
J
H
E
P
0
2
(
2
0
1
6
)
1
2
3

Published for SISSA by Springer

Received: December 14, 2015

Accepted: January 16, 2016

Published: February 18, 2016

CP violation in heavy MSSM Higgs scenarios

M. Carena,a,b,c J. Ellis,d,e J.S. Lee,f A. Pilaftsise,g and C.E.M. Wagnerb,c,h

aFermi National Accelerator Laboratory,

P.O. Box 500, Batavia IL 60510, U.S.A.
bEnrico Fermi Institute, University of Chicago,

Chicago, IL 60637, U.S.A.
cKavli Institute for Cosmological Physics, University of Chicago,

Chicago, IL 60637, U.S.A.
dTheoretical Particle Physics and Cosmology Group, Department of Physics,

King’s College London,

London WC2R 2LS, United Kingdom
eTheory Division, CERN,

CH-1211 Geneva 23, Switzerland
fDepartment of Physics, Chonnam National University,

300 Yongbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea
gConsortium for Fundamental Physics, School of Physics and Astronomy,

University of Manchester,

Manchester M13 9PL, United Kingdom
hHEP Division, Argonne National Laboratory,

9700 Cass Ave., Argonne, IL 60439, U.S.A.

E-mail: carena@fnal.gov, John.Ellis@cern.ch, jslee@jnu.ac.kr,

apostolos.pilaftsis@manchester.ac.uk, cwagner@hep.anl.gov

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2016)123

FERMILAB-PUB-15-508-T

 Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

mailto:carena@fnal.gov
mailto:John.Ellis@cern.ch
mailto:jslee@jnu.ac.kr
mailto:apostolos.pilaftsis@manchester.ac.uk
mailto:cwagner@hep.anl.gov
http://dx.doi.org/10.1007/JHEP02(2016)123


J
H
E
P
0
2
(
2
0
1
6
)
1
2
3

Abstract: We introduce and explore new heavy Higgs scenarios in the Minimal Super-

symmetric Standard Model (MSSM) with explicit CP violation, which have important

phenomenological implications that may be testable at the LHC. For soft supersymmetry-

breaking scales MS above a few TeV and a charged Higgs boson mass MH+ above a few

hundred GeV, new physics effects including those from explicit CP violation decouple from

the light Higgs boson sector. However, such effects can significantly alter the phenomenol-

ogy of the heavy Higgs bosons while still being consistent with constraints from low-energy

observables, for instance electric dipole moments. To consider scenarios with a charged

Higgs boson much heavier than the Standard Model (SM) particles but much lighter than

the supersymmetric particles, we revisit previous calculations of the MSSM Higgs sector.

We compute the Higgs boson masses in the presence of CP violating phases, implementing

improved matching and renormalization-group (RG) effects, as well as two-loop RG effects

from the effective two-Higgs Doublet Model (2HDM) scale MH± to the scale MS . We

illustrate the possibility of non-decoupling CP-violating effects in the heavy Higgs sector

using new benchmark scenarios named CPX4LHC.
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1 Introduction

Supersymmetry (SUSY) remains one of the best-motivated extensions of the Standard

Model (SM), despite the current lack of evidence for supersymmetric partner particles at the

LHC. In particular, the discovery of a light Higgs boson in Run I of the LHC, is in agreement

with the predictions from SUSY. Supersymmetric theories provide a viable mechanism

for stabilizing the electroweak vacuum [1] and require a restricted range for the mass of

the lightest Higgs boson [2–4] that contains the measured value [5]. Moreover, minimal

low-energy SUSY models with masses of the additional Higgs bosons and supersymmetric

particles larger than the weak scale lead to values of the lightest Higgs couplings that are

close to the SM ones [6], as suggested by current LHC experiments [7].

On the other hand, the non-discovery of SUSY in Run I of the LHC has disproved

benchmark scenarios proposed previously [8], and motivates the consideration of new

benchmarks that can be tested in future runs of the LHC. Specifically, it is plausible

to consider the case that the common soft SUSY-breaking scale MS is >∼ 2 TeV, whereas

the mass scale MH of the heavy MSSM Higgs bosons, as determined by the charged Higgs

boson mass MH+ , could be somewhat lower, in the few to several hundred GeV range. In

relation to this, we recall that future runs of the LHC at 13/14 TeV are expected to be
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sensitive to squarks and gluinos weighing <∼ 3 TeV, and heavy MSSM Higgs bosons weigh-

ing <∼ 2 TeV depending on the value of tan β. Accordingly, in this paper we introduce and

explore MSSM Higgs boson benchmark scenarios with 100 GeV �MH �MS >∼ 2 TeV.

Our principal interest in new heavy Higgs boson benchmark scenarios is the possi-

ble manifestation of observable CP violation in the Higgs sector of the MSSM. It is well

known [9–17] that such a possibility arises in the MSSM Higgs potential beyond the tree-

level approximation, predominantly from CP phases in the soft SUSY-breaking trilinear

couplings of stops and sbottoms, but also from CP phases in the gaugino masses. However,

experimental upper limits on electric dipole moments (EDMs) severely constrain the size of

such CP-violating parameters as predicted in the MSSM at one-, two- and higher loops [18].

In particular, in the absence of cancellations between these different contributions [19, 20]

as occur along specific directions in the space of CP-odd phases [21, 22], the EDM con-

straints effectively preclude the observation of CP-violating effects in the couplings of the

Higgs boson discovered at the LHC [23]. However, the observation of CP violation effects

elsewhere, notably in the heavy MSSM Higgs sector [10, 11, 14] or B-meson decays [24, 25]

is not excluded. These CP-violating effects have often been studied in the framework of

the CPX scenarios proposed previously [8], but in light of the LHC Run-I limits on super-

symmetric particle masses and the observed Higgs boson properties, the CPX benchmarks

should be revisited.

With the above motivations in mind, in this paper we present new precision calculations

of the MSSM Higgs spectrum in the presence of CP violation, which are suitable for

scenarios in which the SUSY scale MS is (far) beyond the TeV region. To this end, we solve

the two-loop RGEs of the two-Higgs-doublet model (2HDM) in the range MS > Q > MH ,

as well as the two-loop SM RGEs in the range MH > Q > mpole
t , implementing full one-loop

matching conditions at the relevant thresholds MS ,MH and mpole
t . All the improvements

considered here are being implemented in a new version of the public code CPsuperH [26–

28], namely CPsuperH3.0.1 The full description with all the detailed information about

CPsuperH3.0 will be presented in a future publication.

Section 2 of this paper reviews the conventions and notations of CPsuperH that we use

for our analysis, as well as some basic formulae for the Higgs boson self-energies. Section 3

specifies the matching conditions and the RG running effects that we incorporate. In

section 4 we present some numerical results for the Higgs spectra. In section 5 we introduce

our new CP-violating benchmark scenarios (CPX4LHC) for the MSSM heavy Higgs sector,

and present the results for the CPX4LHC benchmarks. Our conclusions are summarized

in section 6. The main text of the paper is accompanied by appendices containing detailed

formulae: appendix A.1 contains the relevant SM RGEs, appendix A.2 contains the one-

loop 2HDM RGEs, appendix A.3 contains the two-loop 2HDM RGEs, and appendix A.4

summarizes the threshold corrections to quartic couplings at the scale MS .

2 The CP-violating MSSM Higgs sector

In this section we review the computation of the Higgs boson self-energies and pole masses

and record the basic expressions used in CPsuperH3.0, that underlie our present analysis.

1For another tool to calculate CP-violating effects in the MSSM, see [29, 30].
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We follow the conventions and notations of CPsuperH [26–28], unless stated otherwise

explicitly.

2.1 The two-Higgs-doublet model (2HDM)

The tree-level 2HDM Higgs potential can be written as [11]:

LV = µ21

(
Φ†1Φ1

)
+ µ22

(
Φ†2Φ2

)
+m2

12

(
Φ†1Φ2

)
+m∗212

(
Φ†2Φ1

)
+ λ1

(
Φ†1Φ1

)2
+ λ2

(
Φ†2Φ2

)2
+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+ λ5

(
Φ†1Φ2

)2
+ λ∗5

(
Φ†2Φ1

)2
(2.1)

+λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ∗6

(
Φ†1Φ1

)(
Φ†2Φ1

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ λ∗7

(
Φ†2Φ2

)(
Φ†2Φ1

)
.

The relations between these and the conventional MSSM parameters are

µ21 = −m2
1 − |µ|2 , µ22 = −m2

2 − |µ|2 , λ1 = λ2 = − 1

8

(
g2 + g′2

)
,

λ3 = −1

4

(
g2 − g′2

)
, λ4 =

1

2
g2 , λ5 = λ6 = λ7 = 0 . (2.2)

The doublet Higgs fields may be decomposed as follows:

Φ1 =

(
φ+1

1√
2

(v1 + φ1 + ia1)

)
, Φ2 = eiξ

(
φ+2

1√
2

(v2 + φ2 + ia2)

)
, (2.3)

where the charged and neutral Goldstone bosons, G± and G0, are determined through the

relations: (
G+

H+

)
=

(
cβ sβ
− sβ cβ

) (
φ+1
φ+2

)
,

(
G0

a

)
=

(
cβ sβ
− sβ cβ

) (
a1
a2

)
, (2.4)

with sβ ≡ sinβ, cβ ≡ cosβ and tanβ = v2/v1.

