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Abstract

A search for evidence of particle dark matter (DM) and unparticle production at the
LHC has been performed using events containing two charged leptons, consistent
with the decay of a Z boson, and large missing transverse momentum. This study is
based on data collected with the CMS detector corresponding to an integrated lumi-
nosity of 19.7 fb−1 of pp collisions at the LHC at a center-of-mass energy of 8 TeV. No
excess of events is observed above the number expected from the standard model con-
tributions. The results are interpreted in terms of 90% confidence level limits on the
DM-nucleon scattering cross section, as a function of the DM particle mass, for both
spin-dependent and spin-independent scenarios. Limits are set on the effective cutoff
scale Λ, and on the annihilation rate for DM particles, assuming that their branch-
ing fraction to quarks is 100%. Additionally, the most stringent 95% confidence level
limits to date on the unparticle model parameters are obtained.
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1 Introduction
Ample evidence from astrophysical measurements supports the existence of dark matter (DM),
which is assumed to be responsible for galactic gravitation that cannot be attributed to bary-
onic matter [1–3]. Recent DM searches have exploited a number of methods including direct
detection [4–11], indirect detection [12, 13], and particle production at colliders [14–26]. The
currently favored possibility is that DM may take the form of weakly interacting massive parti-
cles (WIMP). The study presented here considers a mechanism for producing such particles at
the CERN LHC [27]. In this scenario, a Z boson, produced in pp collisions, recoils against a pair
of DM particles, χχ. The Z boson subsequently decays into two charged leptons (`+`−, where
` = e or µ) producing a clean dilepton signature together with missing transverse momentum
due to the undetected DM particles. In this analysis, the DM particle χ is assumed to be a Dirac
fermion or a complex scalar particle whose coupling to standard model (SM) quarks q can be
described by one of the effective interaction terms [28]:

Vector, spin-independent(D5) :
χ̄γµχq̄γµq

Λ2 ;

Axial-Vector, spin-dependent(D8) :
χ̄γµγ5χq̄γµγ5q

Λ2 ;

Tensor, spin-dependent(D9) :
χ̄σµνχq̄σµνq

Λ2 ;

Vector, spin-independent(C3) :
χ†
↔
∂µχq̄γµq

Λ2 ;

where Λ parameterizes the effective cutoff scale for interactions between DM particles and
quarks. The operators denoted by D5, D8, and D9 couple to Dirac fermions, while C3 couples
to complex scalars. The corresponding Feynman diagrams for production of a DM pair with a
Z boson and up to one jet are shown in Fig. 1. A search similar to the one presented here has
been performed by the ATLAS Collaboration [26], where the DM particle is assumed to be a
Dirac fermion and couples to either vector bosons or quarks.
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Figure 1: The principal Feynman diagrams for the production of DM pairs in association with a
Z boson. In the middle and right-hand diagrams an additional quark is produced. The hatched
circles indicate the interaction modeled with an effective field theory.

The unparticle physics concept [29–32] is particularly interesting because it is based on scale
invariance, which is anticipated in many beyond-the-SM physics scenarios [33–35]. The unpar-
ticle stuff of the scale-invariant sector appears as a non-integer number of invisible massless
particles. In this scenario, the SM is extended by introducing a scale-invariant Banks–Zaks
(BZ) field, which has a non-trivial infrared fixed point [36]. This field can interact with SM
particles by exchanging heavy particles with a high mass scale MU . Below this mass scale,
the coupling is non-renormalizable and the interaction is suppressed by powers of MU . The
interaction Lagrangian density can be expressed as: Lint = OSMOBZ/Mk

U , where OSM is the
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operator for the SM field with scaling dimension dSM,OBZ is the operator for the BZ field with
scaling dimension dBZ , and k = dSM + dBZ − 4 > 0. At an energy scale of ΛU , dimensional
transmutation is induced by renormalization effects in the scale-invariant BZ sector, and OBZ
can be matched to a new set of operators below ΛU with the interaction form

Leff
int = CU

ΛdBZ−dU
U
Mk
U
OSMOU =

λ

ΛdU
U
OSMOU , (1)

in which CU is a normalization factor fixed by the matching, dU represents the possible non-
integer scaling dimension of the unparticle operator OU , and the parameter λ = CUΛdBZ

U /Mk
U

is a measure of the coupling between SM particles and unparticles. In general, an unparti-
cle does not have a fixed invariant mass but has instead a continuous mass spectrum, and its
real production in low energy processes described by the effective field theory in Eq. (1) can
give rise to unusual missing energy distributions because of the possible non-integral values of
the scaling dimension dU . In the past, the reinterpretation [37] of LEP single-photon data has
been used to set unparticle limits. A recent search for unparticles at CMS [14] in monojet final
states has shown no evidence for their existence. In this paper, a scalar unparticle with real
emission is considered, and the scaling dimension dU > 1 is constrained by the unitarity con-
dition. Figure 2 shows the two tree-level diagrams considered in this paper for the production
of unparticles associated with a Z boson.
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Figure 2: Feynman diagrams for unparticle production in association with a Z boson. The
hatched circles indicate the interaction modeled with an effective field theory.

Both the DM and unparticle scenarios considered in this analysis produce a dilepton (e+e−

or µ+µ−) signature consistent with a Z boson, together with a large magnitude of missing
transverse momentum. The analysis is based on the full data set recorded by the CMS detector
in 2012, which corresponds to an integrated luminosity of 19.7± 0.5 fb−1 [38] at a center-of-
mass energy of 8 TeV.

2 The CMS detector
The CMS detector is a multipurpose apparatus well suited to study high transverse momen-
tum (pT) physics processes in pp collisions. The central feature of the CMS apparatus is a su-
perconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the
superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL),
each composed of a barrel and two endcap sections. Forward calorimeters extend the pseu-
dorapidity [39] coverage provided by the barrel and endcap detectors. The electromagnetic
calorimeter consists of 75 848 lead tungstate crystals, which provide coverage in pseudora-
pidity |η| < 1.479 in a barrel region and 1.48 < |η| < 3.00 in two endcap regions (EE). A
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preshower detector consisting of two planes of silicon sensors interleaved with a total of 3X0 of
lead is located in front of the EE. The electron momentum is estimated by combining the energy
measurement in the ECAL with the momentum measurement in the tracker. The momentum
resolution for electrons with pT ≈ 45 GeV from Z→ ee decays ranges from 1.7% for nonshow-
ering electrons in the barrel region to 4.5% for showering electrons in the endcaps [40]. Muons
are measured in the pseudorapidity range |η| < 2.4, with gas-ionization detectors embedded
in the steel flux-return yoke outside the solenoid. The muon detection planes are made using
three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching
muons to tracks measured in the silicon tracker results in a relative transverse momentum res-
olution for muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the
endcaps. The pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [41].
The first level of the CMS trigger system, composed of custom hardware processors, uses in-
formation from the calorimeters and muon detectors to select the most interesting events, in
a fixed time interval of less than 4 µs. The high-level trigger processor farm further decreases
the event rate from around 100 kHz to less than 1 kHz, before data storage. A more detailed
description of the CMS detector, together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in Ref. [39]. Variables of particular relevance to
the present analysis are the missing transverse momentum vector ~pmiss

T and the magnitude of
this quantity, Emiss

T . The quantity ~pmiss
T is defined as the projection on the plane perpendicular

to the beams of the negative vector sum of the momenta of all reconstructed particles in an
event.

