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ABSTRACT
We present a detection of the enhancement in the number densities of background galaxies
induced from lensing magnification and use it to test the Sunyaev-Zel’dovich effect (SZE)
inferred masses in a sample of 19 galaxy clusters with median redshift z' 0.42 selected from
the South Pole Telescope SPT-SZ survey. Two background galaxy populations are selected for
this study through their photometric colours; they have median redshifts zmedian ' 0.9 (low-z
background) and zmedian ' 1.8 (high-z background). Stacking these populations, we detect the
magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively.
We fit NFW models simultaneously to all observed magnification bias profiles to estimate
the multiplicative factor η that describes the ratio of the weak lensing mass to the mass in-
ferred from the SZE observable-mass relation. We further quantify systematic uncertainties
in η resulting from the photometric noise and bias, the cluster galaxy contamination and the
estimations of the background properties. The resulting η for the combined background pop-
ulations with 1σ uncertainties is 0.83±0.24(stat)±0.074(sys), indicating good consistency
between the lensing and the SZE-inferred masses. We use our best-fit η to predict the weak
lensing shear profiles and compare these predictions with observations, showing agreement
between the magnification and shear mass constraints. This work demonstrates the promise
of using the magnification as a complementary method to estimate cluster masses in large
surveys.

Key words: galaxies: clusters: gravitational lensing: magnification

c© 0000 RAS

ar
X

iv
:1

51
0.

01
74

5v
1 

 [
as

tr
o-

ph
.C

O
] 

 6
 O

ct
 2

01
5

FERMILAB-PUB-15-429-AE

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.



2 Chiu et al.

1 INTRODUCTION

Gravitational lensing is one of the most direct methods for mea-
suring the masses of galaxy clusters, because it does not require
assumptions about the dynamical or hydrostatic state of the clus-
ters and it probes the total underlying mass distribution. In prac-
tice, there are challenging observational systematics that must be
overcome (Erben et al. 2001; Leauthaud et al. 2007; Corless &
King 2009; Viola et al. 2011; Hoekstra et al. 2013), and over the
past two decades significant progress has been made by calibrating
with simulations (e.g., Heymans et al. 2006; Massey et al. 2007;
Bridle et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2015;
Hoekstra et al. 2015). As a result, modelling the shear distortion of
background galaxies that are lensed has been developed into a reli-
able method to measure cluster masses (Gruen et al. 2014; Umetsu
et al. 2014; Applegate et al. 2014; von der Linden et al. 2014a,b;
Hoekstra et al. 2015). In comparison, there has until recently been
less observational progress using the complementary gravitational
lensing magnification effect (Broadhurst et al. 1995; Joachimi &
Bridle 2010; Van Waerbeke et al. 2010; Heavens & Joachimi 2011;
Hildebrandt et al. 2011; Schmidt et al. 2012; Umetsu 2013; Coupon
et al. 2013; Ford et al. 2014; Duncan et al. 2014).

The changes in the sizes of the background galaxy population
due to gravitational lensing magnification results in changes to the
fluxes because the surface brightness is conserved. This leads to
increases in the number density of flux-selected samples of back-
ground galaxies in the neighborhood of mass concentrations. How-
ever, the magnification effect also distorts the sky area, leading to a
decrease in the number density. Whether the combined effects lead
to an overall increase or decrease of the number density depends on
the slope of the source count-magnitude relation at the flux limit.
An advantage to measuring the magnification is that it only requires
accurate photometry and therefore does not require unbiased es-
timates of galaxy ellipticity, which are needed for shear studies.
Thus, even unresolved galaxy populations can be used in a lensing
magnification study. However, the signal-to-noise ratio (SNR) for
mass measurements obtained using magnification effects tends to
be lower by a factor of 3–5 as compared to those that one obtains
using the shear signature imprinted on the same galaxies (Schnei-
der et al. 2000). Due to the lower SNR, a significant detection of the
magnification effect is more realistically expected around massive
collapsed structures such as galaxy clusters.

There are several ways to detect the magnification around
galaxy clusters. The magnification information can be extracted
from the angular cross-correlation of high redshift sources, e.g., Ly-
man break galaxies (Hildebrandt et al. 2009; Van Waerbeke et al.
2010; Hildebrandt et al. 2011; Ford et al. 2012, 2014), measur-
ing the change in the background galaxy sizes or fluxes (Schmidt
et al. 2012), or observing the skewness in the redshift distribution of
the background galaxies (Coupon et al. 2013). Another approach,
called the magnification bias, is to measure the change or bias in
the number density of a flux-limited background galaxy sample to-
wards the cluster centre (Broadhurst et al. 1995; Taylor et al. 1998).
First proposed by Broadhurst et al. (1995), who measured the mass
of an individual cluster with this technique, the magnification bias
method has now been applied to a dozen galaxy clusters (Umetsu
2013). In that analysis, the magnification bias signature is com-
bined not only with shear but also with strong lensing constraints.

The conventional analysis of magnification bias is based on a
flux-limited background galaxy population with a nearly flat slope
of the source count-magnitude relation, which leads to a depletion
of the number density in the mass-concentrated region of clusters

(Umetsu 2013). Detecting this magnification bias requires ultra-
deep and uniform observations to achieve adequate statistics in the
galaxy counts to suppress the Poisson noise. Therefore, this ap-
proach for measuring the cluster masses can be very costly in terms
of observing time. On the other hand, the lensing magnification
also acts on brighter galaxies where the intrinsic slope is steep. In
this case, the increase of the number of galaxies magnified to be
above the flux limit overcomes the dilution of the geometric expan-
sion and, therefore, results in an enhancement of number density.
However, this density enhancement of the magnification bias has a
lower SNR on a per cluster basis due to the lower number density
of bright background galaxies. Consequently, one needs to combine
the signal from a large sample of massive clusters.

