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Abstract

A high current (> 50 mA) dimpled H- magnetron source has been built at Fermilab for supplying H- beam to

the entire accelerator complex. Despite the many decades of expertise with slit H- magnetron sources at Fermilab, the

dimpled H- magnetron source presented many challenges that needed to be overcome in order to make it operational.

Dimpled H- sources for high energy physics are not new: BNL (Brookhaven National Laboratory) has operated

a dimpled H- source for more than two decades. However, the transference of that experience to Fermilab took

about two years because a “cookbook” for building this type of source did not exist and seemingly innocuous or

undocumented choices had a huge impact on the success or failure for this type of source. Therefore, it is the goal of

this paper to document the reasons for these choices and to present a “cookbook” for building and operating dimpled

H- magnetron sources.

I. INTRODUCTION

The Fermilab H- injector was upgraded from a slit H- magnetron source with a Cockcroft-Walton pre-accelerator

to a dimpled H- magnetron source with an RFQ at the end of 2012. [1] We made this safe technical choice rather

than going to the more modern RF H- sources because of the decades of operational experience with magnetron

sources. Furthermore, BNL (Brookhaven National Laboratory) has used a dimpled H- source reliably for more than

two decades for their RFQ injector [2] and they would be able to help us get this type of source up and running

quickly because of the good relationship between the BNL H- source group and us.

Therefore, once this decision was made, we allocated resources to start the dimpled H- source program here

at Fermilab and by the middle of 2011, we had built and installed a dimpled magnetron H- into a test stand.

Unfortunately, despite the help from BNL and our local expertise, we were unable to get the source working

reliably, i.e. without sparking, until the end of of 2013. This program took a lot longer than expected because we

discovered a major problem: the institutional memory loss of how dimpled H- sources are designed and built. This

inspired us to write a “cookbook” for how to build one so that posterity would not have to rediscover the mistakes

All the authors are with Fermi National Accelerator Laboratory, Batavia, Illinois 60510-5011, USA. (email: bollinger@fnal.gov,

karns@fnal.gov, cytan@fnal.gov).

October 8, 2015 DRAFT

FERMILAB-PUB-15-431-AD 
ACCEPTED

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 2

that we had made and solutions that we had found. We do not claim to have all the answers in this paper, but its

contents should be a good starting point for anyone contemplating building one.

II. THE HISTORY OF H- SOURCES AT FERMILAB

The FNAL Linac has been accelerating H- ions since 1977. The first source, brought to FNAL by C.W. Schmidt,

was an early magnetron source shown in Fig. 1, purchased from BNL. The source was designed for fusion research

and operated DC. It became clear during initial testing at 1 Hz, that the source volume was too large for 15 Hz

operation due to the fill time of the source body to reach the required pressure for plasma production.

Fig. 1: BNL fusion research ion source which was purchased by FNAL in 1977.

A clever magnetron ion source design by C.W. Schmidt, shown in Fig. 2(a,c), has an internal volume a factor of

10 less than the BNL source which made 15 Hz operation possible. This design had a slit extraction aperture and

a flat, non-grooved cathode Fig. 3(a) and was implemented in the Cockcroft-Walton pre-accelerators in 1977. [3]

The source was mounted pointing down with a 90 degree bend magnet to steer and shape the beam appropriate

for injection into the Linac and a cesium cold trap to prevent cesium from entering the accelerating column is

shown in Fig. 4. The extraction voltage was 18 kV which supplied ∼50mA of H- ions. This low extraction voltage

required a high arc current around 150 A, in order to have enough extracted beam current. The high arc current

resulted in a very low power efficiency of 2 mA/kW, which led to short lifetimes, on average of about one month.

The lifetime of the sources was limited due to back streaming of positive particles striking the cathode that caused

erosion. The cathode material that was removed ended up clogging the hydrogen gas and cesium inlets which can

be seen in Fig. 5(b, c, d e). In extreme cases, the material would come off the cathode in flakes that would either

block the anode aperture or cause cathode to anode shorts as seen in Fig. 5(a).