3 Simulation
Samples of simulated DM particle events are generated using MADGRAPH 5.2.1 [42] matched
to PYTHIA 6.4.26 [43] using tune Z2* for parton showering and hadronization. The PYTHIA

6 Z2* tune uses the CTEQ6L [44] parton distribution set. This tune is derived from the Z1
tune [45], which is based on CTEQ5L. The effective cutoff scale Λ is set to 1 TeV. The events
for the unparticle models are generated with PYTHIA 8.1 [46–48] assuming a renormalization
scale ΛU = 15 TeV, using tune 4C [49] for parton showering and hadronization. We evaluate
other values of ΛU by rescaling the cross sections as needed. Figure 3 shows the distribution of
Emiss

T at the generator level for both DM and unparticle production. In the unparticle scenario,
the events with larger scaling dimension dU tend to have a broader Emiss

T distribution. For DM
production, the shape of the Emiss

T is similar for couplings D5, D8, and C3, where the vector or
axial vector couplings tend to produce nearly back-to-back DM particles. This configuration is
less strongly favored for the tensor couplings, and thus the D9 couplings show a much broader
Emiss

T distribution.

The POWHEG 2.0 [50–54] event generator is used to produce samples of events for the tt and
tW background processes. The ZZ, WZ, and Drell–Yan (DY, Z/γ∗ → `+`−) processes are gen-
erated using the MADGRAPH 5.1.3 [55] event generator. The default set of parton distribution
functions (PDF) CTEQ6L [56] is used for leading-order (LO) generators, while the CT10 [57] set
is used for next-to-leading-order (NLO) generators. The NLO calculations are used for back-
ground cross sections, whereas only LO calculations are available for the signal processes. For
all Monte Carlo (MC) samples, the detector response is simulated using a detailed description
of the CMS detector, based on the GEANT4 package [58]. Minimum bias events are superim-
posed on the simulated events to emulate the additional pp interactions per bunch crossing
(pileup). All MC samples are corrected to reproduce the pileup distribution as measured in the
data. The average number of pileup events per proton bunch crossing is about 20 for the 2012
data sample.
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Figure 3: The distribution in Emiss
T at the generator level, for DM (left) and unparticle (right)

scenarios. The DM curves are shown for different mχ with vector (D5), axial-vector (D8), and
tensor (D9) coupling for Dirac fermions, and vector (C3) coupling for complex scalar particles.
The unparticle curves have the scalar unparticle coupling λ between unparticle and SM fields
set to 1, with the scaling dimension dU ranging from 1.5 to 2.1. The SM background ZZ →
`−`+νν is shown as a red solid curve.

4 Event reconstruction
Events are collected by requiring dilepton (ee or µµ) triggers with thresholds of pT > 17 and
8 GeV for the leading and sub-leading leptons, respectively. Single-lepton triggers with thresh-
olds of pT > 27 (24)GeV for electrons (muons) are also included to recover residual trigger
inefficiencies. Prior to the selection of leptons, a primary vertex must be selected as the event
vertex. The vertex with largest value of ∑ p2

T for the associated tracks is selected. Simulation
studies show that this requirement correctly selects the event vertex in more than 99% of both
signal and background events. The lepton candidate tracks are required to be compatible with
the event vertex.

A particle-flow (PF) event algorithm [59, 60] reconstructs and identifies each individual particle
with an optimized combination of information from the various elements of the CMS detector.
The energy of photons is directly obtained from the ECAL measurement, corrected for zero-
suppression effects. The energy of electrons is determined from a combination of the electron
momentum at the event vertex as determined by the tracker, the energy of the corresponding
ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is obtained from the curvature of the
corresponding track. The energy of charged hadrons is determined from a combination of its
momentum measured in the tracker and the matching ECAL and HCAL energy deposits, cor-
rected for zero-suppression effects and for the response function of the calorimeters to hadronic
showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected
ECAL and HCAL energy.

Electron candidates are reconstructed using two algorithms [40]: in the first, energy clusters
in the ECAL are matched to signals in the silicon tracker, and in the second, tracks in the sil-
icon tracker are matched to ECAL clusters. The electron candidates used in the analysis are
required to be reconstructed by both algorithms. To reduce the electron misidentification rate,
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the candidates have to satisfy additional identification criteria that are based on the shape of
the electromagnetic shower in the ECAL. In addition, the electron track is required to originate
from the event vertex and to match the shower cluster in the ECAL. Electron candidates with
an ECAL cluster in the transition region between ECAL barrel and endcap (1.44 < |η| < 1.57)
are rejected because the reconstruction of an electron object in this region is not optimal. Can-
didates that are identified as coming from photon conversions [40] in the detector material are
explicitly removed.

Muon candidate reconstruction is also based on two algorithms: in the first, tracks in the silicon
tracker are matched with at least one muon segment in any detector plane of the muon system,
and in the second algorithm a combined fit is performed to hits in both the silicon tracker and
the muon system [41]. The muon candidates in this analysis are required to be reconstructed
by both algorithms and to be further identified as muons by the PF algorithm. To reduce the
muon misidentification rate, additional identification criteria are applied based on the number
of space points measured in the tracker and in the muon system, the fit quality of the muon
track, and its consistency with the event vertex location.

Leptons produced in the decay of Z bosons are expected to be isolated from hadronic activity
in the event. Therefore, an isolation requirement is applied based on the sum of the momenta
of the PF candidates found in a cone of radius R =

√
(∆η)2 + (∆φ)2 = 0.4 around each lepton,

where φ is the azimuthal angle. The isolation sum is required to be smaller than 15% (20%) of
the pT of the electron (muon). To correct for the contribution to the isolation sum from pileup
interactions and the underlying event, a median energy density (ρ) is determined on an event-
by-event basis using the method described in Ref. [61]. For each electron, the mean energy
deposit in the isolation cone of the electron, coming from other pp collisions in the same bunch
crossing, is estimated following the method described in Ref. [40], and subtracted from the
isolation sum. For muon candidates, only charged tracks associated with the event vertex are
included. The sum of the pT for charged particles not associated with the event vertex in the
cone of interest is rescaled by a factor corresponding to the average neutral to charge energy
densities in jets and subtracted from the isolation sum.