In this work, we aim to detect the density enhancement from
the magnification bias effect by combining information from 19
massive clusters. Our study leverages background populations of
normal galaxies selected in colour-colour space. The clusters were
selected through their Sunyaev-Zel’dovich effect (SZE; Sunyaev &
Zel’dovich 1970, 1972) in the 2500 deg2 SPT-SZ survey carried
out using the South Pole Telescope (SPT, Carlstrom et al. 2011).
These clusters have been subsequently imaged with the Magellan
telescope for the purpose of weak lensing studies.

This paper is organized as follows: A brief review of the rel-
evant lensing theory is given in Section 2. In Section 3 we intro-
duce the data used for this analysis. The analysis method is de-
scribed in detail in Section 4. We present and discuss our results
in Section 5 and provide our conclusions in Section 6. Through-
out this paper, we assume the concordance ΛCDM cosmologi-
cal model with the cosmological parameter values recently deter-
mined by Bocquet et al. (2015): ΩM= 0.292, ΩΛ = 0.708 and H0 =
68.2 km s−1 Mpc−1. Unless otherwise stated, all uncertainties are
68% (1σ ) confidence intervals and cluster masses and radii are es-
timated within a region that has an overdensity of 500 with respect
to the critical density of the Universe at the cluster redshift.

2 THEORY

In this section we provide a summary of gravitational lensing in-
duced by galaxy clusters. We refer the reader to Umetsu (2011)
and Hoekstra et al. (2013) for more complete discussions.

Light traveling from a distant source to the observer is de-
flected in the presence of a gravitational potential, resulting in the
distortion of the observed image. This gravitational lensing effect
depends only on the underlying mass distribution along the line of
sight and can be formulated with the following lens equation:

α = θ −∇θ ψ , (1)

where ψ is the effective deflection potential, α and θ are the an-
gular positions on the sky of the source (before lensing) and the
observed image (after lensing), respectively. The Jacobian of equa-
tion (1) therefore reflects how the observed background image is
distorted, linking the positions of the source and the gravitational
potential of the lens. i.e.,

J(θ) = ∇θ α

=

(
1−κ− γ1 −γ2
−γ2 1−κ + γ1

)
(2)

and

dΩθ = J−1dΩα , (3)

where κ and γ = γ1 + iγ2 are, respectively, the convergence and
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the shear at the sky position of the image; dΩα and dΩθ denote
the solid angle on the sky before and after lensing, respectively.
The convergence κ is the integrated density contrast against the
background along the line of sight. For the case of cluster lensing,
κ can be written as

κ(θ ,ψ) =
Σlens(θ ,ψ)

Σcrit
, (4)

Σcrit =
c2

4πG
1

βDl
, and (5)

β =

{
0 for Ds 6 Dl

Dls
Ds

for Ds > Dl
(6)

assuming that the cluster acts as a single thin lens ignoring the un-
correlated large-scale structure, i.e., an instantaneous deflection of
the light ray. Here Σlens is the projected mass density of the cluster,
Σcrit is the critical surface mass density, β is the lensing efficiency
that depends on the ratio of the lens-source distance to the source
distance averaged over the population of background galaxies, c is
the speed of light, and Dl, Ds and Dls denote the angular diame-
ter distances of the cluster, the source, and between the cluster and
the source, respectively. These distances depend on the observed
redshifts and the adopted cosmological parameters. In practice, the
lensing efficiency averaged over a population 〈β 〉 is used for esti-
mating cluster masses.

As seen from equation (2), gravitational lensing induces two
kinds of changes to the observed image. The first one, characterized
by γ , distorts the observed image anisotropically, while the other
described by the convergence κ results in an isotropic magnifica-
tion. Analyzing the information from shear alone can only recover
the gradient of the cluster potential, and therefore the inferred mass
is subject to an arbitrary mass constant. This so-called mass-sheet
degeneracy can be broken by combining shear and magnification
(e.g. Seitz & Schneider 1997).

As seen in equation (3), gravitational lensing changes the pro-
jected area of the observed image, and because the surface bright-
ness is conserved this results in a magnification µ of the source,
which is given by

µ = det(J)−1

=
1

(1−κ)2−‖γ‖2 . (7)

In the weak lensing limit (‖γ‖ � 1 and κ � 1), the magnification
can be approximated as µ ' 1+2κ , i.e. it is linearly related to the
dimensionless surface mass density κ .

For µ > 1 the flux of each source is increased, leading to an
increase in the observed number density of a flux-limited popula-
tion of background sources. On the other hand, the lensing mag-
nification introduces an angular expansion on the plane of the sky,
which decreases the observed number of background sources per
unit area. As a result, the observed number density of a flux-limited
background population changes (is either depleted or enhanced) to-
wards the centre of the cluster depending on the two competing
effects. The mass of a cluster can hence be estimated by measur-
ing this change given knowledge of the properties of the observed
background population prior to lensing.