The flat cathode surface was replaced with a grooved surface (see Fig. 3(b)) in 1984. [4] The grooved surface

provided focusing of the H- ions that leave the surface of the cathode to the exit aperture of the anode cover plate.
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Fig. 2: (a) assembled magnetron, (b) schematic of the magnetron indicating the gas and cesium inlets along with

the extractor, (c) a disassembled magnetron showing all of the parts associated with the source.

Fig. 3: The evolution of magnetron cathodes used at FNAL: (a) the original flat cathode with no focusing, (b) a

partially grooved cathode with focusing on side of cathode facing the anode cover, (c) a fully grooved cathode with

the groove from cathode b completely around the cathode surface. This cathode was used for over 25 years, and

(d) a spherical dimpled cathode with a focal point at the circular anode aperture.

This modification greatly increased the power efficiency of the source from 2 mA/kW to 6.7 mA/kW, which allowed

the source to run at a much lower arc current of ∼ 50 A for 50 mA of extracted ion current at 18 kV extraction

voltage. The increase in power efficiency and lower arc current improved the lifetime of the source by a factor of

3. Even with the improved power efficiency, the sputtered cathode material clearly affected the source lifetime and

overall performance. The plots in Fig. 6 show the effects of aging: its performance would start to degrade as the

hydrogen and cesium inlets would become clogged with the cathode material. Continuous tuning was required to

maintain constant extracted beam current. This included starting the hydrogen injection earlier and increasing the
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Fig. 4: (a) A schematic view of the ion source mounting. (b) The downstream view of the ion source, cesium cold

trap and magnet pole tips.

amount of injected hydrogen as shown in Fig. 6(c). Near the end of the source lifetime the average gas pressure in

the vacuum chamber would be high enough for H- stripping to occur which reduces the amount of beam current

out of the source. Eventually the source would need to be pulled out and cleaned.

With the installation of the RFQ, a round aperture, direct extraction magnetron shown in Fig. 7, based on a

design by J. Alessi [5] was built. Photographs of our source installed on a beam line and operating are shown in

Fig. 8. The source design is similar to the slit aperture source, but has a spherical dimple in the cathode and round

anode cover plate aperture. The spherical dimple has a focal point located at the exit of the anode cover plate which

helps to focus the surface produced H- ions. This spherical focusing allows the source to run at a much lower arc

current than before. Another innovation is the extraction of the beam at 35 kV. With this high extraction voltage

and well-focused ions, the extracted beam current is ∼100 mA, and the power efficiency improved to 67 mA/kV.

As a result, BNL typically runs their source from shutdown to shutdown — implying a lifetime of about 9 months.

The FNAL source has a power efficiency of 33 mA/kW at this time and its lifetime to date (Aug 2015) is also

about 9 months.

Table I shows the evolution of H- ion sources used at FNAL. The increase in power efficiency has clearly been

the biggest advancement in improving source lifetimes.

Although on the surface of it, the difference between a slit magnetron and a dimpled magnetron is just a simple

change in geometry and thus operating both types of magnetrons should be similar. Unfortunately, to our chagrin,
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Fig. 5: Typical problems with magnetron aging: (a) anode aperture restriction caused by cathode material deposition.

(b) Cesium inlet without blockage, compared with (c) the cesium inlet clogged by sputtered cathode material. (d)

Cathode erosion caused by the back streaming of positive particles. The erosion is on the side of the cathode facing

the anode aperture. (e) Hydrogen inlet almost completely blocked by sputtered cathode material.

Fig. 6: Plots that are typical when the source ages. (a) anode to cathode short leading to very high arc current, (b)

anode aperture restriction reducing the amount of extracted beam current by almost 50% and (c) as the hydrogen

inlet aperture gets restricted, the gas valve on time needs to be moved earlier to allow more time for the source to

fill because the cesium aperture is getting more restricted. The average pressure in the cube increases due to the

need to keep the beam current as constant as possible.

it did not turn out to be this way. In fact, it took many changes of materals, magnetic field geometries, vacuum

pressures and cesium flow rates in order to get to a good operating point for the dimpled source. The results of

our explorations are discussed below.
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Fig. 7: Round aperture direct extraction magnetron ion source used in the FNAL RFQ injector. (a) The source is

mounted reentrant in a vacuum chamber. (b) Can where the magnetron is mounted. (c) Downstream view of the

magnetron source and magnets. (d) Magnetron ion source showing the round aperture, the anode cover plate and

the spherical dimple in the cathode.