Jets are reconstructed from PF candidates by using the anti-kT clustering algorithm [62] with
a distance parameter of 0.5, as implemented in the FASTJET package [63, 64]. Jets are found
over the full calorimeter acceptance, |η| < 5. The jet momentum is defined as the vector sum
of all particle momenta assigned to the jet, and is found in the simulation to be within 5% to
10% of the true hadron-level momentum over the whole pT range and detector acceptance.
An overall energy subtraction is applied to correct for the extra energy clustered in jets due to
pileup, following the procedure described in Ref. [65]. In the subtraction, the charged particle
candidates associated with secondary vertices reconstructed in the event are also included.
Other jet energy scale corrections applied are derived from simulation, and are confirmed by
measurements of the energy balance in dijet and γ+jets events.

5 Event selection
Selected events are required to have exactly two well-identified, isolated leptons with the same
flavor and opposite charge (e+e− or µ+µ−), each with pT > 20 GeV. The invariant mass of the
lepton pair is required to be within ±10 GeV of the nominal mass of the Z boson. Only leptons
within the pseudorapidity range of |η| < 2.4 (2.5) for muons (electrons) are considered. To
reduce the background from the WZ process where the W boson decays leptonically, events
are removed if an additional electron or muon is reconstructed with pT > 10 GeV. As a very
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loose preselection requirement, the dilepton transverse momentum (p``T ) is required to be larger
than 50 GeV to reject the bulk of DY background events.

Since only a small amount of hadronic activity is expected in the final state of both DM and
unparticle events, any event having two or more jets with pT > 30 GeV is rejected. Top quark
decays, which always involve the emission of b quarks, are further suppressed with the use
of techniques based on soft-muon and b-jet tagging. The rejection of events with soft muons
having pT > 3 GeV reduces the background from semileptonic b decays. The b-jet tagging
technique employed is based on the “combined secondary vertex” algorithm [66, 67]. This
algorithm selects a group of tracks forming a secondary vertex within a jet and generates a
likelihood discriminant to distinguish between b jets and jets originating from light quarks,
gluons, or charm quarks. The applied threshold provides, on average, 80% efficiency for tag-
ging jets originating from b quarks, and 10% probability of light-flavor jet misidentification.
The b-tagged jet is required to have pT > 20 GeV and to be reconstructed within the tracker
acceptance volume (|η| < 2.5).

The final selection is optimized for both DM and unparticle signals to obtain the best ex-
pected cross section limit at 95% confidence level (CL) using four variables: Emiss

T , ∆φ``,~p miss
T

,

|Emiss
T − p``T |/p``T , and u‖/p``T , where u‖ is defined as the component of ~u = −~pmiss

T − ~pT
`` par-

allel to the direction of ~pT
``. The last three variables effectively suppress reducible background

processes such as DY and top-quark production. If the best expected significance is used in
the optimization, instead of the best expected limit, very similar results are obtained. In both
electron and muon channels, a mass-independent event selection followed by a fit to the shape
of the transverse mass mT =

√
2p``T Emiss

T (1− cos ∆φ``,~p miss
T

) distribution is used to discriminate
between the signal and the backgrounds. For each set of selection requirements considered, the
full analysis, including the estimation of backgrounds and the systematic uncertainties, is re-
peated. The final selection criteria obtained after optimization for both the electron and muon
channels are: Emiss

T > 80 GeV, ∆φ``,~p miss
T

> 2.7, |u‖/p``T | < 1, and |Emiss
T − p``T |/p``T < 0.2. A

summary of the preselection and final selection criteria for the final analysis is listed in Table 1.
Figure 4 shows the distributions of Emiss

T after preselection, in the ee and µµ channels. Good
agreement is found between the observed distributions and the background prediction, which
is described in the following section.

Table 1: Summary of selections used in the analysis.

Variable Requirements

Preselection

p`T >20 GeV
|m`` −mZ| <10 GeV
Jet counting ≤1 jets with pj

T > 30 GeV
p``T >50 GeV
3rd-lepton veto p`T > 10 GeV
Top quark veto veto on b jets and soft muon

Selection

|u‖/p``T | <1
Emiss

T >80 GeV
∆φ``,~p miss

T
>2.7 rad

|Emiss
T − p``T |/p``T <0.2
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Figure 4: The distribution of Emiss
T after preselection for the Z → e+e− (left) and Z → µ+µ−

(right) channels. Expected signal distributions are shown for Dirac fermions with vector or
tensor couplings and for unparticles. The total statistical uncertainty in the overall background
is shown as a hatched region. The horizontal bars on the data points indicate the bin width.
Overflow events are included in the rightmost bins.

6 Background estimation
The ZZ and WZ backgrounds are modeled using MC simulation, and normalized to their re-
spective NLO cross sections computed with MCFM 6.8 [68]. Other backgrounds, including tt,
tW, WW, Z → ττ, and DY are estimated from data for the final selection. The background
from W+jets is negligible in the muon channel but significant in the electron channel, where an
estimation method based on control samples in data is used for its estimation.

The background processes that do not involve Z boson production are referred to as nonres-
onant backgrounds. Such backgrounds arise mainly from leptonic W boson decays in tt, tW,
and WW events. There are also small contributions from s- and t-channel single top quark
events and Z → ττ events in which τ leptons produce electrons or muons and Emiss

T . We esti-
mate these non-resonant backgrounds using a data control sample, consisting of events with an
opposite-charge different-flavor dilepton pair (e±µ∓) that otherwise pass the full selection. As
the decay rates for Z→ e+e− and Z→ µ+µ− are equal, by equating the ratio of observed dilep-
ton counts to the square of the ratio of efficiencies, the backgrounds in the ee and µµ channels
can be estimated:

Nest
bkg,ee = Ndata, corr

eµ kee, kee =
1
2

√
Ndata

ee

Ndata
µµ

,

Nest
bkg,µµ = Ndata, corr

eµ kµµ, kµµ =
1
2

√
Ndata

µµ

Ndata
ee

,

in which the coefficient of 1/2 in the correction factors kee and kµµ comes from the dilepton
decay ratios for ee, µµ, and eµ in these nonresonant backgrounds, and Ndata

ee and Ndata
µµ are

the numbers of selected ee and µµ events from data with masses inside the Z mass window.
The ratio

√
Ndata

ee /Ndata
µµ and the reciprocal quantity take into account the difference between

the electron and muon selection efficiencies. The term Ndata, corr
eµ is the number of eµ events
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observed in data corrected by subtracting ZZ, WZ, DY, and W+jets background contributions
estimated using MC simulation. The validity of this procedure for predicting nonresonant
backgrounds is checked with simulated events containing tt, tW, WW, and Z → ττ processes.
We assign a systematic uncertainty of 17% (15%) to this background estimation in the electron
(muon) channel based on an observed discrepancy between simulated events and data.