To make contact with the notations used in [31], we make the following identifications:

Hu = Φ2 and Hd = Φ̃1 = iτ2Φ
∗
1 = (φ0∗1 ,−φ

−
1 )T . Moreover, the kinematic parameters as

defined in [31] are related to ours as follows:

m2
11 → −µ21 , m2

22 → −µ22 , m2
12 → +m2

12 ,

λ1 → −2λ1 , λ2 → −2λ2 , λ3 → −λ3 , λ4 → −λ4 ,

λ5 → −2λ5 , λ6 → −λ6 , λ7 → −λ7 ,

g2 → g , g1 → g′ · · · (2.5)

The one-loop 2HDM RGEs are given in appendix A.2,2 and the two-loop 2HDM RGEs are

given in refs. [32, 33] and appendix A.3.

2We note that the RGE running parameter used in ref. [31] is related to ours by t→ 2t.
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2.2 Charged Higgs bosons

In the {φ±1 , φ
±
2 } basis, the RG-improved charged Higgs-boson self-energy matrix can be

found in eq. (2.6) of ref. [16]:(
Π̂±
)
ij

(s) = −
(
M2
±

)
ij

+ (ξ+i ξ
−
j )−1

(
∆Π±

)f̃
ij

(s) +
(

Π̃±
)f
ij

(s) . (2.6)

The first term, M2
±, is the two-loop Born-improved squared-mass matrix,

M2
± =

(
1

2
λ̄4v1v2 + <em2

12

)(
tanβ −1

−1 cotβ

)
, (2.7)

expressed in terms of relevant parameters such as the real part of the soft bilinear Higgs

mixing, <em2
12, and the quartic coupling λ4. The bar on these parameters indicates the

sum of the tree-level and of the one- and two-loop leading logarithmic contributions. When

solving the 2HDM RGEs, λ̄4 is to be estimated at the scale MH where the heavy Higgs

bosons decouple, and <em2
12 is fixed when the charged-Higgs-boson pole mass is given as

an input, as shown below.

The second term in (2.6) describes the threshold effects of the sfermions (top and bot-

tom squarks) and is the product of two quantities: (i) the anomalous dimension factors ξi

ξi = exp

[
−
∫ lnMS

lnMH

γi(t) dt

]
, (2.8)

defined in terms of the anomalous-dimensions of the external Higgs fields γi ≡ d ln Φi/dt

(in this case the charged Higgs fields), and (ii) the scale-invariant one-loop threshold con-

tribution from the top and bottom squarks

(
∆Π±

)f̃
=

(
1

2
λ
(1)
4 v1v2 + <em

2(1)
12

)(
tanβ −1

−1 cotβ

)
+
(

Π̃±
)f̃

. (2.9)

In the above, the SUSY-breaking scale MS is used to decouple the heavy sfermions. More-

over, the superscript “(1)” in λ
(1)
4 and <em

2(1)
12 indicates that these quantities contain the

one-loop leading logarithmic contributions and they can be obtained from eqs. (3.6) and

(3.7) of [14] by choosing Q = MS .

We note that the vacuum expectation values (VEVs) v1,2 of the Higgs doublets Φ1,2,

and hence tan β, evolve with the wave-function renormalization factors ξ1,2 of the corre-

sponding neutral Higgs bosons:

vi(MS) = vi(MH)/ξi , tanβ(MS) = tan β(MH)
ξ1
ξ2
, (2.10)

where tan β(MH) is the input value of tan β, i.e. at the scale Q = MH . Consequently, the

SM VEV v is related to the Higgs VEVs v1,2 through:

v1(MH) = cβ(MH) v(MH) , v2(MH) = sβ(MH) v(MH) . (2.11)
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The SM VEV v is fixed at the RG scale Q = mt, by virtue of the relation: v(MH) =

v(mt)/ξSM, where

ξSM = exp

[
−
∫ lnMH

lnmt

γ(t) dt

]
. (2.12)

Here γ(t) is the anomalous dimension of the SM Higgs doublet, which is given in (A.12) in

the one-loop approximation.

Finally, the last terms on the RHSs of (2.9) and (2.6), namely
(

Π̃±
)f̃

and
(

Π̃±
)f

, can

be expressed as follows,

(
Π̃±
)f̃/f

=
(
Π±
)f̃/f

+

 (Tφ1)
f̃/f

v1
i (Ta)

f̃/f

v

−i (Ta)
f̃/f

v
(Tφ2)

f̃/f

v2

 , (2.13)

with all quantities in the r.h.s. of (2.13) computed in the MS scheme. Explicit one-loop

calculations yield(
Π±
)f̃

= Π± (a) + Π± (b) ,
(
Tφ1,2

)f̃
= T

(d)
φ1,2

,
(
Ta1,2

)f̃
= T (d)

a1,2 ,(
Π±
)f

= Π± (c) ,
(
Tφ1,2

)f
= T

(e)
φ1,2

,
(
Ta1,2

)f
= 0 , (2.14)

with Ta = Ta2/cβ = −Ta1/sβ and where Π± (a), Π± ,(b), Π± (c), T
(d)
φ1,2

, T
(d)
a1,2 , and T

(e)
φ1,2

are

given by eqs. (B.12), (B.13), (B.15), and (B.16) in [16]. The sfermionic contributions should

be calculated at the scale MS , whereas the fermionic contributions are evaluated at MH .

In the {G±, H±} basis, the inverse-propagator matrix of the charged Higgs bosons is

given by

∆̂−1± (s) = s12×2 +

(
cβ sβ
−sβ cβ

)
Π̂±(s)

(
cβ −sβ
sβ cβ

)
, (2.15)

where we have defined (
Π̂±
)
ij

(s) = −
(
M2
±

)
ij

+
(

∆Π̂±
)
ij

(s) . (2.16)

In (2.15), the {22} matrix element of the second term is given by(
Π̂±
)
11
s2β −

[(
Π̂±
)
12

+
(

Π̂±
)
21

]
sβcβ +

(
Π̂±
)
22
c2β

= −
(

1

2
λ̄4v

2 +
<em2

12

cβsβ

)
+ ∆Π̂H+H− , (2.17)

with

∆Π̂H+H− ≡
(

∆Π̂±
)
11
s2β −

[(
∆Π̂±

)
12

+
(

∆Π̂±
)
21

]
sβcβ +

(
∆Π̂±

)
22
c2β . (2.18)

This yields the pole mass condition

<e
(

∆̂−1±

)
22

(s = M2
H±)

= M2
H± −

(
1

2
λ̄4v

2 +
<em2

12

cβsβ

)
+ <e∆Π̂H+H−(s = M2

H±) = 0 , (2.19)

which may be used to eliminate <em2
12 in favor of the charged-Higgs boson pole mass M2

H± .
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2.3 Neutral Higgs bosons

In the {φ1, φ2, a1, a2} basis, eq. (2.14) of [16] takes the form

Π̂N (s) =

 Π̂S(s) Π̂SP (s)(
Π̂SP (s)

)T
Π̂P (s)

 , (2.20)

with (
Π̂S
)
ij

(s) = −
(
M2

S

)
ij

+ (ξiξj)
−1 (∆ΠS

)f̃
ij

(s) +
(

Π̃S
)f
ij

(s) ,

(
Π̂P
)
ij

(s) = −
(
M2

P

)
ij

+ (ξiξj)
−1 (∆ΠP

)f̃
ij

(s) +
(

Π̃P
)f
ij

(s) ,

(
Π̂SP

)
ij

(s) = (ξiξj)
−1
(

Π̃SP
)f̃
ij

(s) +
(

Π̃SP
)f
ij

(s) . (2.21)

where, in analogy with eq. (2.8), ξi are the corresponding anomalous dimension factors of

the neutral Higgs fields.

The quantities M2
S and M2

P appearing here may be written in the forms

M2
S = <em2

12

(
tanβ −1

−1 cotβ

)
− v2

(
2λ̄1c

2
β λ̄34cβsβ

λ̄34cβsβ 2λ̄2s
2
β

)
,

M2
P = <em2

12

(
tanβ −1

−1 cotβ

)
, (2.22)

where λ̄1, λ̄2, and λ̄34 = λ̄3 + λ̄4 are to be evaluated by solving the 2HDM RGEs at the

scale MH .

The quantities ∆ΠS and ∆ΠP may be written as

(
∆ΠS

)f̃
= <em

2(1)
12

(
tβ −1

−1 1/tβ

)
− v2

(
2λ

(1)
1 c2β λ

(1)
34 cβsβ

λ
(1)
34 cβsβ 2λ

(1)
2 s2β

)
+
(

Π̃S
)f̃

,

(
∆ΠP

)f̃
= <em

2(1)
12

(
tβ −1

−1 1/tβ

)
+
(

Π̃P
)f̃

, (2.23)

where λ
(1)
1,2,34 and <em

2(1)
12 can be obtained from eqs. (3.3), (3.4), (3.5), (3.6) and (3.7)

of [14] by choosing Q = MS .