One important property of the background population is its
number count-magnitude relation n(< m), which is the cumulative
number of galaxies per unit sky area brighter than a particular mag-
nitude m. This number count-flux relation is typically characterized
as a power law n(< f ) = f0× f−2.5s where f is flux, f0 is a normal-
ization and s is the power law index. This can be written in terms

of magnitude m as

logn(< m) = log f0 + s× (m−ZP) , (8)

where ZP is the zeropoint used to convert the flux to magnitude.
In the presence of lensing the observed cumulative number density
n(< mcut) of a given background population can be shown to be
(Broadhurst et al. 1995; Umetsu et al. 2011)

n(< mcut) = n0(< mcut)µ
2.5s−1 (9)

s(mcut) =
dlogn(< m)

dm

∣∣∣∣
mcut

, (10)

where n0(< mcut) is the projected number density of galaxies at
the threshold magnitude mcut in the absence of lensing and s(mcut)
is the power law index of the galaxy count-magnitude distribution
before lensing (equation (8)) evaluated at the limiting magnitude
mcut. Equation (9) can be further reduced to

n(< mcut)' n0(< mcut)(1+(5s−2)κ) (11)

in the weak lensing regime.
In the case of s = 0.4, one expects no magnification signal

while a background population with s greater (less) than 0.4 results
in enhancement (depletion) of background objects. To sum up, the
cluster mass can be determined by using the magnification bias in-
formation alone if the power law slope s, the average lensing effi-
ciency 〈β 〉 of the background population, and the local background
number counts before lensing n0(< mcut) are known.

3 SAMPLE AND DATA

3.1 Sample

We study the lensing magnification with 19 galaxy clusters se-
lected by SPT through their SZE signatures. The first weak lens-
ing shear based masses for five out of these 19 clusters have been
presented in High et al. (2012), and the full sample is being ex-
amined in a subsequent weak lensing shear analysis (Dietrich et
al, in preparation). These 19 clusters all have measured spectro-
scopic redshifts (Song et al. 2012; Bleem et al. 2015) and span
the redshift range 0.28 6 z 6 0.60 with a median redshift of 0.42.
The virial masses M500 have been estimated using their SZE sig-
nature and the SZE mass-observable relation that has been cali-
brated using velocity dispersions, X-ray mass proxies and through
self-calibration in combination with external cosmological datasets
that include Planck CMB anisotropy, WMAP CMB polarization
anisotropy and SNe and BAO distances (Bocquet et al. 2015).

Song et al. (2012) show that the Brightest Cluster Galaxy
(BCG) position provides a good proxy for the cluster centre, which,
for relaxed clusters, is statistically consistent with the centre in-
ferred from the SZE map. Moreover, the offset distribution between
the BCG and SZE centres is consistent with the one between the
BCG and X-ray centres that is seen in the local Universe (Lin &
Mohr 2004). Therefore, the cluster centre is taken to be the po-
sition of the BCG, which is visually identified on pseudo-colour
images, in this work. R500 is derived from the cluster SZE-inferred
mass, its redshift and the critical density at that redshift, given the
cosmological parameters. Properties of the 19 clusters are listed in
Table 1.
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4 Chiu et al.

Table 1. Properties of the cluster sample. Column 1: name. Column 2: spectroscopic redshift. Column 3–4: right ascension α2000 and declination δ2000 of the
BCG. Column 5: the SZE-inferred M500 (see Section 3.1). Column 6–7: R500 corresponding to the SZE-inferred M500. Column 8–10: 90% completeness limit
(m90) for g, r and i filters, respectively.

Cluster Redshift α2000 δ2000 M500 R500 mg
90 mr

90 mi
90

[deg] [deg] [1014M�] [Mpc] [arcmin] [mag] [mag] [mag]

SPT-CL J0234−5831 0.415 38.676189 −58.523644 9.03±1.76 1.30 3.82 23.91 24.54 23.07
SPT-CL J0240−5946 0.400 40.159710 −59.763600 6.38±1.31 1.16 3.50 24.05 24.63 23.21
SPT-CL J0254−5857 0.438 43.564592 −58.952993 8.77±1.70 1.27 3.63 23.83 24.21 22.63
SPT-CL J0307−6225 0.579 46.819712 −62.446544 5.89±1.21 1.05 2.60 24.24 24.83 23.58
SPT-CL J0317−5935 0.469 49.315539 −59.591594 4.71±1.11 1.02 2.81 23.94 24.54 23.07
SPT-CL J0346−5439 0.530 56.730934 −54.648699 6.32±1.28 1.10 2.83 24.26 24.69 23.47
SPT-CL J0348−4515 0.358 57.071292 −45.250059 7.04±1.41 1.22 3.94 24.46 25.13 23.85
SPT-CL J0426−5455 0.630 66.517205 −54.925319 6.01±1.23 1.04 2.46 24.13 24.65 23.21
SPT-CL J0509−5342 0.461 77.339141 −53.703632 5.87±1.21 1.10 3.06 24.21 24.59 23.29
SPT-CL J0516−5430 0.295 79.155613 −54.500493 8.00±1.58 1.30 4.79 23.41 23.98 22.64
SPT-CL J0551−5709 0.423 87.898265 −57.141236 5.77±1.20 1.11 3.24 23.50 24.06 22.61
SPT-CL J2022−6323 0.383 305.541020 −63.397044 4.88±1.13 1.07 3.31 23.68 24.20 22.56
SPT-CL J2030−5638 0.394 307.688610 −56.632185 4.12±1.10 1.01 3.06 23.56 24.09 22.53
SPT-CL J2032−5627 0.284 308.058670 −56.436827 6.29±1.29 1.21 4.56 23.26 24.04 22.22
SPT-CL J2135−5726 0.427 323.914680 −57.437519 7.02±1.39 1.19 3.44 23.45 23.96 22.50
SPT-CL J2138−6008 0.319 324.500020 −60.131848 8.19±1.61 1.30 4.54 22.92 23.46 21.71
SPT-CL J2145−5644 0.480 326.466340 −56.748231 7.85±1.53 1.21 3.27 23.94 24.37 22.98
SPT-CL J2332−5358 0.402 353.114480 −53.974436 6.10±1.23 1.14 3.43 24.26 24.78 23.66
SPT-CL J2355−5056 0.320 358.947150 −50.927604 4.80±1.10 1.09 3.79 24.04 24.78 23.37