The DY process is dominant in the region of low Emiss
T . This process does not produce un-

detectable particles, and therefore the measured Emiss
T arises from limited detector acceptance

and mismeasurement. The estimation of this background uses simulated DY events, which
are normalized to data with scale factors obtained by measuring the number of DY events in
background-dominated control regions, after subtracting other processes. These scale factors
are of order 1.1–1.2. The control regions are defined with the full selection except for the re-
quirements on Emiss

T , ∆φ``,~p miss
T

, and |Emiss
T − p``T |/p``T . The results are calculated independently

for control regions with variables Emiss
T and |Emiss

T − p``T |/p``T , and compared with each other
as part of the estimate of systematic uncertainty. Based on the variations of the estimates with
the choice of control regions, a systematic uncertainty of 10% (11%) is assigned to the DY back-
ground estimate in the electron (muon) channel.

A W+jets background event consists of a genuine prompt lepton from the W decay, and a non-
isolated lepton resulting from the leptonic decay of heavy quarks, misidentified hadrons, or
electrons from photon conversions. The rate at which jets are misidentified as leptons may
not be accurately described in the MC simulation, so the rate of jets passing lepton identifi-
cation requirements is determined using a control data sample enriched in jets. The genuine
lepton contamination from W/Z+jets events in the selected control sample is subtracted using
simulation to avoid biasing the calculation of the misidentification rate. The final estimation
is obtained by applying these weights to a sample selected with lepton identification require-
ments that are looser than for the signal sample. The main source of systematic uncertainty
for this background estimation comes from the measurement of the misidentification rate. A
systematic uncertainty of 15% is assigned, based on the dependence of the calculated misiden-
tification rates on the selection criteria applied to the control sample.

7 Efficiencies and systematic uncertainties
The efficiencies for selecting, reconstructing and identifying isolated leptons are determined
from simulation, and then corrected with scale factors determined from applying a “tag-and-
probe” technique [69] to Z → `+`− events. The trigger efficiencies for the electron and muon
channels are found to be above 90%, varying as a function of pT and |η| of the lepton. The iden-
tification efficiency for electrons (muons), when applying the criteria described in Section 4, is
found to be 95% (94%). The corresponding data-to-MC scale factors are typically in the range
0.94–1.01 (0.98–1.02) for the electron (muon) channel, depending on the pT and |η| of the lepton
candidate. For both channels, the overall uncertainty in selecting and reconstructing leptons in
an event is about 3%.

The systematic uncertainties include normalization uncertainties that affect the overall size of
contributions, and shape uncertainties that alter the shapes of the distributions used in extract-
ing the signal limits. The systematic uncertainties are summarized in Table 2.

The normalization uncertainties in the background estimates from data are described in Sec-
tion 6. The overall approach for the estimation of the PDF and αS uncertainties (referred to as
PDF+αS in the following) adopts the interim recommendations of the PDF4LHC group and is
used both for signal and the background [70–74]. This is the most important uncertainty for the
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Table 2: Summary of systematic uncertainties. Each background uncertainty represents the
variation of the relative yields of the particular background components. The signal uncertain-
ties represent the relative variations in the signal acceptance, and ranges quoted cover both
signals of DM and unparticles with different DM masses or scaling dimensions. For shape
uncertainties, the numbers correspond to the overall effect of the shape variation on yield or
acceptance. The symbol — indicates that the systematic uncertainty is not applicable.

Source Background Signal
uncertainty (%) uncertainty (%)

PDF+αS 5–6 8–20
Factorization and renormalization scale 7–8 5
Acceptance (ZZ) 14 —
Integrated luminosity 2.6 2.6
Lepton trigger, reconstruction & identification, isolation 3 3
DY normalization 10–11 —
tt, tW, WW normalization 15–17 —
W+jets normalization 15–23 —
MC statistics (signal, ZZ, WZ) 1–2 1–2
Control region statistics (DY) 25 —
Control region statistics (tt, tW, WW) 18 —
Control region statistics (W+jets) 36 —
Pileup 0.5–1 0.1–0.7
b-jet tagging efficiency 0.4–1.4 0.6–1
Lepton momentum scale 0.4–0.5 0.1–1
Jet energy scale and resolution 5–7 3–5
Unclustered Emiss

T scale 1–2 1

signals. As the mass of the DM particles increases, the PDF+αS uncertainty reaches 20%, which
can be explained by the diminishing phase space for DM production and the rise of the corre-
sponding uncertainty in the cross section. The efficiencies for signal, ZZ, and WZ processes are
estimated using simulation, and the uncertainties in the corresponding yields are derived from
variations of the renormalization and factorization scales, αS, and choice of PDFs, in which
the factorization and renormalization scales are assessed by varying the original scales of the
process by factors of 0.5 and 2. Typical values for the signal extraction efficiency are found
to be around 40%. The uncertainty related to the renormalization and factorization scales is
5% for signal, and 7–8% for ZZ and WZ processes. The effect of variations in αS and choice
of PDFs is 5–6% for the ZZ and WZ backgrounds. The uncertainty assigned to the luminosity
measurement is 2.6% [38].

The contributions to the shape uncertainties come from the lepton momentum scale, the jet
energy scale and resolution, the unclustered Emiss

T scale, the b tagging efficiency, and the pileup
modeling. Each corresponding uncertainty is calculated by varying the respective variable of
interest within its own uncertainties, and propagating the variations to the variable mT using
the final selection. In the case of the lepton momentum scale, the uncertainty is computed
by varying the momentum of the leptons by their uncertainties. The uncertainty in the muon
momentum scale is 1%. For electrons, uncertainties of 0.6% for the barrel and 1.5% for the
endcaps are applied. For the ZZ background, a comparison of the acceptance from normalized
yields between MADGRAPH, POWHEG [75], and SHERPA 2.1.1 [76] shows that these generators
differ in their total event prediction for the signal region. Therefore, an additional uncertainty
of 14% is assigned as a generator-related shape systematic uncertainty in the ZZ background.