The quantities Π̃S,P,SP are given in the MS scheme by eq. (2.11) of [16]:

Π̃S = ΠS +

(
Tφ1
v1

0

0
Tφ2
v2

)
,

Π̃SP = ΠSP +
Ta
v

(
0 +1

−1 0

)
,

Π̃P = ΠP +

(
Tφ1
v1

0

0
Tφ2
v2

)
. (2.24)
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Here,
(
ΠS
)f̃

and
(
ΠS
)f

are given by

(
ΠS
)f̃

= ΠS,(a) + ΠS,(b) ,
(
ΠS
)f

= ΠS,(c) , (2.25)

which are specified in eqs. (B.5), (B.6), and (B.14) of [16]. In addition,
(
ΠP
)f̃

and
(
ΠP
)f

are given by (
ΠP
)f̃

= ΠP,(a) + ΠP,(b) ,
(
ΠP
)f

= ΠP,(c) ,

which can be obtained from eqs. (B.5), (B.6) by replacing φi → ai and from eq. (B.14)

of [16]. Moreover, the CP-violating self-energies
(
ΠSP

)f̃
and

(
ΠSP

)f
may be expressed as

(
ΠSP

)f̃
= ΠSP ,(a) ,

(
ΠSP

)f
= 0 . (2.26)

The non-zero self-energy ΠSP ,(a) is given by eq. (B.11) of [16].

Finally, the inverse propagator matrix of the neutral Higgs bosons in the {φ1, φ2, a,G0}
basis is given by

∆̂−1N (s) = s14×4 +


1 0 0 0

0 1 0 0

0 0 −sβ cβ
0 0 cβ sβ

 Π̂N (s)


1 0 0 0

0 1 0 0

0 0 −sβ cβ
0 0 cβ sβ

 , (2.27)

and the physical masses can be obtained from the pole-mass conditions. We should reiterate

here that the parameter tan β is defined at s = 0. In this kinematic limit, the Goldstone

boson G0 decouples from the 4 × 4 propagator matrix, independently of the presence of

explicit CP violation in the theory [9], as a consequence of the Goldstone theorem.

3 Matching conditions and RG running effects

Here we detail the MS renormalization group approach that we follow for the computation

of the masses and mixings of the neutral and charged Higgs bosons in the CP-violation

case. In particular, we state explicitly our matching conditions at the relevant threshold

scales. Given these matching conditions, we compute the RG running effects to the relevant

gauge, Yukawa and quartic couplings between the different threshold scales.

To start with, we define the SUSY-breaking scale MS by

M2
S ≡ max

(
M2
Q̃3

+m2
t ,M

2
Ũ3

+m2
t , M

2
D̃3

+m2
b ,M

2
L̃3

+m2
τ , M

2
Ẽ3

+m2
τ

)
, (3.1)

which acts as the SUSY threshold scale. For the purposes of this study, we ignore possible

hierarchies between the third-generation sfermions, by assuming they are small as compared

to the other two hierarchical scales: (i) the heavy Higgs-sector scale MH ≡ MH+ ; (ii) the

top-quark mass mt.

– 7 –
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The matching conditions for the quartic and Yukawa couplings at the threshold MS

are as follows:

λ̄1 = λ̄2 = − 1

8

(
g2 + g′2

)
, λ̄3 = −1

4

(
g2 − g′2

)
, λ̄4 =

1

2
g2 ;

hMSSM
t =

h2HDM
t

1 + δt + cotβ∆t
,

hMSSM
b =

h2HDM
b

1 + δb + tanβ∆b
,

hMSSM
τ =

h2HDM
τ

1 + tanβ∆τ
, (3.2)

where ∆f = ∆hf/h
MSSM
f , δf = δhf/h

MSSM
f , and ∆hf and δhf are the supersymmetric

threshold corrections to the third generation Yukawa couplings [14, 34]. The difference

between δhf and ∆hf is that δhf is a radiative correction to the supersymmetric hMSSM
f

coupling of up-quarks, down-quarks and leptons. The coupling ∆hf , instead, is a loop-

induced coupling of the fermions to the Higgs doublet to which they do not couple in the

supersymmetric limit. Therefore, below the scale MS the theory becomes a general 2HDM,

with up-quarks coupled to Φ2 and down-quarks and leptons coupled to Φ1, with couplings

given by hMSSM
f (1+δf ), respectively, but with additional loop-induced couplings ∆hf to the

other Higgs doublet. The couplings h2HDM
f are the combinations of these Yukawa couplings

related to the running fermion masses in the same way as in a Type-II 2HDM. Notice that

in the present approach, we treat the loop-induced couplings ∆hf as small departures from

a Type-II 2HDM. Hence, we are working in a Type-II approximation to a general 2HDM.

The RGEs for the 2HDM used for MS > Q > MH are described in appendices A.2

and A.3. At the heavy Higgs threshold MH ≡MH± , the following matching conditions are

employed:

λ =

(
MEP
H1

)2
v2

− 1

16
κ
(
g2 + g′2

)2
s24β ,

h2HDM
t =

yt
sβ
, h2HDM

b =
yb
cβ
, h2HDM

τ =
yτ
cβ
, (3.3)

where MEP
H1

denotes the effective potential mass of the lightest neutral Higgs boson calcu-

lated in the limit of zero external momentum s = 0. In the above, we have ignored the

small effects due to scheme conversion from dimensional regularization to dimensional re-

duction [35]. In practice, while evaluating the evolution of the gauge, Yukawa and quartic

couplings, at MH < Q < MS , we have assumed an effective Type-II 2HDM, in which the

Yukawa couplings are given by h2HDM
f with the matching condition, eq. (3.3) given at the

scale MH . As already mentioned above, this amounts to an approximate treatment of the

loop-induced ∆hf effects on the computation of the Higgs boson masses and mixing angles.

At scales below the heavy Higgs scale MH , the only physical degrees of freedom are

the SM ones. The RGEs for the SM used for Q < MH are described in appendix A.1. We
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define the SM Higgs potential as

V (Φ) = − m
2

2
|Φ|2 +

λ

2
|Φ|4 ,

with Φ = (0, (v + h)/
√

2)T and λ = m2/v2. Note that the quartic coupling of Φ is defined

with a factor (-2) difference compared to the quartic couplings of Φ1,2 in eq. (2.1). In

order to compare with the experimental results, it is important to define the SM boundary

conditions for the gauge, Yukawa and quartic couplings. In our work we use [36]

yt = 0.93697 + 0.00550

(
mpole
t

GeV
− 173.35

)
− 0.00042

αs(MZ)− 0.1184

0.0007
,

gs = 1.1666 + 0.00314
αs(MZ)− 0.1184

0.0007
− 0.00046

(
mpole
t

GeV
− 173.35

)
,

g′ = 0.3587 , g = 0.6483 , yb = 0.0156 , yτ = 0.0100 . (3.4)

The pole mass-squared of the lightest Higgs boson is then given by [35]:(
Mpole
H1

)2
= λ

(
mpole
t

)
v2
(
mpole
t

)
+κ

{
3y2t
(
4m2

t −m2
h

)
B0

(
m2
h,m

2
t ,m

2
t

)
− 9

2
λm2

h

[
2− π√

3
− log

m2
h

Q2
RG

]
−v

2

4

[
3g4 − 4λg2 + 4λ2

]
B0

(
m2
h,M

2
W ,M

2
W

)
−v

2

8

[
3
(
g2 + g′2

)2− 4λ
(
g2 + g′2

)
+ 4λ2

]
B0

(
m2
h,M

2
Z ,M

2
Z

)
+

1

2
g4
[
g2 − λ

(
log

M2
W

Q2
RG

− 1

)]
+

1

4

(
g2 + g′2

)[(
g2 + g′2

)
− λ

(
log

M2
Z

Q2
RG

− 1

)]}
,

(3.5)

where mt = ytv/
√

2 and m2
h = λ(mpole

t ) v2(mpole
t ). We take the renormalization group

scale QRG = mpole
t , and the function B0 used in (3.5) is defined in [16].

4 Numerical results for the MSSM Higgs sector

We first illustrate the effects of the RG running in the range of scales Q > MH using a

specific scenario with universal SUSY parameters fixed to be 1 TeV:

µ = M1,2,3 = MQ̃3,Ũ3,D̃3,L̃3,Ẽ3
= At,b,τ = 1 TeV , ρQ̃,Ũ ,D̃,L̃,Ẽ = 1 , (4.1)

where ρQ̃ = MQ̃1,2
/MQ̃3

, ρŨ = MŨ1,2
/MŨ3

, etc, and we have assumed no hierarchy

between the three generations of sfermion masses.

Figure 1 illustrates with black lines the one-loop running of the 2HDM quartic couplings

up to Q = 106 GeV in the above scenario, eq. (4.1), and compares them with the running of
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Figure 1. The black lines show the one-loop running of the 2HDM quartic couplings for Q <

106 GeV, assuming MH± = 300 GeV and tan β = 5. The other input parameters are given in

eq. (4.1). The thin red lines show the running of −(g2 + g′2)/8, −(g2 − g′2)/4, and g2/2 in the

panels for λ̄1,2, λ̄3, and λ̄4, respectively.

the corresponding combinations of electroweak gauge couplings (red lines). Since there is a

single SUSY-breaking scale of 1 TeV and hence a single threshold, the couplings are matched

at this scale, and the red and black lines diverge as Q decreases from MS = 1 TeV to

MH = MH± = 300 GeV. Above MS the RG evolution of the quartic couplings (black lines)

are the same as those of the corresponding combinations of electroweak gauge couplings

(red lines), i.e., the red and black lines lie on top of each other. This provides a non-trivial

consistency check for the correctness of our results.