3.2 Data

The data acquisition, image reduction, source extraction, and the
photometric calibration are described in High et al. (2012), to
which we refer the reader for more details. In summary, the 19
galaxy clusters studied in this work were all observed using Mega-
cam on the Magellan Clay 6.5-m telescope through g′, r′ and i′

filters. The Megacam field of view is 25′× 25′, which at the red-
shifts of our clusters covers a region around the cluster that extends
to over 2.5R500 and allows us to extract the background number
density n0 at large radii where the magnification effect is negligi-
ble. Except for SPT-CL J0516−5430, each cluster was observed
through g′ and r′ filters in a three-point diagonal linear dither pat-
tern with total exposure times of 1200 s and 1800 s, respectively,
while a five-point diagonal linear dither pattern was used for i′ band
imaging with a total exposure time of 2400 s. SPT-CL J0516−5430
was observed with a 2× 2 square dither mode and a total of eight
pointings through the g′, r′ and i′ filters with total exposure times
of 1200 s, 1760 s, and 3600 s, respectively.

Catalogs were created using SExtractor (Bertin & Arnouts
1996) in dual image mode. Given that the r′ images have the best
seeing with the smallest variation, we use these as detection images.
We adopt MAG_AUTO for photometry. The stellar locus together with
2MASS photometry is used both to determine zeropoint differences
between bands (High et al. 2009) and the absolute zeropoint cali-
bration (Song et al. 2012; Desai et al. 2012). This results in the
systematic uncertainties of colours g′− r′ and r′− i′ smaller than
0.03 mag. The absolute photometric calibration has uncertainties of
. 0.05 mag. Similarly to High et al. (2012), we convert our pho-
tometry from the SDSS system to the Canada-France-Hawaii Tele-
scope Legacy Survey (CFHTLS) system (Regnault et al. 2009)1.
The magnitudes in this work are all in the CFHT AB magnitude
system unless otherwise stated. For convenience, we write g instead
of gCFHT, and equivalently in other bands.

1 http://terapix.iap.fr/rubrique.php?id_rubrique=241

4 ANALYSIS

We stack the galaxy count profiles of 19 clusters to enhance the
SNR of the magnification bias and then fit a composite model
that includes the individual cluster masking corrections, source
count-magnitude distribution slope s and the lensing efficiency.
This stacked analysis ends in a consistency test of the SZE inferred
masses for the cluster ensemble. Details are provided in the subsec-
tions below.

4.1 Source Catalog Completeness Limits

We estimate the completeness of the source catalog by compar-
ing our number counts to that of a deep reference field where the
source detection is complete in the magnitude range of interest in
this work. In particular we extract the limiting magnitude where
the completeness is 90% (m90) and 50% (m50) for our source de-
tection. Here we use the CFHTLS-DEEP survey (Ilbert et al. 2006;
Coupon et al. 2009), in which the 80% completeness limits lie at
magnitudes of u = 26.3, g = 26.0, r = 25.6, i = 25.4 and z = 23.9.
Assuming that the complete source count-magnitude distribution
can be described by a power law (i.e., logn(m) ∝ a×m+b, where
a is the slope and b is the normalization), we first derive its slope
from the reference field using the magnitude range 20 to 24 in each
band. Using this slope, we then fit the normalization of the source
counts for galaxies brighter than 22 mag observed in the outskirts
of our clusters (r > 2R500). We use the ratio of the source counts in
the cluster field to the derived best-fit power law to model the com-
pleteness function for each cluster as an error function. Specifically,
the completeness function Fc is defined by

Fc(m) =
1
2
− 1

2
erf
(

m−m50

σm

)
, (12)

where erf is the error function, m50 is the magnitude at which 50%
completeness is reached, and σm is the characteristic width of the
magnitude range over which the completeness decreases.
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Magnification bias of background galaxies 5

Figure 1. The completeness of the source detection as a function of mag-
nitude. The completeness derived from g, r and i source catalogs is plotted
in the solid lines while the uncertainty of the mean is represented by the
dashed lines. The solid circles and squares are the means of m90 and m50
measured from the 19 cluster fields, respectively. Completeness functions
for g, r and i are colour coded in green, orange and blue, respectively. The
completeness function and its uncertainties measured on the mean of our
image simulations are the black lines. Note that the derived completeness
is based on our catalogs obtained by running SExtractor in dual image
mode with the r-band imaging as the detection band.

We use the best-fit parameters of the completeness model for
each cluster to derive the 90% completeness limit m90. We show
the mean of the completeness functions as well as the measured
m90 and m50 of the 19 clusters for the three filters in Figure 1.

The mean m90 of the 19 observed clusters is 23.84, 24.39 and
22.95 for the filters g, r and i, respectively. The m90’s for the g, r
and i passbands in each cluster are listed in Table 1. Note that the
depths in the i imaging limit our analysis at magnitudes fainter than
24 mag.