10 8 Results

This is the dominant uncertainty in the total background prediction for the signal region. For
the WZ background, this difference in acceptance is not observed and data and simulation
agree in the selected three-lepton control region.

The uncertainties in the calibration of the jet energy scale and resolution directly affect the
assignments of jets to jet categories, the Emiss

T computation, and all the selections related to
jets. The effect of the jet energy scale uncertainty is estimated by varying the energy scale by
±1σ. A similar strategy is used to evaluate the systematic uncertainty related to the jet energy
resolution. The uncertainties in the final yields are found to be 3–5% (5–7%) for signal (back-
ground). The effect of the uncertainty in the energy scale of the unclustered component of the
Emiss

T measurement is estimated by subtracting the leptons and jets from the Emiss
T summation

and by varying the residual recoil by ±10%. The clustered component is then added back in
order to recalculate the value of Emiss

T . The resultant uncertainty in the final yields is found
to be of order 1–2%. Since the b tagging efficiencies measured in data are somewhat different
from those predicted by the simulation, an event-by-event reweighting using data-to-MC scale
factors is applied to simulated events. The uncertainty associated with this procedure is ob-
tained by varying the event-by-event weight by±1σ. The total uncertainty in the final yields is
0.6–1% (0.4–1.4%) for signal (background). All simulated events are reweighted to reproduce
the pileup conditions observed in data. To compute the uncertainty related to pileup model-
ing, we shift the mean of the distribution in simulation by 5%. The variation of the final yields
induced by this procedure is less than 1%. For the processes estimated from simulation, the
sizes of the MC samples limit the precision of the modeling, and the corresponding statistical
uncertainty is incorporated into the shape uncertainty. A similar treatment is applied to the
backgrounds estimated from control samples in data based on the statistical uncertainties in
the corresponding control samples.

8 Results
For both the electron and the muon channels, a shape-based analysis is employed. The ex-
pected numbers of background and signal events scaled by a signal strength modifier are com-
bined in a binned likelihood for each bin of the mT distribution. The signal strength modifier,
defined as the signal cross section divided by the cross section suggested by theory, determines
the strength of the signal process [77]. The numbers of observed and expected events are shown
in Table 3, including the expectation for a selected mass point for each type of signal. Figure 5
shows the mT distributions after the final selection. The observed distributions agree with the
SM background predictions and no excess of events is observed.

Upper limits on the contribution of events from new physics are computed by using the modi-
fied frequentist approach CLs [78, 79] based on asymptotic formulas [77, 80].

8.1 DM interpretation

The observed limit on the cross section for DM production depends on the DM particle mass
and the nature of DM interactions with SM particles. Within the framework of effective field
theory, the upper limits on this cross section can be translated into 90% CL lower limits on
the effective cutoff scale Λ as a function of DM particle mass mχ, as shown in Fig. 6. The
choice of 90% CL is made in order to allow comparisons with direct detection experiments.
The relic density of cold, non-baryonic DM has been measured by Planck telescope [81] using
the anisotropy of the cosmic microwave background and of the spatial distribution of galaxies.
They obtain a value Ωh2 = 0.1198± 0.0026, where h is the Hubble constant. The implications
of this result plotted in the plane of the effective cutoff scale Λ and DM mass mχ have been
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Table 3: Signal predictions, background estimates, and observed number of events. The DM
signal yields are given for masses mχ = 10, 200, and 500 GeV and cutoff scales Λ = 0.37, 0.53,
0.48, and 1.4 TeV. The yields from an unparticle signal are presented with a scaling dimen-
sion dU = 1.6 and a renormalization scale ΛU = 33 TeV. The corresponding statistical and
systematic uncertainties are shown, in that order.

Process e+e− µ+µ−

C3, mχ = 10 GeV, Λ = 0.37 TeV 10.7 ± 0.2 ± 1.1 12.8 ± 0.3 ± 1.1
D5, mχ = 10 GeV, Λ = 0.53 TeV 10.0 ± 0.3 ± 1.1 12.3 ± 0.3 ± 1.1
D8, mχ = 200 GeV, Λ = 0.48 TeV 9.0 ± 0.2 ± 1.1 11.1 ± 0.2 ± 0.9
D9, mχ = 500 GeV, Λ = 1.4 TeV 2.67 ± 0.03 ± 0.41 2.81 ± 0.03 ± 0.26
Unparticle, dU = 1.6, ΛU = 33 TeV 19.0 ± 0.3 ± 1.3 25.6 ± 0.4 ± 1.7
Z/γ∗ → `+`− 8.2 ± 1.9 ± 0.8 8.6 ± 3.0 ± 1.0
WZ→ 3`ν 25.1 ± 0.5 ± 2.8 40.7 ± 0.7 ± 4.5
ZZ→ 2`2ν 59 ± 1 ± 10 79 ± 1 ± 14
tt/tW/WW/Z→ ττ 18.7 ± 3.4 ± 3.3 22.9 ± 2.3 ± 3.4
W+jets 1.8 ± 0.6 ± 0.3 —
Total background 113 ± 4 ± 13 151 ± 4 ± 18
Data 111 133
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Figure 5: Distributions of the transverse mass for the final selection in the e+e− (left) and µ+µ−

(right) channels. Examples of expected signal distributions are shown for DM particle produc-
tion and unparticle production. The total statistical and systematic uncertainty in the overall
background is shown as a hatched region. Overflow events are included in the rightmost bins.

calculated with MadDM 1.0 [82], and are shown in Fig. 6. Results from a search for DM particles
using monojet signatures in CMS [14] are also plotted for comparison.

It has been emphasized by several authors [28, 83–85] that the effective field theory approach
is not valid over the full range of phase space that is accessible at the LHC, since the scales
involved can be comparable to the collision energy. In the LHC regime, the assumption of a
point-like interaction provides a reliable approximation of the underlying ultraviolet-complete
theory only for appropriate choices of couplings and masses. To estimate the region of validity
relevant to this analysis, we consider a simple tree level ultraviolet-complete model that con-
tains a massive mediator (M) exchanged in the s-channel, with the couplings to quarks and
DM particles described by coupling constants gq and gχ. The effective cutoff scale Λ thus can
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be expressed as Λ ∼ M/√gqgχ, when momentum transfer is small (Qtr < M). Imposing a
condition on the couplings √gqgχ < 4π to ensure stability of the perturbative calculation, and
a mass requirement M > 2mχ, a lower bound Λ > mχ/2π is obtained for the region of validity.
The area below this boundary, where the effective theory of DM is not expected to provide a
reliable prediction at the LHC, is shown as a pink shaded area in each of the panels of Fig. 6.
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Figure 6: Expected and observed 90% CL lower limits on Λ as a function of DM particle mass
mχ for the operators D5 (top left), D8 (top right), D9 (bottom left) and C3 (bottom left). The pink
shaded area is shown in each plot to indicate the lower bound Λ > mχ/2π on the validity of
the effective field theory DM model. The cyan long-dashed line calculated by MadDM 1.0 [82]
reflects the relic density of cold, non-baryonic DM: Ωh2 = 0.1198± 0.0026 measured by Planck
telescope [81]. Monojet results from CMS [14] are shown for comparison. Truncated limits with√gqgχ = 1 are presented with red dot long-dashed lines. The blue double-dot and triple-dot
dashed lines indicate the contours of RΛ = 80% for all operators with couplings √gqgχ = π,
and 4π.