In the same context, it is important to comment that, for hierarchical scenarios with

ρ > 1, where ρ ≡ max (ρQ̃,Ũ ,D̃,L̃,Ẽ), the proper matching conditions should be imposed

at the highest soft SUSY-breaking scale M ′S = ρMS , rather than MS . As an illustrative

example, we consider another scenario with various different values for the soft SUSY

breaking parameters:

µ = 500 GeV , M1 = 100 GeV , M2 = 200 GeV , M3 = 2 iTeV ,

mQ̃3,Ũ3,D̃3,L̃3,Ẽ3
= 10 TeV , At,b,τ = 1 iTeV , ρQ̃,Ũ ,D̃,L̃,Ẽ = 10 . (4.2)
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Figure 2. The same as in figure 1, but for an hierarchical scenario with ρ = 10 and input parameters

given in eq. (4.2).

In this scenario, the matching conditions are imposed at the highest soft SUSY-breaking

scale M ′S = 105 GeV instead of MS = 104 GeV, as illustrated in figure 2. We observe that

the running between MS and M ′S changes the size of the quartic couplings by an amount

of ∼ 2% for ρ = 10, which results in a less than 1 GeV increase in the mass prediction for

the H1 boson. Even though such changes may not appear too significant for scenarios with

mass spectrum hierarchies of ρ <∼ 10, they are nevertheless accurately described within our

multi-threshold RG approach that we follow here for the computation of the Higgs-boson

masses and mixing angles.

Next, we compare some results of CPsuperH3.0 with the corresponding results of

CPsuperH2.3 in the MHMAX scenario [38, 39], where Xt =
√

6MS and µ = 200 GeV.

In order to isolate the effects of the running in the range MH < Q < MS , where the

effective 2HDM description is valid, we consider examples with MH± ' mpole
t . Figure 3

compares calculations of the lightest Higgs mass MH1 , and figure 4 shows results for the two

heavier neutral Higgs bosons H1,2, for MH± = 180 GeV. In order to isolate the effects of

the resummation of logarithms associated with the RG effects, we modified CPsuperH2.3,

setting mt(m
pole
t ) = 162.88 GeV as obtained using eq. (3.4), instead of the value obtained

from the one-loop relation between the pole and running masses: mt(m
pole
t ) = mpole

t /[1 +

4αs(m
pole
t )/(3π)] '165.5 GeV, that was the standard value in CPsuperH2.3. The lower
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Figure 3. The lightest Higgs mass calculated in the MHMAX scenario using CPsuperH3.0 (solid

lines) and CPsuperH2.3 (dashed lines) as functions of MS = MQ3 = MU3 = MD3 = ML3 = ME3

for MH± = 180 GeV, µ = 200 GeV and various values of tan β.

value of the running top quark mass we use is based on higher-order loop corrections to

the relation between the pole and running masses [36, 37] and, as stressed before, it is used

as the standard value for CPsuperH3.0.

From figure 3 we see that in the MHMAX scenario, the mass of the lightest Higgs boson

calculated using CPsuperH3.0 is ∼ 1 GeV smaller than that obtained using CPsuperH2.3

for MS = MQ̃3
= MŨ3

= MD̃3
= ML̃3

= MẼ3
= 1 TeV.3 This ∼ 1 GeV difference may be

attributed to the use of h2HDM
t in CPsuperH3.0 in the running to low energies. Namely,

whereas in CPsuperH2.3 the top Yukawa coupling appearing in λ
(1),(2)
2 given by eqs. (3.4)

and (3.10) of ref. [14] includes the threshold corrections, we have not included these cor-

rections in CPsuperH3.0. These Yukawa thresholds are still included in the relevant com-

putation of the threshold corrections to the quartic couplings, which lead to the asym-

metry between positive and negative values of Xt = At − µ∗/ tanβ in the CP-conserving

limit of the theory. This small difference between the CPsuperH3.0 and CPsuperH2.3 is

rapidly compensated by RG effects and, as expected, the mass difference changes sign

when MS ∼ 2 TeV, and the new calculation of MH1 is larger than the old one by ∼ 5 GeV

when MS ∼ 8 TeV, the difference being only weakly dependent on tan β. We do not show

results for CPsuperH2.3 at tanβ = 5 and 10 and MS > 8 TeV, since this program becomes

unstable for that region of parameters.

3Here we ignore the small difference of MS from that defined in eq. (3.1), but this difference is taken

into account in all the numerical results presented in this work.
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Figure 4. The two heavier neutral Higgs masses MH2,3
calculated in the MHMAX scenario using

CPsuperH3.0 (solid lines) and CPsuperH2.3 (dashed lines), for the same parameter choices as in

figure 3.

Figure 4 shows corresponding comparisons of the masses of the two heavier neutral

Higgs bosons MH2,3 for the same parameter values. We see that the differences are very

small for tan β = 5 and 10, but increase for larger tan β and larger MS , reaching ∼ 4 GeV

for tan β = 50 and MS = 10 TeV.

Figure 5 shows another comparison of calculations of MH1 made using CPsuperH3.0

(solid lines) and CPsuperH2.3 (dashed lines), this time as a function of Xt/MS for MS =

1 TeV (black lines), 2 TeV (red lines) and 4 TeV (blue lines). These calculations were made

assuming MH± = 180 GeV, µ = M2 = 2M1 = 200 GeV and tan β = 20. We see that the

differences in MH1 are again small, i.e., <∼ 1 GeV, for most values of Xt/MS , though rising

to ∼ 2 GeV for Xt/MS ∼ −2. The results of CPsuperH3.0 are in agreement with those

obtained in ref. [33]. Figure 6 compares calculations of MH1 made within CPsuperH3.0

using the two-loop 2HDM RGEs (solid lines) and the one-loop 2HDM RGEs (dashed lines),

again as a function of Xt/MS for MS = 1 TeV (black lines), 2 TeV (red lines) and 4 TeV

(blue lines). We see that the full two-loop results are generally smaller than those in the

one-loop approximation by < 1 GeV, providing an encouraging estimate of their reliability.

Figure 7 shows some results from CPsuperH3.0 for some larger values of MS and

MH = MH± where CPsuperH2.3 would have been inapplicable. The left panel shows

MH1 for MH± = MS ≤ 100 TeV for two cases, tan β = 4 and Xt/MS =
√

6 (black line)

and tanβ = 20 and Xt/MS = 0 (red line) both for the case µ = M2 = 2M1 = 200 GeV

considered in figure 5. There is no 2HDM running effects in these plots, only the effects

of SM running up to the common new physics threshold. Even allowing for an uncertainty

of about 3 GeV in these calculations, values of MS = MH± > 15 TeV lead to values of the

lightest Higgs mass MH1 that are incompatible with the measured values at the LHC, so

the extension of the MS axis to 100 TeV is largely for illustrative purposes.
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Figure 5. The lightest Higgs mass calculated as a function of Xt/MS using CPsuperH3.0 (solid

lines) and CPsuperH2.3 (dashed lines) for MH± = 180 GeV, µ = M2 = 2M1 = 200 GeV and

tanβ = 20 for MS = 1 TeV (black lines), 2 TeV (red lines) and 4 TeV (blue lines).

The right panel of figure 7 shows some other results for larger values of MH± over the

full range [mt,MS ] for MS = 1, 2 and 4 TeV (black, red and blue lines, respectively) in the

same two cases Xt/MS =
√

6, tanβ = 4 and Xt/MS = 0, tan β = 20, considered previously,

again with µ = M2 = 2M1 = 200 GeV. For these values of tan β, the measured values of

the Higgs mass is consistent with MS = 4 TeV in the Xt/MS =
√

6, tanβ = 4 case.4

5 CP-violating heavy Higgs scenarios

We now consider various CPX4LHC benchmark scenarios for showcasing the effect of CP

violation in the MSSM heavy Higgs sector and their possible signatures. We assume a

common CP-violating phase ΦA = arg(At) = arg(Ab) = arg(Aτ ), set

|At,b,τ | = µ = 2MS , (5.1)

with M2 = 2M1 = 200 GeV and M3 = 2 TeV, and vary tan β, MH± , and MS . We do

not include gaugino phases in this analysis, as they enter the Higgs sector only through

the threshold corrections to the MSSM top-, bottom-, and tau-Yukawa couplings. Instead,

we include the CP-conserving leading-log enhanced contributions due to gauginos to the

self-energies Π±,S,P . In our CPX4LHC scenarios, since we fix M2 = 2M1 = 200 GeV

4The results in the left and right panes of figure 7 should be compared to the ones in the lower-left

frames of figures 1 and 2, and of figure 6 in ref. [35]
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Figure 6. The lightest Higgs mass calculated as a function of Xt/MS including (solid lines)

and without including (dashed lines) the two-loop 2HDM contributions to the RGEs for MH± =

180 GeV, µ = M2 = 2M1 = 200 GeV and tan β = 20 for MS = 1 TeV (black lines), 2 TeV (red lines)

and 4 TeV (blue lines).

and M3 = 2 TeV, and do not increase them as MS increases, the gaugino phase effects are

relatively insignificant.