A. Choice of materials

In our original design of this ion source and extraction system, we used the same parts and materials that was in

the original magnetron design by C.W. Schmidt. The source parts shown in Fig. 2(c) in section II, are made from

a variety of materials based on where they are located in the source. Materials in contact with the plasma need to

be able to withstand high temperatures and erosion from the plasma. As a result, hard materials with high melting

points such as molybdenum are used to make the cathode, anode and extractor tip. The original design also called

for an anode cover plate made of titanium.

1) Cone tip: In our original tests of the source, the extractor cone tip suffered extensive damage due to excessive

sparking from the source anode cover plate to the extractor cone tip as seen in Fig. 9(a). The damage to the cone

tip usually resulted in sharp edges that caused high electric fields and thus higher spark rates. At the point where
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Fig. 8: These photographs show the outside of the source after it is assembled and installed on a beam line. (a) The

source cube. (b) The back of the source cube showing the cesium boiler covered with insulation. (c) The window

on the source cube that shows the source can. (d) A zoomed in view through the window that shows the plasma.

TABLE I: Source parameters for the three generations of the H- magnetron ion sources used at FNAL

Parameter Flat cathode Grooved Cathode Spherical dimple Units

(slit aperture) (slit aperture) (round aperture)

Arc current 180 50 18 A

Arc Voltage 150 150 150 V

Hydrogen consumption 3 3.4 2.5 cc/min

Cesium consumption 22 12.5 8.5 mg/day

Extractor voltage 18 18 35 kV

Power efficiency 2 6.7 33 mA/kW

Duty factor 0.12 0.12 0.35 %

Lifetime 1 3 9a months

abased on BNL experience, FNAL lifetime has been less up to this point in time (April 2015).

the spark rates became so high that we could not run the extractor at 35 kV, the source would need to be removed

and the extractor cone tip either refinished to remove the sharp edges or it would need to be replaced. We can
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approximate the amount of energy in an extractor spark by using the CV 2/2 formula, which for our system it

would be 245 J concentrated into an area the size of the spark.

Fig. 9: Extractor cone tip showing: (a) damage due to sparking between the grounded extractor cone and the source

which is pulsed at −35 kV, (b) damage due to co-extracted electrons cutting into the cone tip in the direction of

the magnetic bend field, and (c) a tungsten cone tip that has very little damage even after excessive sparking.

The other issue that appeared was cutting of the cone tip by the co-extracted electrons which can be seen in

Fig. 9(b). The channel cut by the electrons left behind a sharp edge which would be a location where sparking

would start. After consulting with BNL, we decided to change the extractor cone design to accommodate a tungsten

cone tip. The new tungsten cone tip Fig. 9(c) is not affected as much by co-extracted electrons and suffers very

little damage from extraction gap sparking.

2) Anode cover plate: The anode cover plate is in contact with the plasma region of the source as well as the

point where the H- ions and electrons are extracted from the source. This plate was titanium and would suffer

from erosion, especially at the round aperture as seen in Fig. 10(a). This aperture would end up being eroded

in the direction of where the extracted negative particles are bent by the magnetic field. This would lead to the

extracted beam being less round as the source aged and the erosion would leave behind sharp edges which would

lead to extraction gap sparking. We decided to make plate out of both molybdenum and tungsten. Even though the

molybdenum plates still showed signs of erosion, they performed better than titanium. We now use tungsten plates

and see no signs of erosion.

3) Cathode: Even though the molybdenum cathode has erosion from back streaming positive ions, it is required

for source operation. For surface production of H- ions, the magnetron depends on the cesiation effect discovered by

Dudnikov [6]. The work function of cesiated molybdenum is 1.5 eV is due to cesium being one of the best electron

donors. So, for high H- yields molybdenum is used, however it does suffer from erosion from not only the plasma,

but also back streaming positive particles which can be seen in Fig. 10(b). Tungsten would be a possible candidate

for cathode material. Its work function is slightly higher and H- yield is lower than molybdenum. However, it has

a broader H- production peak [7] which may allow for a wider range of tuning. We do have plans to try a tungsten

insert in a molybdenum cathode.
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Fig. 10: (a) A titanium inner anode cover plate showing the amount of erosion of a used one vs the aperture of a

new plate. The aperture of new plates is 0.125", while the used plates can have eroded apertures of 0.25" or greater.