However, the requirement of Λ > mχ/2π is not sufficient, according to some authors [83, 85–
94], and the region of validity depends on the coupling values in the ultraviolet completion
of the theory. Considering a more realistic minimum constraint Qtr < M ∼ √gqgχΛ, we can
calculate the ratio RΛ of the number of events fulfilling the validity criteria over all events
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produced in the accessible phase space:

RΛ =

∫ pmax
T

pmin
T

dpT
∫ ηmax

ηmin dη d2σeff
dpTdη

∣∣∣
Qtr<

√gqgχΛ∫ pmax
T

pmin
T

dpT
∫ ηmax

ηmin dη d2σeff
dpTdη

,

in which the values of RΛ can be used to check the accuracy of the effective description in
regions of parameter space (Λ, mχ). Figure 6 includes the corresponding contours of RΛ = 80%
for all operators with couplings√gqgχ = π, and 4π. Alternatively, we can obtain the truncated
limits by manually removing the events with Qtr >

√gqgχΛ at the generator level. Figure 6
also shows these truncated limits with √gqgχ = 1. For a certain value of mχ, the truncated
limit goes to zero quickly because none of the events above this value fulfill the requirement
Qtr <

√gqgχΛ. For a maximum coupling gχ,q = 4π, 100% of the events pass this requirement,
and the truncated limits coincide with the observed one and are not shown.

Figure 7 shows the 90% CL upper limits on the DM-nucleon cross section as a function of DM
particle mass for both the spin-dependent and spin-independent cases [83, 95] obtained using
the relations:

σD8,D9
0 = ∑

q

3µ2
χN

πΛ4

(
∆N

q

)2
= 9.18× 10−40cm2

( µχN

1 GeV

)2
(

300 GeV
Λ

)4

,

σD5
0 = ∑

q

µ2
χN

πΛ4

(
f N
q

)2
= 1.38× 10−37cm2

( µχN

1 GeV

)2
(

300 GeV
Λ

)4

,

σC3
0 = ∑

q

4µ2
χN

πΛ4

(
f N
q

)2
= 5.52× 10−37cm2

( µχN

1 GeV

)2
(

300 GeV
Λ

)4

,

where µχN is the reduced mass of DM-nucleon system, f N
q characterizes the nucleon structure

( f p
u = f n

d = 2 and f p
d = f n

u = 1; f = 0 otherwise), and ∆N
q represents a spin-dependent form-

factor (∆p
u = ∆n

d = 0.842± 0.012, ∆p
d = ∆n

u = −0.427± 0.013, ∆p
s = ∆n

s = −0.085± 0.018) as
specified in Ref. [95]. The truncated limits for D5, D8, D9, and C3 with√gqgχ = 1 are presented
with dashed lines in the same shade as the untruncated ones. For comparison, direct search
results as well as collider results from the CMS monojet [14] and monophoton [16] studies are
shown. Results are also shown from a search for the invisible decays of the Higgs boson [96],
interpreted in a Higgs-portal model [97, 98], where a Higgs boson with a mass of 125 GeV acts
as a mediator between scalar DM and SM particles. The central (solid) line corresponds to
the Higgs-nucleon coupling value (0.326) from a lattice calculation [99], and the upper (dot-
dashed) and lower (dashed) lines are maximum (0.629) and minimum (0.260) values from the
MILC Collaboration [100].

The expected and observed limits on the effective cutoff scale Λ as a function of the DM particle
mass mχ are listed in Tables 4 and 5 for the operators D5 and D8. The values for the operators
D9 and C3 are listed in Tables 6 and 7. The results are also shown in terms of limits on DM-
nucleon cross sections σχN , to allow comparison with the results from direct searches for DM
particles.

Figure 8 shows the limits from operators D5 and D8 translated into upper limits on the DM
annihilation rate 〈σv〉 relevant to indirect astrophysical searches [86], in which σ is the annihi-
lation cross section, v is the relative velocity of the annihilating particles, and the quantity 〈σv〉
is averaged over the distribution of the DM velocity. In this paper, a particular astrophysical
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Figure 7: The 90% CL upper limits on the DM-nucleon cross section as a function of the
DM particle mass. Left: spin-dependent limits for axial-vector (D8) and tensor (D9) coupling
of Dirac fermion DM candidates, together with direct search experimental results from the
PICO [101], XENON100 [102], and IceCube [7] collaborations. Right: spin-independent limits
for vector coupling of complex scalar (C3) and Dirac fermion (D5) DM candidates, together
with CDMSlite [8], LUX [11], as well as Higgs-portal scalar DM results from CMS [96] with
central (solid), minimum (dashed) and maximum (dot dashed) values of Higgs-nucleon cou-
plings. Collider results from CMS monojet [14] and monophoton [16] searches, interpreted in
both spin-dependent and spin-independent scenarios, are shown for comparison. The trun-
cated limits for D5, D8, D9, and C3 with √gqgχ = 1 are presented with dashed lines in same
shade as the untruncated ones.