We first present in figure 8 results for MH1 as a function of ΦA for the representative

choices MH± = 500 GeV, MS = 1, 2, 5, 10 TeV and tan β = 5, 10, 30, 50. The changes in

MH1 as ΦA varies are small in general, namely <∼ 3 GeV for tan β = 5 and less for larger

tanβ. Nevertheless, these variations are potentially significant, as there are parameter

choices that would be excluded (in the sense of yielding values of MH1 more than 3 GeV

different from the measured value) for ΦA = 0 that would be allowed for ΦA 6= 0, e.g.,

MS = 5 TeV and tan β = 5. Conversely, there are cases where ΦA = 0 would be allowed,

but ΦA 6= 0 would be disallowed, e.g., MS = 10 TeV and tan β = 10. The change in the

lightest Higgs mass MH1 at lower values of tan β can be understood from the change in

the modulus of Xt = At − µ∗/ tanβ, which governs the one-loop threshold corrections to

the low-energy Higgs quartic coupling. It reaches a maximum when |Xt|/MS ' 2.4, and

becomes less significant as tan β increases. In addition to this change, there are two-loop

effects governed by the relative phase of At and M3, which in the CP-conserving case tend

to decrease (increase) MH1 for negative (positive) values of AtM
∗
3 , which explains why, for

large values of tan β, for which the variation of |Xt| is small, the maximum value of MH1

occurs for Φ(At) = 0.
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Figure 7. Left panel: halculations of MH1
made using CPsuperH3.0 for MH± = MS ≤ 100 TeV,

assuming tan β = 4 and Xt/MS =
√

6 (black line) and tan β = 20 and Xt/MS = 0 (red line) both

for the case µ = M2 = 2M1 = 200 GeV. Right panel: calculations of MH1
as a function of mH±

made using CPsuperH3.0 over the range MH± ∈ [mt,MS ] for MS = 1, 2 and 4 TeV (black, red

and blue lines, respectively), also for the two cases Xt/MS =
√

6 and tan β = 4 (solid lines) and

Xt/MS = 0 and tan β = 20 (dashed lines) and µ = M2 = 2M1 = 200 GeV. These results can be

compared with those of [35].
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Figure 8. Values of MH1 in CP-violating scenarios for MH± = 500 GeV and MS = 1 TeV (upper

left), MS = 2 TeV (upper right), MS = 5 TeV (lower left), MS = 10 TeV (lower right). The black,

red, green and blue lines are for tan β = 5, 10, 30 and 50, respectively.
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Figure 9. Values of MH3
(solid lines) and MH2

(dashed lines) in CP-violating scenarios for MH± =

500 GeV and MS = 1 TeV (upper left), MS = 2 TeV (upper right), MS = 5 TeV (lower left),

MS = 10 TeV (lower right). The black, red, green and blue lines are for tan β = 5, 10, 30 and 50,

respectively.

Figure 9 displays the corresponding values of MH3 (solid lines) and MH2 (dashed

lines) for MH± = 500 GeV and the same values of MS and tan β as in figure 8. We see

that in general the mass difference MH3 −MH2 is minimized in the CP-conserving cases

ΦA = 0, 180◦, where it is <∼ 1 GeV, and maximized when ΦA = ±90◦, where it may

be ∼ 3 GeV. Thus, a measurement of the H3 − H2 mass difference could be an indirect

diagnostic tool indicative of CP violation, even if the latter is not directly observable.

We now consider predictions for two direct measures of CP violation in the Higgs mass

eigenstates Hi (with i = 1, 2, 3):

〈φ1a : Hi〉 ≡
2Oφ1iOai

O2
φ1i

+O2
ai

, 〈φ2a : Hi〉 ≡
2Oφ2iOai

O2
φ2i

+O2
ai

, (5.2)

which characterize the mixtures between the CP-odd state a and the CP-even states φ1,2.

For instance, such CP-violating expressions occur when studying CP violation in Higgs-

boson decays to fermions [23, 40]. For a recent analysis of CP violation in the decays

H1,2,3 → τ+τ−, see [41]. Figure 10 displays values of 〈φ1a : H1〉 for the lightest neutral

mass eigenstate H1, for the same scenarios MH± = 500 GeV, MS = 1, 2, 5, 10 TeV and

tanβ = 5, 10, 30 and 50 discussed previously. We see that the values increase for smaller

values of MS and larger values of tan β, and that values as large as ±0.22 are possible for

tanβ = 50 and MS = 1 TeV. Even larger values would be possible for smaller values of

MH± and MS .
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Figure 10. The CP mixing quantity
2Oφ11Oa1
O2
φ11+O2

a1
for the lightest mass eigenstate H1 in scenarios with

MH± = 500 GeV and MS = 1 TeV (upper left), MS = 2 TeV (upper right), MS = 5 TeV (lower

left), MS = 10 TeV (lower right). The black, red, green and blue lines are for tan β = 5, 10, 30 and

50, respectively.

Figure 11 shows values of the other mixing coefficient 〈φ2a : H1〉 for H1 in the same

set of CP-violating scenarios. This coefficient takes values <∼ 0.007 for MH± = 500 GeV,

MS = 1 TeV and tan β = 5, decreasing for larger MH± , MS and tan β.

Similar results for the second mass eigenstate H2 are shown in figures 12 and 13,

and for the third mass eigenstate H3 in figures 14 and 15. We see here that the mixing

quantities (5.2) can be much larger for the heavy mass eigenstates H2,3 than for the lightest

mass eigenstate H1, attaining unity for many of the values of MS and tanβ studied. This

suggests, a priori, that the prospects for observing CP violation would be enhanced for the

heavier Higgs mass eigenstates H2 and H3.

These results illustrate the possible non-decoupling of CP-violating effects in the heav-

ier neutral Higgs bosons H2,3 for large values of MH± and MS , whereas the corresponding

quantities for the lightest neutral Higgs mass eigenstate are expected to decouple. This

is seen explicitly in figures 16, where we display the absolute values of 〈φ1a : Hi〉 (left)

and 〈φ2a : Hi〉 (right) for MS = 10 TeV and ΦA = 10◦ as functions of MH± for the same

values of tan β considered previously. The corresponding results for ΦA = 60◦ are shown

in figure 17. In the case of H1, we see that the mixing quantities → 0 at large MH± ,

as expected, whereas in general the corresponding coefficients for the heavy neutral Higgs

mass eigenstates H2,3 do not vanish, and retain large values even for very large MH± .
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Figure 11. As in figure 10, but showing the CP mixing quantity
2Oφ21Oa1
O2
φ21+O2

a1
for the lightest mass

eigenstate H1.
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Figure 12. As in figure 10, but showing the CP mixing quantity
2Oφ12Oa2
O2
φ12+O2

a1
for the second mass

eigenstate H2.
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Figure 13. As in figure 10, but showing the CP mixing quantity
2Oφ22Oa2
O2
φ22+O2

a1
for the second mass

eigenstate H2.
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Figure 14. As in figure 10, but showing the CP mixing quantity
2Oφ13Oa3
O2
φ13+O2

a3
for the third mass

eigenstate H3.
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Figure 15. As in figure 10, but showing the CP mixing quantity
2Oφ23Oa3
O2
φ23+O2

a3
for the third mass

eigenstate H3.

Thus, large CP-violating effects in the couplings of these states are a robust signature of

the CP-violating scenarios discussed in this paper.

6 Conclusions

We present new MSSM scenarios with explicit CP violation that contain heavy Higgs

bosons in the few to several hundred GeV range and are consistent with constraints from

Run I of the LHC. The scenarios suggested here are similar in spirit to the CPX scenarios

previously proposed , and have phenomenological implications that can be tested during

Run II of the LHC. In light of this, we call them CPX4LHC benchmark scenarios.

In this work we explicitly demonstrate that, although CP violation and other new-

physics effects decouple from the lightest Higgs boson sector for sufficiently large charged

Higgs boson masses and soft SUSY-breaking scales MS , they can still be significant in

the MSSM heavy Higgs boson sector. Large masses of the supersymmetric particles also

help to maintain agreement with limits on EDMs and other low-energy observables. We

consider scenarios in which the charged Higgs bosons H± and the two heavier neutral Higgs

bosons H2,3 could be much lighter than all third generation supersymmetric scalar fermions,

which are assumed to have masses MS >∼ 2 TeV. In light of this possibility, we have revisited

previous calculations by considering improved matching and renormalization group (RG)

effects, specifically including two-loop RG effects in the two-Higgs-doublet model (2HDM)

that is effective between the heavy Higgs scale MH± and the SUSY scale MS .
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Figure 16. The magnitudes of the mixing quantities |〈φ1a : Hi〉| (left) and |〈φ2a : Hi〉| (right),

defined in (5.2), as functions of MH± for MS = 10 TeV and ΦA = 10◦. The black, red, green and

blue lines are for tan β = 5, 10, 30 and 50, respectively.

We compare our new results with those obtained with the previous code version

CPsuperH2.3. We also discuss the specific CPX4LHC benchmark scenarios relevant for

the analysis of Higgs physics at the LHC, with particular emphasis on the masses of the

heavier neutral Higgs bosons H2,3 and on the CP-violating effects they may manifest. These

offer interesting prospects for future runs of the LHC and future colliders.

All the improvements discussed in this study are being incorporated in a new version

of the public code CPsuperH, called CPsuperH3.0. The numerical results presented here

have been obtained by means of a preliminary β-version of this code. The detailed features

of CPsuperH3.0 will be fully described in an upcoming release note.5

5The current β-version is available upon request to J. S. Lee.
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Figure 17. As in figure 16 but for for MS = 10 TeV and ΦA = 60◦.
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A Renormalization group equations and threshold corrections

In the appendices that follow, we present the relevant Renormalization Group Equations

(RGEs) that are applicable above the three typical thresholds: (i) the top-quark mass mt,

(ii) the heavy Higgs mass MH ≡MH+ , and (iii) the soft SUSY-breaking scale MS .