(b) A cathode showing signs of erosion of the spherical dimple from back streaming positives. This material ends

up sputtering onto the other surfaces and where the material was removed makes the dimple no longer spherical

focusing.

B. Magnetic field

1) Simulations: The transverse magnetic field Bz
1 field is critical for the confinement of the electrons of the

plasma. If the Bz field is too weak, too many electrons are lost from the plasma and the lost electrons can

form a conductive path from the cover plate to the extractor that encourages sparks to occur. Simulations show

that Bz > 1 kG is necessary for confining the electrons for our source geometry. However, there is a point of

diminishing return, and a good range for Bz is between 1 and 1.5 kG. [8]

2) Yoke and magnetic field distribution: The original design for the source magnetic field used four disc shaped

permanent magnets that were mounted on a yoke. See Fig. 11(a). These magnets were readily available due to their

use in the HINS (High Intensity Neutrino Source) magnetron research that was in progress at that time. The ordering

of new rare earth magnets had a several month lead-time so these available magnets were used. The magnets were

3/4" in diameter and 1/4" thick and were made from samarium cobalt. Two magnets were mounted on each side

of the source body. Steel pole tips and back plates were used to both place the magnets close to the source body

and to mount the magnets to the steel yoke. This design only delivered 980 G in the plasma region and 650 G in

the extraction region. A study performed by Volk [9] indicated that the Hci (resistance to demagnetization) for the

magnets was low, and the yoke was saturated because it was too thin. This led to excessive extractor sparking early

in source development.

In an attempt to increase the Bz field strength, the number of disc magnets were doubled to eight with four

mounted on each side surrounding the source as seen in Fig. 11(b). To make room for these extra magnets, the

1/4" back plate was removed and replaced with a copy of the pole tip piece to keep the magnet placement as

1In this paper, the xyz axes are defined in Fig. 12. The z direction comes out of the page and is not in the beam direction.
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(a) (b)

(c)

Fig. 11: Evolution of the yoke and magnet design. (a) The earliest design with a thin yoke and four disk magnets.

(b) Increasing the number of disk magnets from four to eight. (c) Complete redesign of the assembly that uses a

thicker yoke and two rectangular magnets.

close to the source body as possible. This did improve the Bz field strength but not quite enough to get 1 kG in

the plasma region of the source. A redesign of the magnets and yoke assembly was done at this time to increase

the field strength as shown in Fig. 11(c). New rectangular magnets were chosen to deliver a stronger, more uniform

field across the cathode and the extraction area in particular. A thicker yoke made of low carbon steel was used to

further increase the magnetic field strength in this area. Fig. 12 shows the relative Bz field in the center of the field

region where the cathode dimple and beam extraction occurs for all three source magnet designs. The gains made

with the rectangular magnet redesign are apparent in the higher Bz field strength in both the plasma forming and

extraction areas. After upgrading the source with this new design, we have seen less signs of co-extracted electrons

on the extractor cone and ceramic stand-offs.

3) Temperature effect: The samarium cobalt magnets used in the sources have a maximum working temperature

of 300◦C from the manufacturer’s published specifications. Above this temperature the magnetic field can be

irreversibly changed and will not recover to its original value even after the magnet is cooled. The magnets are

located 0.01" from the source body which operates at a temperature typically below 200◦C but can readily approach

250◦C during startup. While this may not be a high enough temperature to permanently affect the magnetic field

strength, it is high enough to temporarily change the field strength of the magnets. For two months, a source was

operated in the test stand while we monitored the temperature of the magnets and yoke. The 8 circular magnet

assembly seen in Fig. 11(b) was used for this test. During this period, the magnet temperature did not exceed 75◦C

as shown in Fig. 13.