Table 4: Expected and observed 90% CL upper limits on the DM-nucleon cross section σχN and
effective cutoff scale Λ for operator D5.

mχ Expected Expected−1σ Expected+1σ Observed
Λ σχN Λ σχN Λ σχN Λ σχN

(GeV) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2)
1 576 2.4×10−39 630 1.7×10−39 525 3.4×10−39 528 3.4×10−39

10 574 7.5×10−39 628 5.3×10−39 524 1.1×10−38 529 1.1×10−38

100 574 8.9×10−39 628 6.2×10−39 524 1.3×10−38 525 1.3×10−38

200 556 1.0×10−38 608 7.1×10−39 508 1.5×10−38 506 1.5×10−38

300 535 1.2×10−38 585 8.4×10−39 488 1.7×10−38 484 1.8×10−38

500 468 2.0×10−38 512 1.4×10−38 427 3.0×10−38 422 3.1×10−38

1000 283 1.5×10−37 309 1.1×10−37 258 2.2×10−37 252 2.4×10−37

environment with 〈v2〉 = 0.24 is considered, which corresponds to the epoch of the early uni-
verse when DM froze out, producing the thermal relic abundance. A 100% branching fraction
of DM annihilating to quarks is assumed. The corresponding truncated limits for D5 and D8
with coupling √gqgχ = 1 are also presented with dashed lines in same shade as the untrun-
cated ones. The value required for DM particles to make up the relic abundance is labeled
“Thermal relic value” and shown as a red dotted line. With this constraint on annihilation rate,
we can conclude that Dirac fermion DM is ruled out at 95% CL for mχ < 6 GeV in the case of
vector coupling and mχ < 30 GeV in the case of axial-vector coupling. Indirect search results
from H.E.S.S [103] and Fermi-LAT [104] are also shown for comparison. These results have
been multiplied by a factor of two since they assume Majorana rather than Dirac fermions.
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Table 5: Expected and observed 90% CL upper limits on the DM-nucleon cross section σχN and
effective cutoff scale Λ for operator D8.

mχ Expected Expected−1σ Expected+1σ Observed
Λ σχN Λ σχN Λ σχN Λ σχN

(GeV) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2)
1 577 8.6×10−41 631 6.0×10−41 527 1.2×10−40 529 1.2×10−40

10 570 2.8×10−40 623 2.0×10−40 520 4.1×10−40 523 4.0×10−40

100 559 3.6×10−40 611 2.5×10−40 510 5.2×10−40 511 5.1×10−40

200 524 4.7×10−40 573 3.3×10−40 478 6.8×10−40 477 6.9×10−40

300 481 6.6×10−40 526 4.6×10−40 439 9.5×10−40 435 9.9×10−40

500 389 1.6×10−39 425 1.1×10−39 355 2.3×10−39 350 2.4×10−39

1000 200 2.2×10−38 219 1.5×10−38 183 3.2×10−38 180 3.4×10−38

Table 6: Expected and observed 90% CL upper limits on the DM-nucleon cross section σχN and
effective cutoff scale Λ for operator D9.

mχ Expected Expected−1σ Expected+1σ Observed
Λ σχN Λ σχN Λ σχN Λ σχN

(GeV) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2)
1 2145 4.5×10−43 2345 3.2×10−43 1957 6.5×10−43 1878 7.6×10−43

10 2143 1.4×10−42 2343 9.9×10−43 1955 2.0×10−42 1871 2.4×10−42

100 2107 1.8×10−42 2304 1.2×10−42 1922 2.6×10−42 1854 3.0×10−42

200 2005 2.2×10−42 2193 1.5×10−42 1829 3.2×10−42 1767 3.6×10−42

300 1867 2.9×10−42 2042 2.0×10−42 1704 4.2×10−42 1642 4.9×10−42

500 1565 5.9×10−42 1712 4.1×10−42 1428 8.5×10−42 1379 9.8×10−42

1000 888 5.7×10−41 971 4.0×10−41 810 8.3×10−41 783 9.5×10−41

Table 7: Expected and observed 90% CL upper limits on the DM-nucleon cross section σχN and
effective cutoff scale Λ for operator C3.

mχ Expected Expected−1σ Expected+1σ Observed
Λ σχN Λ σχN Λ σχN Λ σχN

(GeV) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2) (GeV) (cm2)
1 405 3.9×10−38 443 2.7×10−38 369 5.6×10−38 372 5.5×10−38

10 405 1.2×10−37 443 8.5×10−38 370 1.8×10−37 373 1.7×10−37

100 397 1.6×10−37 434 1.1×10−37 362 2.3×10−37 364 2.2×10−37

200 366 2.2×10−37 400 1.5×10−37 334 3.1×10−37 333 3.2×10−37

300 338 3.0×10−37 369 2.1×10−37 308 4.3×10−37 306 4.4×10−37

500 275 6.9×10−37 300 4.8×10−37 251 9.9×10−37 247 1.1×10−36

1000 143 9.3×10−36 157 6.5×10−36 131 1.3×10−35 128 1.5×10−35

8.2 Unparticle interpretation

In the scenario of the unparticle model, the 95% CL upper limits on the coupling constant
λ between the unparticle and the SM fields with fixed effective cutoff scales ΛU = 10 TeV and
100 TeV, as functions of the scaling dimension dU , are shown on the left of Fig. 9. The right hand
plot of Fig. 9 presents 95% CL lower limits on the effective cutoff scale ΛU with a fixed coupling
λ = 1, and compares the result with the limits obtained from the CMS monojet search [14] and
reinterpretation of LEP searches [37]. The search presented in this paper (labeled “monoZ”)
gives the most stringent limits. Tables 8 and 9 show the 95% CL upper limits on the coupling λ
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Figure 8: The 95% CL upper limits on the DM annihilation rate 〈σv〉 for χχ→ qq as a function
of the DM particle mass for vector (D5) and axial-vector (D8) couplings of Dirac fermion DM. A
100% branching fraction of DM annihilating to quarks is assumed. Indirect search experimental
results from H.E.S.S [103] and Fermi-LAT [104] are also plotted. The value required for DM
particles to account for the relic abundance is labeled “Thermal relic value” and is shown as a
red dotted line. The truncated limits for D5 and D8 with√gqgχ = 1 are presented with dashed
lines in same shade as the untruncated ones.

between unparticles and the SM fields for values of the scaling dimension dU in the range from
1.01 to 2.2, and fixed effective cutoff scales of 10 TeV and 100 TeV. Lower limits at 95% CL on
the effective cutoff scale ΛU are given in Table 10, for dU in the range from 1.6 to 2.2 and a fixed
coupling λ = 1.
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Figure 9: Left: 95% CL upper limits on the coupling λ between the unparticle and SM fields
with fixed effective cutoff scales ΛU = 10 and 100 TeV. The plot inserted provides an expanded
view of the limits at low scaling dimension. Right: 95% CL lower limits on unparticle effective
cutoff scale ΛU with a fixed coupling λ = 1. The results from CMS monojet [14] and reinter-
pretation of LEP searches [37] are also shown for comparison. The excluded region is indicated
by the shading.