It is convenient to write the RGEs in the form
dc

dt
=
∑
n=1

κn β(n)c ,

where c stands for any kinematic parameter, such as quartic, gauge and Yukawa couplings,

anomalous dimensions, and tan β. In addition, we use the abbreviations: t ≡ lnQ and

κ = 1/(4π)2.

A.1 SM RGEs

For scales of Q, for which MH1 ∼ mt < Q < MH , one needs to consider the RGEs of

the SM. To properly take into consideration intermediate particle threshold effects, we

introduce the short-hand notation for the step function

ΘX ≡

{
1 for Q ≥MX ,

0 for Q < MX .

Upon neglecting the Yukawa couplings of the first two generations of quarks and lep-

tons, the one-loop SM RGEs that we use [35, 42] read:

β
(1)
λ = 12λ2 + 4λ

(
3y2t + 3y2b + y2τ

)
− 4

(
3y4t + 3y4b + y4τ

)
−9λ

(
g2 +

1

3
g′2
)

+
9

4

(
g4 +

2

3
g′2g2 +

1

3
g′4
)

+
(
6λg2 − 5g4 + 8g4s2βc

2
β

)
Θ
H̃

Θ
W̃

−2g2g′2Θ
H̃

Θ
W̃

Θ
B̃

+
(
2λg′2 − g′4

)
Θ
H̃

Θ
B̃
, (A.1)

β
(2)
λ = −78λ3 − 72λ2y2t + 80λg2sy

2
t − 3λy4t − 64g2sy

4
t + 60y6t , (A.2)

β
(3)
λ =

λ3

2

(
6011.35

λ

2
+ 873y2t

)
+ λ2y2t

(
1768.26y2t + 160.77g2s

)
+2λy2t

(
−223.382y4t − 662.866g2sy

2
t + 356.968g4s

)
+4y4t

(
−243.149y4t + 250.494g2sy

2
t − 50.201g4s

)
, (A.3)

β(1)gs = −g3s
[
11− 2

3
Nf

]
, (A.4)

β(2)gs = −g3s
[(

102− 38

3
Nf

)
g2s −

3

4
Nfg

2 − 11

36
Nfg

′2 + 2y2t + 2y2b

]
, (A.5)

β(1)yt = yt

[
9

2
y2t +

3

2
y2b + y2τ − 8g2s −

9

4
g2 − 17

12
g′2
]

+
3

2
ytg

2Θ
H̃

Θ
W̃

+
1

2
ytg
′2Θ

H̃
Θ
B̃
, (A.6)
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β(2)yt = yt

[
3

2
λ2 − 6λy2t −

(
404

3
− 40

9
Nf

)
g4s + 36g2sy

2
t − 12y4t

]
, (A.7)

β(3)yt = yt

[
−9

2
λ3 +

15

16
λ2y2t + λy2t

(
99y2t + 8g2s

)
+58.6028y6t − 157y4t g

2
s + 363.764y2t g

4
s − 619.35g6s

]
, (A.8)

β(1)yb
= yb

[
3

2
y2t +

9

2
y2b + y2τ − 8g2s −

9

4
g2 − 5

12
g′2
]
, (A.9)

β(1)yτ = yτ

[
3y2t + 3y2b +

5

2
y2τ −

9

4
g2 − 45

12
g′2
]
, (A.10)

β
(1)
g′ =

(
2

3
Nf +

1

10

)
5

3
g′3 ,

β
(2)
g′ =

(
22

9
Nfg

2
s −

17

6
y2t

)
g′3 ,

β(1)g =

(
−22

3
+

2

3
Nf +

1

6

)
g3 ,

β(2)g =

(
2Nfg

2
s −

3

2
y2t

)
g3 , (A.11)

γ(1) =
9

4

(
g2 +

1

3
g′2
)
−
(
3y2t + 3y2b + y2τ

)
. (A.12)

A.2 One-loop 2HDM RGEs

For RG scales Q between MH and MS , the effective theory becomes a general 2HDM,

whilst for Q > MS the theory becomes fully supersymmetric and the quartic couplings

λ5,6,7 do not run. Here, we give the RGEs of the general 2HDM at the one-loop level, and

relegate to appendix A.3 the presentation of the two-loop results.

As before, we neglect the Yukawa couplings of the first two generations of quarks and

leptons, and note that in addition to the change of normalizations given in (2.5), we use

t = ln(Q) instead of ln(Q2) as used in ref. [31]. Thus, adapting the results of [31], the

one-loop 2HDM RGEs may be listed as follows:

β
(1)
λ1

= −
{

24λ21 + λ23 + (λ3 + λ4)
2 + 4λ25 + 12λ26 +

3

8

[
2g4 +

(
g2 + g′2

)2]}
ΘZ

−NC

{
− 2h4bΘZ +

(
h2b −

1

4
g′2YD

)2

Θ
D̃3

+

(
1

4
g′2YU

)2

Θ
Ũ3

+

[
h4b −

1

2
h2b
(
g′2YQ + g2

)
+

1

8

(
g4 + g′4Y 2

Q

)]
Θ
Q̃3

}

−NC

2∑
i=1

{(
1

4
g′2YD

)2

Θ
D̃i

+

(
1

4
g′2YU

)2

Θ
Ũi

+
1

8

(
g4 + g′4Y 2

Q

)
Θ
Q̃i

}

−

{
− 2h4τΘZ +

(
h2τ −

1

4
g′2YE

)2

Θ
Ẽ3

+

[
h4τ −

1

2
h2τ
(
g′2YL + g2

)
+

1

8

(
g4 + g′4Y 2

L

)]
Θ
L̃3

}
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{(
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4
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Ẽi
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8

(
g4 + g′4Y 2

L

)
Θ
L̃i

}

+
5

2
g4Θ

H̃
Θ
W̃

+ g′2g2Θ
H̃

Θ
W̃

Θ
B̃

+
1

2
g′4Θ

H̃
Θ
B̃
− 4λ1γ

(1)
1 , (A.13)

where NC = 3, YQ = 1/3, YU = −4/3, YD = 2/3, YL = −1, YE = 2, and

β
(1)
λ2

= −
{

24λ22 + λ23 + (λ3 + λ4)
2 + 4λ25 + 12λ26 +

3

8

[
2g4 +

(
g2 + g′2

)2]}
ΘZ

−NC

{
− 2h4tΘtΘZ +

(
1

4
g′2YD

)2

Θ
D̃3

+

(
h2t +
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4
g′2YU
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Ũ3
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h2t
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+

1

8

(
g4 + g′4Y 2

Q
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Θ
Q̃3

}

−NC

2∑
i=1

{(
1

4
g′2YD

)2

Θ
D̃i

+

(
1

4
g′2YU

)2

Θ
Ũi

+
1

8

(
g4 + g′4Y 2

Q

)
Θ
Q̃i

}

−
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i=1

{(
1

4
g′2YE

)2

Θ
Ẽi

+
1

8

(
g4 + g′4Y 2

L

)
Θ
L̃i

}

+
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2
g4Θ
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+ g′2g2Θ
H̃
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W̃
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+
1

2
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(1)
2 , (A.14)

β
(1)
λ3

= −2

{
2(λ1 + λ2)(3λ3 + λ4) + 2λ23 + λ24 + 4λ25 + 2λ26 + 2λ27 + 8λ6λ7

+
3

8

[
2g4 +

(
g2 − g′2

)2]}
ΘZ
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1

4
g′2YD

(
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1

4
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)
Θ
D̃3

−1

4
g′2YU

(
h2t +

1

4
g′2YU

)
Θ
Ũ3

+ h2th
2
bΘŨ3

Θ
D̃3

+

[
h2th

2
b −

1

4
h2t
(
g′2YQ + g2

)
+

1

4
h2b
(
g′2YQ − g2

)
+

1

8

(
g4 − g′4Y 2

Q

)]
Θ
Q̃3

}

−2NC

2∑
i=1

{
−
(

1

4
g′2YD

)2

Θ
D̃i
−
(

1

4
g′2YU

)2

Θ
Ũi

+
1

8

(
g4 − g′4Y 2

Q

)
Θ
Q̃i

}

−2

{
1

4
g′2YE

(
h2τ −

1

4
g′2YE

)
Θ
Ẽ3

+

[
1

4
h2τ
(
g′2YL − g2

)
+

1

8

(
g4 − g′4Y 2

L

)]
Θ
L̃3

}

−2

2∑
i=1

{
−
(

1

4
g′2YE

)2

Θ
Ẽi

+
1

8

(
g4 − g′4Y 2

L

)
Θ
L̃i

}
+5g4Θ

W̃
Θ
H̃
− 2g′2g2Θ

W̃
Θ
B̃

Θ
H̃

+ g′4Θ
B̃

Θ
H̃
− 2λ3

(
γ
(1)
1 + γ

(1)
2

)
, (A.15)
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β
(1)
λ4

= −2

[
λ4 (2λ1 + 2λ2 + 4λ3 + 2λ4) + 16λ25 + 5λ26 + 5λ27 + 2λ6λ7 +

3

2
g2g′2

]
ΘZ

−2NC

{
2h2th

2
bΘtΘZ − h2th2bΘŨ3

Θ
D̃3
−
(
h2t −

1

2
g2
)(

h2b −
1

2
g2
)