October 8, 2015 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 11

−0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B
z

 

 

B
z
 field Comparison at Center of Source Body (kG)

Longitudinal position (inches)

B
z
(k

G
)

4 Circular Magnets
8 Circular Magnets
Rectangular Magnets
Cathode
Plasma Volume
Extractor Cone
Magnet Border(Rect)

Fig. 12: Plot showing Bz field (pointing out of the page) strengths, for each magnet configuration, as a function of

longitudinal distance from the base of the magnets. The source diagram is shown to accentuate the plasma region

and beam extraction area. The rectangular magnet border is shown in magenta surrounding the cathode and plasma

volumes.

Magnet Yoke temperature

Source arc current

Fig. 13: Plot showing the magnet yoke temperature (Z:TSTEMP) and the source arc current (Z:TARCI) during

a special run from March to May 2013 to understand source magnet heating during operations. Even during the

source startup period when the source runs at the highest temperatures, the magnet yoke temperature never exceeded

75◦C.
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Fig. 14: (a) The data shows that the Bz magnetic field is reduced at temperatures above nominal source operating

temperatures. This data was taken with the disc shaped magnets and thin yoke. (b) This plot shows the magnitude

of the Bz magnetic field strength measured in the plasma region (red) and the extraction gap (blue). These

measurements were taken on the rectangular magnet design that has a thicker yoke each time this particular source

was rebuilt or cleaned over the last two years.

Magnetic field measurements were also made in the atmosphere by heating the magnet yoke and source body

assembly to 120◦C and measuring the Bz field. This data is shown in Fig. 14(a) and the field is affected by the

increased temperature even at 75◦C because of the low Hci for the circular magnets. With the new rectangular

magnets and thicker yoke, the temperature effect is now negligible. Also, the long term effects of the higher

temperature operation have been monitored with each rebuild and cleanse of the source by measuring the magnetic

field in the plasma region and at the extraction region while the source is rebuilt. The data for these measurements

are shown in Fig. 14(b) which clearly shows that there is no long term degradation in the Bz field over a two year

period.

C. Vacuum

Our initial vacuum system design was based on the amount of pumping speed that BNL used on their source

vacuum chamber. We chose to use two 1200 L/s turbo pumps to closely match the BNL pumping of 2200 L/s. [1]

It was assumed that this would be appropriate since the duty factor of the BNL and FNAL sources are similar.

With both turbos running at their maximum speed, the average vacuum chamber pressure was ∼(1−2)×10−6 Torr

when the ion source was operating. This was our initial operating pressure, which happened to be during a time

of high spark rates after the sources were installed in the operational beamline. It was noticed that the spark rate

was lower in our test stand that only had 900 L/s pumping speed and had an average pressure of 1 × 10−5 Torr.

Based on this, we turned off one of the turbos on the operating system which caused an increase in the pressure

to ∼ 7 × 10−6 Torr. As can be seen in Fig. 15, the extractor spark rate decreased. As a result of this experiment
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we now use only one 1200 L/s turbo on each operational source vacuum chamber.

average vacuum chamber 
 pressure (Torr)

arc current (A)

extracted H- beam 
current (mA)

Fig. 15: The extractor spark rate decreased when the pressure increased.

Fig. 16 shows the bands of pressure in the vacuum chamber and the observed source performance within those

bands.

• At pressures below 2× 10−6 Torr there is not enough gas for the source to maintain a discharge. This is seen

as the oscillations in the arc current seen in Fig. 17.

• At pressures between 2×10−6 Torr and 5×10−6 Torr the discharge is “noisy” and the extractor spark rates are

high. The high spark rates due to this low pressure is not completely understood at this time. One possibility is

there may be a high electron to H- ratio in the source which leads to a high number of co-extracted electrons.

• Pressures between 5× 10−6 Torr and 9× 10−6 Torr are the optimal operating pressures for the ion source. In

this band of pressures the spark rate is at its lowest and H- stripping is not a factor.

• Pressure above 9× 10−6 Torr is where H- stripping occurs due to residual gas.
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Fig. 16: This diagram summarizes the effect on the source at different pressures.
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Fig. 17: The arc current oscillates whe the vacuum pressure gets below 2× 10−6 Torr.

III. OPERATIONS

In this section, first we will discuss how to start a source because building a source is only one half of the

equation. The other half is learning how to start it up so that the source can work reliably. In fact, the first week of

source start up is an intensive process where we have to get the source to a stable point for operations. The recipe

described here is the one that we have found that works well for us.