After accounting for differences in primary mirror area, expo-
sure time and quantum efficiency, we compare our completeness
limits to those of SDSS Stripe 82 (Annis et al. 2014). We esti-
mate that in the background limited regime our Magellan imag-
ing should be deeper by 1.1 mag, 1.2 mag and 1.3 mag in gri, re-
spectively, in comparison to SDSS Stripe 82. Because the seeing is
better in our Magellan imaging than in Stripe 82 we would expect
these estimates to somewhat underestimate the true differences in
the completeness limits. A comparison of our 50% completeness
limits m50 with theirs (see Figure 7 in Annis et al. (2014)) indicates
that our catalogs are deeper by 1.3±0.3, 1.8±0.3, 1.2±0.5 mag,
for gri, respectively, indicating good consistency with expectation.
The comparison of m90 in our two datasets leads to the same con-
clusion.

The source detection is also unavoidably affected by blend-
ing, especially in the crowded environment of clusters. We address
how the blending affects the completeness of background galaxies
with image simulations. With realistic image simulations we can
quantify the incompleteness as a function of magnitude and dis-
tance from the cluster centre and, therefore, apply a completeness
correction to the analysis.

Figure 2. The radial completeness fcom(x) at mcut = 23.5 as a function
of distance from the cluster centre derived from the simulations. The 1σ

confidence region is filled with horizontal lines.

Specifically, we simulate images using GALSIM (Rowe et al.
2015) and derive the completeness of the sources detected by run-
ning SExtractor with the same configuration we use in the ob-
served images. We simulate 40 images with a set of galaxy popula-
tions and stars. Each image contains a spatially uniform distribution
of background galaxies and foreground stars.

We simulate background galaxies with a power law index
s = 0.4 of the source count-magnitude relation between the ap-
parent magnitudes of 20 and 25.5 at z = 0.9, which is the me-
dian redshift of the low-z background population studied here (see
Section 4.2). The resulting average projected number density is
≈ 56 arcmin−2, which matches the projected number densities of
our source catalogs. Fifty bright stars with apparent magnitude
between 18 mag and 20 mag are simulated. In addition to fore-
and backgrounds, we simulate a cluster of M500 = 6× 1014M� at
z = 0.42 with the BCG in the centre and a population of early type
galaxies spatially distributed following a projected NFW (Navarro
et al. 1997) profile (e.g., Lin et al. 2004). We populate the clus-
ter with galaxies between the apparent magnitudes of 18 and 25.5
according to a Schechter (1976) luminosity function with charac-
teristic magnitude, power law index of the faint end, and normal-
ization measured from Zenteno et al. (2011), which leads to 515
cluster galaxies within the R200 sphere. The half-light radius of
each galaxy is randomly sampled according to the distribution of
FLUX_RADIUS from the source catalog extracted from the Mega-
cam images, which is between 0.′′15 and 1′′. The half-light radius
for the BCG is randomly sampled from the range 0.′′84–2.′′5, and
to include the effects of saturated stars, the stellar half-light radii
are randomly sampled from the range 0.′′5–3′′. Each object is con-
volved with a point spread function to reproduce the average seeing
of our images. Poisson noise with the mean derived from the r data
of the Megacam images is added to the images. In the end, we de-
rive the mean of the completeness function for the source detection
from these simulated images.

Figure 1 shows the comparison between the completeness
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6 Chiu et al.

functions of the real and the simulated data. We find that there is a
good agreement for the completeness of the source detections be-
tween the simulations and the r filter, which is our detection band
for cataloging. The completeness is > 94% for the background
galaxies brighter than 24.0 mag. We further derive the complete-
ness correction as the function of the distance from the cluster cen-
tre at magnitude cut mcut. Specifically, the completeness correc-
tion fcom at mcut is derived by taking the ratio of projected number
density of detected galaxies between each radial bin and the radial
range of 1.5 6 x 6 2.5., i.e.,

fcom(x) =
nsim(x)

nsim(1.5 6 x 6 2.5)
, (13)

where x = r/R500 and nsim denotes the mean of the projected num-
ber density of the galaxies detected in the simulation (i.e., fcom = 1
stands for no spurious magnification bias signal created by source
blending). The derived fcom at mcut = 23.5 mag, which is the mcut
we use in this work (see Section 4.4), is shown in Figure 2. We find
that the incompleteness due to blending is at level of ≈ 2.5% in the
inner region of clusters (0.1 6 x 6 0.2) and we apply this complete-
ness correction as a function cluster centric radius in our analysis
(see Section 4.7).

4.2 Background Selection

Careful selection of the background galaxies is crucial for any lens-
ing study. It has been demonstrated that the colour selection can
effectively separate galaxies at different redshifts (e.g., Adelberger
et al. 2004). In our case, the background galaxy population is se-
lected by applying colour cuts in a g− r versus r− i colour-colour
space as well as a magnitude cut in the band of interest. We first
split our cluster sample into four redshift bins from 0.25 to 0.65 in
steps of 0.1 and define colour cuts corresponding to the different
redshift bins.

The colour cut in each redshift bin is defined by three regions:
a low redshift background population, a high redshift background
population, and the passively evolving cluster galaxies at the red-
shift of the bin. We define colour-colour cuts for the low- and high-z
backgrounds by tracking the colour evolution of early and late types
galaxies using the Galaxy Evolutionary Synthesis Models (GALEV,
Kotulla et al. 2009). It has previously been shown that the low- and
high-z backgrounds can be successfully separated from the cluster
galaxies (Medezinski et al. 2010). We conservatively exclude re-
gions where GALEV predicts galaxy colours at the cluster redshift
for all types of galaxies.