Θ
Q̃3

}

+2NC

2∑
i=1

(
1

2
g2
)2

Θ
Q̃i
− g2

(
h2τ −

1

2
g2
)

Θ
L̃3

+

2∑
i=1

1

2
g4Θ

L̃i

−4g4Θ
W̃

Θ
H̃

+ 4g′2g2Θ
W̃

Θ
B̃

Θ
H̃
− 2λ4

(
γ
(1)
1 + γ

(1)
2

)
, (A.16)

β
(1)
λ5

= −
[
2λ5(2λ1 + 2λ2 + 4λ3 + 6λ4) + 5

(
λ26 + λ27

)
+ 2λ6λ7

]
ΘZ − 2λ5

(
γ
(1)
1 + γ

(1)
2

)
,

(A.17)

β
(1)
λ6

= −2 [λ6 (12λ1 + 3λ3 + 4λ4 + 10λ5) + λ7 (3λ3 + 2λ4 + 2λ5)] ΘZ − λ6
(

3γ
(1)
1 + γ

(1)
2

)
,

(A.18)

β
(1)
λ7

= −2 [λ7 (12λ2 + 3λ3 + 4λ4 + 10λ5) + λ6 (3λ3 + 2λ4 + 2λ5)] ΘZ − λ7
(
γ
(1)
1 + 3γ

(1)
2

)
,

(A.19)

γ
(1)
1 =

1

4

[(
9g2 + 3g′2 − 4

(
NCh

2
b + h2τ

))
ΘZ − 6g2Θ

W̃
Θ
H̃
− 2g′2Θ

B̃
Θ
H̃

]
, (A.20)

γ
(1)
2 =

1

4

[(
9g2 + 3g′2 − 4NCh

2
tΘt

)
ΘZ − 6g2Θ

W̃
Θ
H̃
− 2g′2Θ

B̃
Θ
H̃

]
, (A.21)

β
(1)
ht

=

(
9

2
h2t +

1

2
h2b − 8g2s −

9

4
g2 − 17

12
g′2
)
ht , (A.22)

β
(1)
hb

=

(
9

2
h2b +

1

2
h2t + h2τ − 8g2s −

9

4
g2 − 5

12
g′2
)
hb , (A.23)

β
(1)
hτ

=

(
5

2
h2τ + 3h2b −

9

4
g2 − 15

4
g′2
)
hτ , (A.24)

β
(1)
g′ =

{
1

4
NC

3∑
i=1

[
2Y 2

Q

(
2Θt + Θ

Q̃i

)
+ Y 2

U

(
2Θt + Θ

Ũi

)
+ Y 2

D

(
2Θt + Θ

D̃i

)]
+

1

4

3∑
i=1

[
2Y 2

L

(
2Θt + Θ

L̃i

)
+ Y 2

E

(
2Θt + Θ

Ẽi

)]
+

1

2
NHΘt +N

H̃
Θ
H̃

}
g′3

3
, (A.25)

with NH = 2 and N
H̃

= 2,

β(1)g =

{
1

2
NC

3∑
i=1

(
2Θt+Θ

Q̃i

)
+

1

2

3∑
i=1

(
2Θt+Θ

L̃i

)
+

1

2
NHΘt+NH̃Θ

H̃
+4NW̃Θ

W̃
−22Θt

}
g3

3
,

(A.26)

with NW̃ = 1,

β(1)gs =

{
2Nf +

3∑
i=1

(
Θ
Q̃i

+
1

2
Θ
Ũi

+
1

2
Θ
D̃i

)
+ 6Ng̃Θg̃ − 33

}
g3s
3
, (A.27)
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with Nf = Θt + Θb + Θc + Θs + Θd + Θu and Ng̃ = 1,

β
(1)
tanβ =

(
γ
(1)
2 − γ

(1)
1

)
tanβ

=
(
−NCh

2
tΘtΘZ +NCh

2
bΘZ + h2τΘZ

)
tanβ , (A.28)

β
(1)

µ21
= −2

[
6µ21λ1 + µ22(2λ3 + λ4) + 6m2

12λ6
]
− 2γ

(1)
1 µ21 , (A.29)

β
(1)

µ22
= −2

[
6µ22λ2 + µ21(2λ3 + λ4) + 6m2

12λ7
]
− 2γ

(1)
2 µ22 , (A.30)

β
(1)

m2
12

= 2
[
−(λ3 + 2λ4 + 6λ5)m

2
12 − 3λ6µ

2
1 − 3λ7µ

2
2

]
−
(
γ
(1)
1 + γ

(1)
2

)
m2

12 . (A.31)

A.3 Two-loop 2HDM RGEs

In this appendix, we present the RGEs of the general 2HDM at the two-loop order, as

derived in [32, 33]. For definiteness, we follow the conventions of [33], where g3 → gs,

g2 → g, g21 → (5/3)g′2 ; λ1,2,5 → − 2λ1,2,5, λ3,4,6,7 → −λ3,4,6,7. The two-loop beta functions

for the quartic couplings are given by

β
(2)
λ1

= −291

16
g6 +

101

16
g4g′2 +

191

16
g2g′4 +

131

16
g′6

+
3

16
g4
[
12h2b + 4h2τ − 34λ1 + 20(2λ3 + λ4)

]
− 1

8
g2g′2

[
36h2b + 44h2τ − 78λ1 − 20λ4

]
− 1

16
g′4
[
20h2b − 100h2τ − 434λ1 − 20(2λ3 + λ4)

]
+8g2sh

2
b

[
4h2b+10λ1

]
− 3

4
g2
[
−10λ1

(
3h2b+h2τ

)
+4
(
36λ21+4λ23+4λ3λ4+λ24+18λ26

)]
− 1

12
g′2
[
h2b
(
16h2b − 50λ1

)
+ 3h2τ

(
−16h2τ − 50λ1

)
+12

(
36λ21 + 4λ23 + 4λ3λ4 + 2λ24 − 4λ25 + 18λ26

)]
+6h2t

[
2λ23 + 2λ3λ4 + λ24 + 4λ25 + 6λ26

]
− 3

2
h2th

2
b

[
4h2b + 6λ1

]
+

3

2
h2b
[
−20h4b − 2h2bλ1 + 96λ21 + 24λ26

]
+

1

2
h2τ
[
−20h4τ − 2h2τλ1 + 96λ21 + 24λ26

]
−2λ1

[
156λ21 + 10λ23 + 10λ3λ4 + 6λ24 + 28λ25 + 159λ26 − 3λ27

]
−2λ3

[
4λ23 + 6λ3λ4 + 8λ24 + 40λ25 + 33λ26 + 18λ6λ7 + 9λ27

]
−2λ4

[
3λ24 + 44λ25 + 35λ26 + 14λ6λ7 + 7λ27

]
− 4λ5

[
37λ26 + 10λ6λ7 + 5λ27

]
, (A.32)

β
(2)
λ2
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g6 +

101

16
g4g′2 +
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g2g′4 +
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g′6
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3
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12h2t − 34λ2 + 20(2λ3 + λ4)

]
− 1

8
g2g′2

[
84h2t − 78λ2 − 20λ4

]
+

1

16
g′4
[
76h2t + 434λ2 + 20(2λ3 + λ4)

]
+8g2sh

2
t

[
4h2t + 10λ2

]
− 3

4
g2
[
−30h2tλ2 + 4

(
36λ22 + 4λ23 + 4λ3λ4 + λ24 + 18λ27

)]
− 1

12
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[
−h2t

(
32h2t + 170λ2

)
+ 12

(
36λ22 + 4λ23 + 4λ3λ4 + 2λ24 − 4λ25 + 18λ27

)]
−3

2
h2t
[
20h4t + 2h2tλ2 − 96λ22 − 24λ27

]
− 3
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h2th
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b

[
4h2t + 6λ2

]
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+(6h2b + 2h2τ )
[
2λ23 + 2λ3λ4 + λ24 + 4λ25 + 6λ27

]
−2λ2

[
156λ22 + 10λ23 + 10λ3λ4 + 6λ24 + 28λ25 − 3λ26 + 159λ27

]
−2λ3

[
4λ23 + 6λ3λ4 + 8λ24 + 40λ25 + 9λ26 + 18λ6λ7 + 33λ27

]
−2λ4

[
3λ24 + 44λ25 + 7λ26 + 14λ6λ7 + 35λ27

]
− 4λ5

[
5λ26 + 10λ6λ7 + 37λ27

]
, (A.33)
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8
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8
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8
g2g′4 +
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8
g′6

+
3

4
g4
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2
λ3 + 10λ4

]
+

1

2
g2g′2

[
21h2t + 9h2b + 11h2τ − 10(λ1 + λ2) +

11

2
λ3 − 6λ4

]
−1

8
g′4
[
−38h2t + 10h2b − 50h2τ − 60(λ1 + λ2)− 197λ3 − 20λ4

]
+8g2s

[
8h2th

2
b + 5λ3

(
h2t + h2b

)]
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[
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8
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(
3h2t + 3h2b + h2τ