The second discussion is about cesium control and monitoring. Unfortunately, the only way we can control

the flow of cesium is by changing its boiler temperature, which is operated open loop because there is no easy

way to monitor the amount of cesium in the source. A method that we used to monitor the cesium and hydrogen

concentrations in the plasma is with a simple, home made spectrometer. Long term monitoring of the spectra does

show that the spectrum contains information about source problems. However, disentangling the data for more

subtle changes in the source is a continuing challenge.

A. Starting a source

Source startup commences when the source cube average pressure reaches the mid 10−7 Torr range. Once this

pressure is reached, we are confident that no vacuum leaks were introduced during the maintenance period, we can

start the bakeout procedure.

We use the source body heater to bake out the source. The power supply is turned on to a current high enough

to keep the source body over 250◦C so that the alcohol and water that are used to clean the source are baked out

and the vacuum pressure reaches the low to mid 10−7 Torr. Fig. 18 shows a plot of the temperatures and vacuum

pressure of one of our two operational sources (source B, in this case) during its cesium boiler system and source
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bake for startup. In this instance, the source bake was allowed to run for three days over a weekend. This was a

rare instance of starting a source after an accelerator maintenance period. Typically, source refurbishment is done

during operational periods, with a turn around time of 24 hours after the source is turned off. The bake out also

includes the cesium boiler system (see Fig. 8(b)) if a new 5 g, glass ampoule of cesium has been placed in the

boiler. The bake out is done with heat tape wrapped around each of the three elements in the system: the boiler,

valve, and tube. The glass ampoule is placed into the boiler unbroken and the cesium valve that connects the boiler

to the tube, and thus the source, is opened. The heater power supplies for these three parts are then turned on. The

temperatures are raised above 100◦C for one hour to boil off any residual water in the system and then turned off

and the cesium valve is closed. Once cool enough to the touch, the insulation is removed from the boiler and the

copper boiler tube is pinched to break the glass ampoule inside, releasing the cesium.

Cesium system 

bake out for 1 hour

Vacuum pump down

Start of  the 3 day 

source bake out

Fig. 18: The temperatures of the cesium heater system during a pre-startup bake out. The temperatures are: boiler

in green, valve in pink, tube in magenta, cathode in brown, and source in blue. The vacuum pressure is in purple.

Once the source vacuum is further pumped down to the high 10−8 Torr range, the cesium valve is reopened and

the cesium system heaters are turned on. If the source heater power supply was being used to bake the source body

it is either reduced to a much lower value or it is turned off entirely. These heaters take roughly 6 hours to reach

stable temperatures. At this time, the hydrogen gas valve is opened and the average cube pressure is set to about

1× 10−5 Torr, and the arc modulator power supply is turned on at its upper limit of 300 V. Fig. 19 shows a plot

during this period when the cesium system warms up and the gas and arc supplies are turned on.
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Fig. 19: The source temperatures starting from the end of the source bake-out, through the cesium heater system

warmup period and finally into the source startup with the arc discharge current trace in yellow.

At this stage it can take hours for the cesium monolayer to reach optimal thickness for the generation of plasma

as shown in Fig. 19 on the yellow trace labeled L:AARCI. L:AARCI is the arc discharge current in the source

which is shown slowly rising as the source body and cathode temperatures rise to a new equilibrium with the

plasma.

Over the course of the next day the arc discharge current will stabilize at some value that is typically lower

than the operational level. Once this happens, the cesium boiler temperature is raised slowly over several days to

increase the arc discharge current to the nominal range. This is done to limit the cesium in the source to just enough

to allow for a stable arc discharge at the desired level and no more because this has been found to be critical for

lower extractor spark rates.

Once the arc is stable, the gas pressure is lowered slowly to reach the usual operating pressure which is between

5 × 10−6 Torr to 7 × 10−6 Torr. The arc power supply is lowed similarly until the arc discharge current is near

15 A. The extractor power supply is now turned on, raised to 35 kV and the source is now able to provide beam

if needed. The beam output of the source is usually ∼80 mA when measured on the first toroid in the beam line.

