gaussian beams, and add the noise Nl given
by Eq. (14) to Cl. In the MCMC analysis, we use the
likelihood in Eq. (33) to get parameter constraints. This
is because the likelihood is a function of Cl + Nl and not
just Cl [see Eq. (33)]. The EC calculation assumes the
data is exact theory Cl, with the noise Nl included in the
covariance in Eq. (13).

The second data set that we use in our analysis makes
use of a random realization of the underlying theory Cl.
To create a random mock data set we generate four sets
of Gaussian random deviates a, b, c and d, with µ = 0
and σ2 = 1. We use these random deviates to cre-
ate two complex Gaussian fields, glm = 1√

2
(a + ıb) and
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hlm = 1√
2
(c + ıd) with 〈h∗

lmhlm〉 = 1 and 〈g∗
lmglm〉 = 1.

For completeness, we include the generation of both
aT

lm and aE
lm, such that CT T

l CEE
l − (CT E

l )2 > 0 and
a∗XX

l,m = (−1)maXX
l,−m. The spherical harmonic coeffi-

cients for temperature are

aT
lm =

√

CT T
l + NT T

l glm (B1)

and the polarization coefficients are given by

aE
lm =

CT E
l

CT T
l + NT T

l

√

CT T
l + Nl glm

+ hlm

√

(CEE
l + NEE

l ) −
(CT E

l )2

(CT T
l + NT T

l )
. (B2)

The random mock can then be generated using the full-
sky power spectra estimators for the temperature, the E-
mode polarization, and the cross spectrum between the

temperature and the E-mode polarization given by

ĈT T
l =

1

2l + 1

m=l
∑

m=−l

〈a∗T T
lm aT T

lm 〉 (B3)

ĈEE
l =

1

2l + 1

m=l
∑

m=−l

〈a∗EE
lm aEE

lm 〉 (B4)

ĈT E
l =

1

2l + 1

m=l
∑

m=−l

〈a∗T T
lm aT E

lm 〉. (B5)

We have tested this prescription using MCMC, and find
that on average seven out of ten times the estimate of θi

is within 1σ of the fiducial input value.
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