)
+ 6(λ1 + λ2)(2λ3 + λ4) + (λ3 − λ4)2 + 18λ6λ7

]
−1

3
g′2
[
−4h2th

2
b −

5

4
λ3
(
17h2t + 5h2b + 15h2τ

)
+24(λ1 + λ2)(3λ3 + λ4) + 6

(
λ23 − λ24 + 8λ25 + λ26 + 16λ6λ7 + λ27
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+

9

2
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3h4t + 3h4b + h4τ

]
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[
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(
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)
− 15λ3

]
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[
12λ2λ3 + 4λ2λ4 + 2λ23 + λ24 + 4λ25 + 8λ6λ7 + 4λ27

]
+
(
6h2b + 2h2τ

) [
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(
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)
[15λ3 + 4λ4]− 4(λ1 + λ2)

[
18λ23 + 8λ3λ4 + 7λ24 + 36λ25

]
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[
31λ26 + 22λ6λ7 + 11λ27

]
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[
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]
−λ3

[
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]
−λ4

[
12λ24 + 176λ25 + 68λ26 + 88λ6λ7 + 68λ27

]
−2λ5

[
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]
, (A.34)
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2
g2g′4 + λ4

[
−231

8
g4 +
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8
g′4
]
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2
g2g′2
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2
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]
−8g2s

[
8h2th
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(
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4
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(
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(
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[
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2
b −

5

4
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(
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(
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2
b

[
24
(
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]
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+
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, (A.35)
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]
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(A.36)
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In addition, the two-loop beta functions for the gauge and the supersymmetric Yukawa

couplings may be listed as follows:
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)
−5

2
h4t −

5

2
h2th

2
b − 12h4b −

9

4
h2bh

2
τ −

9

4
h4τ + 12h2bλ1 + 2h2t (λ3 − λ4)

+6λ21 + λ23 + λ3λ4 + λ24 + 6λ25 +
9

2
λ26 +

3

2
λ27

]
, (A.43)

β
(2)
hτ

= hτ

[
20g2sh

2
b −

21

4
g4 +

9

4
g2g′2 +

161

8
g′4

+
15

16
g2
(
6h2b + 11h2τ

)
+

1

48
g′2
(
50h2b + 537h2τ

)
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−9

4
h2th

2
b −

27

4
h4b −

27

4
h2bh

2
τ − 3h4τ + 12h2τλ1

+6λ21 + λ23 + λ3λ4 + λ24 + 6λ25 +
9

2
λ26 +

3

2
λ27

]
. (A.44)

Finally, the two-loop anomalous dimensions for the Higgs doublets are given by

γ
(2)
1 =

435

32
g4 − 3

16
g2g′2 − 149

32
g′4 − 20g2sh

2
b −

15

8
g2
(
3h2b + h2τ

)
− 25

24
g′2
(
h2b + 3h2τ

)
+

9

4
h2th

2
b +

27

4
h4b +

9

4
h4τ − 6λ21 − λ23 − λ3λ4 − λ24 − 6λ25 −

9

2
λ26 −

3

2
λ27

−3

2
tβ [2λ1λ6 + 2λ2λ7 + (λ3 + λ4 + 2λ5)(λ6 + λ7)] , (A.45)

γ
(2)
2 =

435

32
g4 − 3

16
g2g′2 − 149

32
g′4 − h2t

(
20g2s +

45

8
g2 +

85

24
g′2
)

+
27

4
h4t +

9

4
h2bh

2
t − 6λ22 − λ23 − λ3λ4 − λ24 − 6λ25 −

3

2
λ26 −

9

2
λ27

−3

2
t−1β [2λ1λ6 + 2λ2λ7 + (λ3 + λ4 + 2λ5)(λ6 + λ7)] . (A.46)

A.4 Threshold corrections to λi at MS

At the soft SUSY-breaking scale Q = MS , we need to consider the threshold corrections

to quartic couplings due to third-generation sfermions. These are derived in [33], which we

extend here to include CP-violating phases.

The quartic couplings λi with i = 1− 7 at the RG scale Q = MS are given by

λi(MS) = λ
(0)
i +

∑
n=1,2

κn∆(n)λi , (A.47)

where

λ
(0)
1 = λ

(0)
2 = −1

8

(
g2 + g′2

)
, λ

(0)
3 = −1

4

(
g2 − g′2

)
, λ

(0)
4 =

1

2
g2 ,

λ
(0)
5 = λ

(0)
6 = λ

(0)
7 = 0 , (A.48)

and the one- and two-loop threshold corrections are6

∆(1)λ1 =
1

4
|ht|4|µ̂|4 − 3|hb|4|Âb|2

(
1− |Âb|

2

12

)
− |hτ |4|Âτ |2

(
1− |Âτ |

2

12

)

−g
2 + g′2

8

(
3|ht|2|µ̂|2 − 3|hb|2|Âb|2 − |hτ |2|Âτ |2

)
+
g2 + g′2

24

(
3|ht|2|µ̂|2 + 3|hb|2|Âb|2 + |hτ |2|Âτ |2

)
, (A.49)

∆(1)λ2 = −3|ht|4|Ât|2
(

1− |Ât|
2

12

)
+

1

4
|hb|4|µ̂|4 +

1

12
|hτ |4|µ̂|4

6Here all the mass parameters are dimensionsless and normalized to the SUSY scale MS : µ̂ = µ/MS ,

Ât,b,τ = At,b,τ/MS , and M̂3 = M3/MS .
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+
g2 + g′2

8

(
3|ht|2|Ât|2 − 3|hb|2|µ̂|2 − |hτ |2|µ̂|2

)
+
g2 + g′2

24

(
3|ht|2|Ât|2 + 3|hb|2|µ̂|2 + |hτ |2|µ̂|2

)
, (A.50)

∆(1)λ3 = −1

6
|µ|2

[
3|ht|4

(
3− |Ât|2

)
+ 3|hb|4

(
3− |Âb|2

)
+ |hτ |4

(
3− |Âτ |2

)]
−1

2
|ht|2|hb|2

[
3|Ât + Âb|2 − ||µ̂|2 − ÂtÂ∗b |2 − 6|µ̂|2

]
+
g2 − g′2

8

[
3|ht|2

(
|Ât|2 − |µ̂|2

)
+ 3|hb|2

(
|Âb|2 − |µ̂|2

)
+ |hτ |2

(
|Âτ |2 − |µ̂|2

)]
+
g2 − g′2

24

[
3|ht|2

(
|Ât|2 + |µ̂|2

)
+ 3|hb|2

(
|Âb|2 + |µ̂|2

)
+ |hτ |2

(
|Âτ |2 + |µ̂|2

)]
,

(A.51)

∆(1)λ4 = −1

6
|µ|2

[
3|ht|4

(
3− |Ât|2

)
+ 3|hb|4

(
3− |Âb|2

)
+ |hτ |4

(
3− |Âτ |2

)]
+

1

2
|ht|2|hb|2

[
3|Ât + Âb|2 − ||µ̂|2 − ÂtÂ∗b |2 − 6|µ̂|2

]
−g

2

4

[
3|ht|2

(
|Ât|2 − |µ̂|2

)
+ 3|hb|2

(
|Âb|2 − |µ̂|2

)
+ |hτ |2

(
|Âτ |2 − |µ̂|2

)]
−g

2

12

[
3|ht|2

(
|Ât|2 + |µ̂|2

)
+ 3|hb|2

(
|Âb|2 + |µ̂|2

)
+ |hτ |2

(
|Âτ |2 + |µ̂|2

)]
,(A.52)

∆(1)λ5 =
1

12

[
3h4t µ̂

2Â2
t + 3h4b µ̂

2Â2
b + h4τ µ̂

2Â2
τ

]
, (A.53)

∆(1)λ6 = −1

6

[
3h4t |µ̂|2µ̂Ât + 3h4b µ̂Âb

(
|Âb|2 − 6

)
+ h4τ µ̂Âτ

(
|Âτ |2 − 6

)]
, (A.54)

∆(1)λ7 = −1

6

[
3h4t µ̂Ât

(
|Ât|2 − 6

)
+ 3h4b |µ̂|2µ̂Âb + h4τ |µ̂|2µ̂Âτ

]
, (A.55)

where ht,b,τ = hMSSM
t,b,τ at the RG scale Q = MS .

The two-loop corrections of O(|ht|4g2s) are given by

∆(2)λ1 =
2

3
|ht|4g2s |µ̂|4 , (A.56)

∆(2)λ2 = −8|ht|4g2s
[
−2<e

(
ÂtM̂

∗
3

)
+

1

3
|Ât|2<e

(
ÂtM̂

∗
3

)
− 1

12
|Ât|4

]
, (A.57)

∆(2)λ3 = ∆(2)λ4 = −8

3
|ht|4g2s |µ̂|2

[
<e
(
ÂtM̂

∗
3

)
− 1

2
|Ât|2

]
, (A.58)

∆(2)λ5 = −4

3
|ht|4g2s µ̂Ât

[
µ̂M̂3 −

1

2
µ̂Ât

]
, (A.59)

∆(2)λ6 = −4

3
|ht|4g2s |µ̂|2

[
−µ̂M̂3 + µ̂Ât

]
, (A.60)

∆(2)λ7 = −4|ht|4g2s
[
2µ̂M̂3 −

1

3
µ̂Â2

t M̂
∗
3 −

2

3
|Ât|2µ̂M̂3 +

1

3
|Ât|2µ̂Ât

]
. (A.61)
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