The low-z background is bluer (redder) than the cluster galax-
ies by ≈ 0.8 mag (≈ 0.1 mag) in g− r (r− i), while the high-z
background is bluer than the cluster galaxies by ≈ 1.2 mag and
≈ 0.6 mag in g− r and r− i, respectively. By estimating the red-
shift distribution of the background (see Section 4.3), the colour
selection leads to the redshift distribution of the low- and high-
z background populations with 〈z〉 ' 0.9 and 〈z〉 ' 1.8, respec-
tively. An example of the background selection for the redshift bin
0.35 6 z < 0.45 is given in Figure 3.

In this work we study the magnification bias in the g band for
galaxies brighter than the limiting magnitude of 23.5, given that
the strongest signal for positive magnification bias is expected here
(discussed further in Section 4.4). We apply a magnitude cut impos-
ing 20 6 g 6 23.5 for the low and high redshift background pop-
ulations selected by our colour cuts. There are no cuts applied in
the other bands. Our final background samples provide pure back-

ground galaxy populations at low- and high-z consistent with no
cluster member contamination, as we will show in Section 4.3.

4.3 Background Lensing Efficiency

A reliable estimate of the lensing efficiency of the background
galaxies requires their redshift distribution and thus is not possi-
ble from our three band data alone. Thus, we estimate the lensing
efficiency within the CFHTLS-DEEP reference field where photo-
metric redshifts are known with a precision σ∆z/(1+z) = 0.037 at
i 6 24.0 (Ilbert et al. 2006).

To estimate the redshift distribution from the reference field
we first select galaxies with reliable photo-z estimates by requiring
flag_terapix= 0 and zp_reliable= 0 in the CFHTLS-DEEP
catalog. The cut of zp_reliable = 0 removes the galaxies due
to inadequate filter coverages or problematic template fitting in the
spectra energy distributions. This cut removes less than 0.25% of
the galaxies in the magnitude range of interest (g 6 23.5 mag, see
Section 4.4); therefore, we ignore this effect. We then estimate the
average lensing efficiency 〈β 〉 using the redshift distribution P(z)
for each selected background population. Specifically, the P(z) for
each background population is derived from the reference field with
the measured photo-z after applying the same colour and magnitude
selection as in the cluster fields. Results for an example cluster are
shown in the right panel of Figure 3, where two different back-
ground populations are identified and the passively evolving cluster
population is shown for comparison. The average lensing efficiency
parameter 〈β 〉 of the selected background population is estimated
by averaging over the P(z) derived from the CFHTLS-DEEP field
as

〈β 〉t =
∫

Pt(z)β (z,zl)dz , (14)

where t = {low-z,high-z} denotes the background types and zl is
the cluster redshift.

We further test the impact of distorted redshift distributions
on the estimates of 〈β 〉 for the two background populations. The
redshift distribution of the background is distorted due to the fact
that background galaxies at different redshifts experience differ-
ent magnifications. For example, a background population with the
power law index s > 0.4 leads to the redshift enhancement effect
(Coupon et al. 2013) and, therefore, the average lensing efficiency
deviates from the 〈β 〉 estimated from the reference field. We es-
timate the redshift distortion effect on our 〈β 〉 estimations as fol-
lows. We assume a background population with a power law index
s = 0.8 and estimate the fractional change 〈β 〉l/〈β 〉 in the pres-
ence of magnification caused by a cluster with M500 = 6×1014M�
at zl = 0.42, where

〈β 〉l =
∫

Pref(z)µ(M500,zl,z)
2.5s−1

β (z)dz (15)

and Pref(z) is the redshift distribution of the reference field where
no lensing effect due to clusters is present.

We parametrize the cluster mass profile by the NFW model
assuming the mass-concentration relation of Duffy et al. (2008).
This model predicts a fractional change of 〈β 〉 of at most ≈ 1.6%
and ≈ 0.8% in the cluster inner region 0.1 6 x 6 0.2 for the low-
and high-z backgrounds, respectively. We note that the redshift dis-
tortion is more prominent for the low-z background at 〈z〉 ≈ 0.9
because it is closer to the median redshift of our cluster sample
(〈zl〉 = 0.42). Moreover, the power law index s of the low-z back-
ground population is much lower than the assumed s = 0.8 (see
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Magnification bias of background galaxies 7

Figure 3. Illustration of the colour-colour background selection in the case of SPT-CL J0234−5831 (z = 0.42) with magnitude cuts 20.0 6 g 6 23.5. On
the left is the g− r versus r− i colour-colour diagram showing the observed galaxy density distribution (gray scale), the passively evolving cluster galaxy
population (green), the z ≈ 0.9 background (orange) and the z ≈ 1.8 background (blue). The corresponding normalized redshift probability distribution P(z)
estimated from CFHTLS-DEEP for each population is shown on the right. The green dashed line marks the cluster redshift.

Section 4.4). This leads us to the conclusion that the impact of red-
shift distortion on estimating 〈β 〉 is < 1.6%. At this level, correc-
tions for distortions of the redshift distribution to the 〈β 〉 estima-
tions are not needed for this analysis.