The first toroid is about 0.5 m from the source and thus this value is dependent on how the beam line is tuned.

Once this has been done, the source usually behaves very well, and only small occasional tweaks in gas pressure,

arc currents, and cesium boiler temperature are needed to maintain its performance.
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B. Cesium

Cesium is an essential component for maintaining the plasma in the source. However, having too much cesium

that does not participate in H- production causes the rate of sparking to inevitably increase to a rate of about once

every few minutes. One way that we can demonstrate that there is too much cesium, is to shut off the cesium flow

while still allowing the source to run. If there is too much cesium then the plasma can be sustained for hours (or

even days) when the cesium boiler is off. Fig. 20 shows the result of this experiment.

Boiler turned off

Source body temperature

Output current

Cathode temperature
Cesium boiler 

cooling off

12 hours

Fig. 20: After the boiler is turned off and the cesium valve closed, the plasma does not die off. In fact, there is

still beam current after 12 hours.

The obvious question then becomes how do we measure the cesium flow rate and its concentration in the plasma.

At the pressures and temperatures used in the cesium boiler system, the cesium is probably an admixture of both

liquid and gas. If we want to measure the liquid flow of cesium, we can do the following back of the envelope

calculation:

The amount of cesium in a freshly loaded cesium boiler is about m = 5 g that takes about t = 600 days to

deplete. The cross sectional area of the cesium feed tube into the source is about a = 4× 10−6 m2, and since we

are assuming that the cesium is liquid in the tube, the speed of the cesium v in the tube is approximately given by

v = (m/ρ)/(a× t) = 13 nm s−1 (1)

where the density of cesium ρ = 1.8 g cm−3. Therefore, the cesium flow rate is glacially slow and only indirect

methods can be used to measure its speed if it is a liquid.

October 8, 2015 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 18

(a)

H2

Cs

(b)

Fig. 21: (a) Our homemade spectrometer installed on one of the operational sources. (b) The spectrum. The large

peak is the hydrogen Balmer line at 656 nm and series of cesium lines from 560 – 620 nm.

However, if the cesium is gaseous, a surface ionization detector (SID) is one possible way for measuring flow

rates. [10] However, again, the glacially low flow rates of ∼ 0.7 mg/h using the above parameters, gives a signal

that is in the µA range which is difficult to measure in the noisy environment where the source is installed.

1) Cesium concentration: The relative concentration of cesium w.r.t. hydrogen in the plasma is monitored using

a spectrometer. The hypothesis is that the ratio between the hydrogen Balmer line and a cesium line gives this

number. [11]. Fig. 21 shows the homemade spectrometer installed on one of the operational H- sources looking

directly at the gas discharge (see Fig. 8(d)) and a typical spectrum of it. The hydrogen Balmer line at 656 nm

and a cluster of cesium lines between 560 – 620 nm are very distinct. When the source is extremely over-cesiated,

another hydrogen Balmer line pops up at 486 nm and the cluster of cesium lines become comparable in size to the

hydrogen 656 nm line. More details of our spectrometer can be found in Ref. [11].

The cesium line can also predict that a large number of sparks is coming. For example, the cesium line that is

monitored shows a huge increase over a few hours on Friday 05 Nov shown in Fig. 22. This is an indication that,

for whatever reason, a burst of cesium was delivered to the source. Although the cesium line eventually drops back

to its nominal level, the spark rate dramatically increases after that. In order to stop the source from sparking, the

boiler temperature is repeatedly turned down and it is not until about 4 days later that the cesium contamination is

burned off and the sparking stops.

IV. BEAM NOISE

One problem with the magnetron source is that the extracted H- beam is quite noisy. Fig. 23 shows the beam

noise at the exit of the source and at the 400 MeV end of the Linac after bunching through the RFQ. This noise

is endemic in magnetron sources, and can be traced to the ratio of the scattering frequency ν of the electrons with
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Cs spectrum

H2 spectrum

Beam current

Vacuum pressure

Boiler temperature

Extractor voltage

Fig. 22: The cesium spectral line indicates that a huge change in its concentration in the plasma. After the cesium

line returns to its normal level, sparking of the source starts. The sparking is reduced only after the boiler temperature

is lowered by 6◦C which reduces the flow of cesium. Recovery takes about 4 days.

the ions to the electron cyclotron frequency ω. If ν/ω > 1.5, we have noiseless discharge. However, magnetrons

are operated in such a manner that this ratio is always in the noisy regime. [12]

There are three known solutions for solving this problem. They are:

(a) Increasing the plasma volume.