8.3 Model-independent limits

As an alternative to the interpretation of the results in specific models, a single-bin analysis
is applied to obtain model-independent expected and observed 95% CL upper limits on the
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Table 8: Expected and observed 95% CL upper limits on the coupling λ between unparticles
and the SM fields, for values of dU in the range from 1.01 to 2.20 and a fixed effective cutoff
scale ΛU = 10 TeV.

dU λ
Expected Expected−1σ Expected+1σ Observed

1.01 0.045 0.038 0.053 0.039
1.02 0.035 0.030 0.041 0.032
1.04 0.029 0.025 0.034 0.029
1.06 0.028 0.024 0.033 0.026
1.09 0.029 0.025 0.035 0.030
1.10 0.030 0.026 0.036 0.028
1.30 0.083 0.071 0.098 0.080
1.50 0.270 0.230 0.318 0.278
1.70 0.853 0.725 1.006 0.903
1.90 2.83 2.41 3.34 3.04
2.20 14.6 12.4 17.2 16.2

Table 9: Expected and observed 95% CL upper limits on the coupling λ between unparticles
and the SM fields, for values of dU in the range from 1.01 to 2.20 and a fixed effective cutoff
scale ΛU = 100 TeV.

dU λ
Expected Expected−1σ Expected+1σ Observed

1.01 0.046 0.039 0.054 0.040
1.02 0.036 0.031 0.043 0.034
1.04 0.032 0.027 0.038 0.032
1.06 0.032 0.027 0.038 0.030
1.09 0.036 0.031 0.043 0.037
1.10 0.038 0.033 0.045 0.036
1.30 0.166 0.141 0.196 0.160
1.50 0.855 0.726 1.007 0.879
1.60 1.85 1.57 2.18 1.93
1.70 4.28 3.63 5.04 4.52
1.90 22.5 19.1 26.5 24.2
2.20 232 197 273 256

Table 10: Expected and observed 95% CL lower limits on the effective cutoff scale ΛU for values
of dU in the range from 1.60 to 2.20 and a fixed coupling λ = 1.

dU ΛU (TeV)
Expected Expected−1σ Expected+1σ Observed

1.50 137 190 98.6 129
1.60 35.8 47.0 27.2 33.3
1.70 12.5 15.8 9.92 11.6
1.80 6.16 7.55 5.02 5.64
1.90 3.15 3.77 2.62 2.90
2.00 2.11 2.49 1.79 1.95
2.20 1.07 1.22 0.93 0.98

visible cross section σBSM
vis for beyond the standard model (BSM) physics processes. The limits
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as a function of Emiss
T thresholds are shown in Fig. 10. With a Emiss

T threshold of 80 (150) GeV,
we exclude the visible cross section σBSM

vis > 2.5 (0.85) fb. Table 11 shows the total SM back-
ground predictions for the numbers of events passing the selection requirements, for different
Emiss

T thresholds, compared with the observed numbers of events. The 95% CL expected and
observed upper limits for the contribution of events from BSM sources are also shown.

 threshold [GeV]miss
TE

80 90 100 110 120 130 140 150

 [p
b]

ε
 A

 
σ

 =
 

vi
s

BS
M

σ

3−10

2−10
Observed
Expected

σ 1±Expected
σ 2±Expected

 (8 TeV)-119.7 fb

CMS
T
miss + E-ℓ+ℓ→T
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Figure 10: The model-independent upper limits at 95% CL on the visible cross section (σ A ε)
for BSM production of events, as a function of Emiss

T threshold.

Table 11: Total SM background predictions for the numbers of events passing the selection re-
quirements, for different Emiss

T thresholds, compared with the observed numbers of events. The
listed uncertainties include both statistical and systematic components. The 95% CL observed
and expected upper limits for the contribution of events from BSM sources are also shown. The
±1σ and ±2σ excursions from expected limits are also given.

Emiss
T (GeV) threshold 80 90 100 110 120 130 140 150

Total SM 263 193 150 117 90.5 72.5 59.2 45.1
Total uncertainty ±30 ±24 ±20 ±16 ±13 ±12 ±9.6 ±7.6
Data 244 172 141 104 74 61 50 43
Obs. upper limit 48.3 36.5 33.8 25.9 19.1 18.2 16.5 16.7
Exp. upper limit +2σ 102 81.7 71.3 59.2 48.3 43.1 37.9 33.8
Exp. upper limit +1σ 76.5 61.5 53.7 44.6 36.4 32.4 28.5 25.4
Exp. upper limit 55.1 44.3 38.6 32.1 26.2 23.4 20.5 18.3
Exp. upper limit -1σ 39.7 32.0 27.9 23.2 18.9 16.9 14.8 13.2
Exp. upper limit -2σ 29.9 24.0 21.0 17.4 14.2 12.7 11.1 9.90

9 Summary
A search for evidence for particle dark matter (DM) and unparticle production at the LHC has
been performed in events containing two charged leptons, consistent with the decay of a Z
boson, and large missing transverse momentum. The study is based on a data set correspond-
ing to an integrated luminosity of 19.7 fb−1 of pp collisions collected by the CMS detector at
a center-of-mass energy of 8 TeV. The results are consistent with the expected standard model
contributions. These results are interpreted in two scenarios for physics beyond the standard
model: dark matter and unparticles. Model independent 95% confidence level upper limits are
also set on contributions to the visible Z+Emiss

T cross section from sources beyond the standard
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model. Upper limits at 90% confidence level are set on the DM-nucleon scattering cross sections
as a function of DM particle mass for both spin-dependent and spin-independent cases. Limits
are also set on the DM annihilation rate assuming a branching fraction of 100% for annihilation
to quarks, and on the effective cutoff scale. In addition, the most stringent limits to date at 95%
confidence level on the coupling between unparticles and the standard model fields as well as
the effective cutoff scale as a function of the unparticle scaling dimension are obtained in this
analysis.
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S. Röcker, F. Roscher, G. Sieber, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand,
M. Weber, T. Weiler, C. Wöhrmann, R. Wolf
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INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa ,b, C. Calabriaa,b, C. Caputoa ,b, A. Colaleoa, D. Creanzaa ,c, L. Cristellaa,b, N. De
Filippisa ,c, M. De Palmaa,b, L. Fiorea, G. Iasellia ,c, G. Maggia,c, M. Maggia, G. Minielloa ,b,
S. Mya ,c, S. Nuzzoa ,b, A. Pompilia ,b, G. Pugliesea,c, R. Radognaa,b, A. Ranieria, G. Selvaggia ,b,
L. Silvestrisa,2, R. Vendittia,b, P. Verwilligena

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
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L. Baronea ,b, F. Cavallaria, G. D’imperioa,b ,2, D. Del Rea,b ,2, M. Diemoza, S. Gellia,b, C. Jordaa,
E. Longoa,b, F. Margarolia,b, P. Meridiania, G. Organtinia ,b, R. Paramattia, F. Preiatoa ,b,
S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, P. Traczyka ,b ,2
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