Finally, we estimate the cluster contamination of the back-
ground galaxy populations. We use the method developed by Gruen
et al. (2014), in which they estimated the fraction of the cluster
galaxies contaminating the background population by decompos-
ing the observed distribution of the lensing efficiency, P(β ), into
the known distributions of cluster members and background galax-
ies. Specifically, we estimate P(β ) of the cluster members and
background from the reference field by selecting the galaxies with
|z− zl|6 ∆z and z > zl +∆z, respectively, where zl is the redshift of
the cluster and ∆z = 0.05.

For each galaxy i with the magnitudes mi = (gi,ri, ii), we es-
timate the expected lensing efficiency β (mi) and the probabilities
of being a cluster member and a fore/background galaxy from the
galaxy sample drawn from the reference catalog within the hyper-
sphere |m−mi| 6 0.1 mag. The P(β ) of the population is then
derived from the β estimations of the selected galaxies. We weight
each galaxy by the probability of being a cluster member in de-
riving the P(β ) of the cluster galaxy population, while no weight
is applied in deriving the P(β ) of the background population. Fol-
lowing the same procedure, we also estimate the observed P(β )
from the stacked background galaxies in each radial bin and in the
outskirts (1.5 6 x 6 2.5), where x = r/R500 and R500 is the cluster
radius derived from the SZE-inferred mass. In this way we can de-
compose the observed P(β ) and extract the fraction of the cluster
galaxies contaminating the backgrounds.

The comparison of the distributions for the colour selection
at 0.35 6 zl 6 0.45 is shown in Figure 4. There is excellent agree-

ment between the distribution of lensing efficiency in the outskirts
(1.56 x6 2.5) and in the inner core (0.16 x6 0.2) regions for both
low- and high-z backgrounds. In addition, neither of them overlaps
the distribution of the cluster galaxies. The same general picture
emerges for the colour selections conducted in other redshift bins.

Following the same procedure in Gruen et al. (2014), we fit
the function Pm(β ,x) to the observed distribution of β for each
radial bin to estimate the cluster contamination. Specifically, we fit
the fractional cluster contamination fcl(x) of equation (16) at each
radial bin x.

Pm(β ,x) = fcl(x)Pcl(β )+(1− fcl(x))P(β ,1.5 6 x 6 2.5) , (16)

where Pcl(β ) is the distribution of β of the cluster members esti-
mated from the reference field and P(β ,1.5 6 x 6 2.5) is the distri-
bution of β of the cluster outskirt (1.5 6 x 6 2.5). We use the Cash
(1979) statistic to derive the best-fit cluster contamination fcl and
uncertainty. Specifically, the best-fit parameters and the confidence
intervals are estimated by using the likelihood estimator

Cβ = 2∑
i

(
N(x)Pm(βi,x)−N(βi,x)

+N(βi,x) ln
N(βi,x)

N(x)Pm(βi,x)

)
,

(17)

where N(βi,x) is the observed counts at radius x for the given
βi bin, N(x) is the total galaxy counts at radius x (i.e., N(x) =
∑i N(βi,x)) and i runs over the binning in β . The resulting frac-
tion of the cluster galaxies is all zero for x > 0.1 for both back-
grounds, indicating that the selected backgrounds are free from
cluster galaxy contamination. We discuss the uncertainty of the
measured fcl and its impact on the mass estimates in Section 5.2.
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Figure 4. Comparison of the distributions of lensing efficiency P(β ) for
clusters at 0.35 6 zl < 0.45. The P(β ) for cluster galaxies (identified by
|z− zl| 6 ∆z) and the background (identified z > zl +∆z) estimated from
the reference field are shown in green and black solid lines, espectively.
The P(β ) estimated from the stacked low- and high-z backgrounds are
shown in orange and blue, respectively. The estimates from the outskirts
(1.5 6 x 6 2.5) and the inner core (0.1 6 x 6 0.2) of our cluster fields are
shown in solid lines and open circles, respectively, and they are in good
agreement with each other and with the P(β ) for the background deter-
mined in the reference field. The large degree of separation between the
low- and high-z backgrounds and the cluster galaxies illustrates the effec-
tiveness of colour cuts at removing cluster galaxies from the lensing source
galaxy populations. Note that the tiny fraction of P(β ) of the high-z back-
ground at β = 0 is due to the small population of the foreground galaxies
instead of the cluster members (see the P(z) in Figure 3).

4.4 Power Law Index of the Galaxy Counts

Estimating the power law index s (see equation (9)) is crucial in
magnification studies, because the magnification signal is propor-
tional to µ2.5s. In this analysis, we do not estimate s for each in-
dividual cluster due to the low number of background galaxies.
Rather, we estimate s from the reference field with the same se-
lection critera applied as in the cluster field. Specifically, we fit a
polynomial model,

log(Nm(< m)) =
1
2

am2 +bm+ c , (18)

to the observed cumulative number counts log(N(< m)) brighter
than magnitude m. In this way, the power law index at magni-
tude cut mcut can be calculated as s(mcut) = amcut + b. To esti-
mate s(mcut) the fit is done locally on the interval of −0.25 6
(m−mcut)6 0.25 on binned counts with a bin width of 0.05 mag.
In fitting the model we take into account the covariance among
different magnitude bins in N(< m); the covariance matrix is es-
timated by bootstrapping 2500 realizations from the catalog itself.
Specifically, the covariance matrix between magnitude bin mi and
m j is built as

Ci, j =
〈
(Ci−〈Ci〉)(C j−

〈
C j
〉
)
〉
, (19)

where Ci = logN(< mi) and the brackets 〈〉 represent an ensemble
average. The best-fit parameters of the model (a,b,c) are obtained
by minimizing

χ
2 = ∑

i, j
Di×C−1

i, j×D j , (20)

where Di = logNm(< mi)− logN(< mi), C−1 is the matrix inverse
of
[
Ci, j
]

and i and j run over the ten magnitude bins in the range
being fit.