(b) Modifying the cathode so that it becomes a “hollow” cathode.

(c) Adding a small amount ∼1− 5% of nitrogen to the hydrogen.

We will discuss briefly these noise reduction techniques below. These techniques are covered more extensively

in ref. [13]. Although we have studied these methods, we have not been able to conclusively state whether any of

these methods work at this time due to the limitations of our test stand. These experiments will continue once our

test stand has been upgraded.

A. Increasing the plasma volume

Alessi and Sluyters [4] observed that by increasing the spacing between the cathode and the anode on the back

side of the magnetron, the discharge became more stable at a lower gas pressure than the normal grooved magnetron

and the emission current density also increased. Other experiments by Wiesemann [14] also indicated that a larger

plasma volume would lead to a less noisy source. Fig. 24 shows the different cathode geometries that we have tried

in an attempt to increase the plasma volume.
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(a) (b)

Fig. 23: The output of the H- source is quite noisy (yellow trace of (a)) The noisy spikes can be as large as 30%

of the mean value of the beam current. The noise on the beam is preserved after bunching through the RFQ and

manifests as beam drop outs (b) just before injection into Booster.

Fig. 24: Pictures of different cathode geometries studies. Initial studies involved incrementally increasing the size

of the groove on the back of the cathode. All cathodes used the spherical dimple on the front of the cathode for

focusing the H- ions to the anode aperture.

B. Hollow Cathode

A variation of the cathode called a “hollow cathode” was suggested by Dudnikov [15] as a means of discharge

noise suppression in a magnetron. A hollow cathode that has a hole which is 3 mm in diameter and 6 mm deep is

shown in Fig. 24(6) The idea behind a hollow cathode is that extra electrons are generated inside the hole which in

turn, helps to generate more plasma and thus increases the plasma density. This technique has been used in other

surface plasma sources. For example see [16], [17]. Again, this is the same idea that higher plasma density helps
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to smooth out the noise on the extracted beam current.

C. Addition of nitrogen to hydrogen

The addition of a small amount of nitrogen to the hydrogen also smooths out the extracted beam. The physics

behind this method is discussed in Ref. [12]. The addition of nitrogen to “cure” the noise problem was discovered

by H.V. Smith et al in the late 1980s [18], [19] and is extensively used in Penning sources. Previous experiments

at FNAL using a different style magnetron and operating point with 0.1% and 1.0% nitrogen to hydrogen ratio

showed a reduction in noise [20]. Our experiments with 3%, 1%, 0.5% and 0.25% nitrogen to hydrogen ratios did

not yield conclusive results. We attribute these results to (a) the difference in style of the present magnetron and

operating point to that used in the previous study, and (b) the inadequacies of our present test stand.

V. CONCLUSION

The dimpled H- magnetron source has worked very well for operations. Small tweaks to the source are done

every day to ensure that the source meets the high energy physics requirements. Although all the major problems

that we have identified have been fixed, there are still a few improvements that need to be done. The list of upgrades

are as follows:

(i) Replacing the piezo gas valve with a solenoid driven gas valve. The closure of the piezo gas valve is notorious

for drifting with the ambient temperature and by replacing it with a solenoid drive gas valve this problem will

be solved. This upgrade has been done and will be used for operations starting in October 2015.

(ii) Improving the entire cesium boiler system. The present system has very poor temperature regulation and there

are many parts that need to be replaced to fix this problem.

(iii) Changing some aspect of the source to reduce beam noise. Although none of the experiments, so far, have

shown a definitive cure for the noise problem, we believe that this is due to the limitations of our test stand.

The test stand is presently being upgraded and should be operational by the end of 2015.

In conclusion, we have summarized our experiences for building H- sources for accelerators in this paper. We

hope that this paper will be useful for users who plan to build this type of source and will help to get it started up

and running quickly.
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