We find that fitting this model with a range of 0.5 mag cen-
tred on the magnitude at which the slope is being measured pro-
vides an unbiased estimate of s(mcut) when the Poisson noise in
the binned galaxy counts lies in the Gaussian regime. Typically,
we obtain χ2

red ≈ 1.0 and χ2
red ≈ 0.8 at mcut ≈ 23.25–24.25 and

mcut ≈ 24.25–25.0, respectively. Furthermore, the statistical uncer-
tainty of s is at the level of 6 1% for 23.06mcut 6 25.0. As we will
discuss in Section 5, an uncertainty of this magnitude on s translates
into a mass uncertainty of ≈ 3.5%, which is small enough to have
no impact on this analysis. We show the estimation of s from the
reference field for the bands g, r and i as a function of magnitude
mcut between 23 mag and 25 mag in Figure 5, for the colour selec-
tion done in the redshift bin between 0.35 and 0.45.

We also compare the values of s for the CFHTLS-DEEP ref-
erence field to the s measured from the cluster outskirts (1.5 6 x 6
2.5) by stacking all 19 clusters in Figure 5. The s estimates of the
low-z background show good consistency between the reference
and the stacked cluster fields for g, r and i down to the complete-
ness limits of our data. However, the s estimates from the stacked
cluster fields tend to be lower than the ones measured from the ref-
erence field for fainter magnitudes mcut > 24.0 and in r and i, as
one would expect given the onset of incompleteness in our dataset.

The s measurements for the high-z background sources from
the stacked clusters do not agree as well with those from the refer-
ence fields. For mcut & 23.6 mag, the incompleteness of the high-z
background in the cluster fields starts to dominate the curvature of
the source count-magnitude relation, resulting in a power law in-
dex s that is systematically smaller than the reference field. Near
mcut ≈ 23.5 the two estimates are in agreement, but brighter than
this the s is smaller in our cluster fields than in the reference fields.
This can be explained by the impact of low galaxy counts on our s
estimator. For mcut . 23.6 mag, the typical galaxy counts fall below
10 for the bin width of 0.05 mag. This leads to the bias in the fit,
which is assuming Gaussian distributed errors. We examine this by
randomly drawing 30 realizations from the reference field for the
high-z background, where each realization has the same number of
galaxies as the stacked cluster field. The bias toward low values in s
from these random subsets of the reference field is consistent with
that we see from the stacked cluster field, indicating that the un-
derlying parent distributions in the cluster and reference fields are
consistent.

In summary, the high-z background suffers more severely
from low galaxy counts and incompleteness than the low-z back-
ground (see Section 4.2), and therefore the s(mcut) measurements
in the stacked cluster and reference fields show better agreement.
We will discuss errors in s as a source of systematic uncertainty in
Section 5.

To choose a magnitude cut mcut that maximizes the expected
magnification signal, one must consider the slope s of the count-
magnitude relation, the level of Poisson noise in the lensed sample
and the onset of incompleteness. Given the depths of our photome-
try and the importance of the colour-colour cuts for identifying the
background populations, we carry out the magnification bias analy-
sis at mcut = 23.5 in g for the low- and high-z backgrounds. In par-
ticular, with this g cut the faintest required i magnitudes of the low-
and high-z population galaxies are ≈ 22.3 mag and ≈ 23.5 mag.
In our data set, i is the shallowest passband, but it reaches com-
pleteness levels of > 80% at these magnitudes except in the cluster
SPT-CL J2138−6008. Note that incompleteness as a function of
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Magnification bias of background galaxies 9

Figure 5. The power law index s of the galaxy flux-magnitude distribu-
tion as a function of magnitude m is shown for the high-z population (top)
and the low-z population (bottom). The filled and transparent regions indi-
cate the 1σ confidence levels of the power law index s extracted from the
CFHTLS-DEEP reference and the stacked SPT cluster fields, respectively.
The g, r and i bands are colour coded in green, orange and blue, respec-
tively. The black dashed line indicates s = 0.4, where no magnification bias
is expected.

magnitude should in principle have no effect on the derived magni-
fication profile (µ2.5s−1 = n(x)/n0(1.5 6 x 6 2.5)) as long as the
incompleteness does not vary systematically with cluster radius. At
this magnitude cut s is somewhat larger than 0.75, which corre-
sponds to an ≈ 18% density enhancement for κ = 0.1 assuming
the weak lensing regime (eq 11).

4.5 Masking Correction

When computing object surface densities we apply a masking cor-
rection to account for regions covered by bright cluster galaxies–
mostly in the central region of the cluster– as well as bright and ex-
tended foreground objects, saturated stars, and other observational
defects. Visually identifying masked areas is not feasible for a large
cluster sample and could introduce non-uniformities. We adopt the
method in Umetsu et al. (2011) to calculate the fractional area lost
to galaxies, stars and defects as a function of distance from the
cluster centre.

We tune the SExtractor configuration parameters by setting
DETECT_THRESH= 5 and DETECT_MINAREA= 300 (corresponding
to 7.68 arcsec2) to detect bright and extended objects in the coadd
image and mark them in the CHECKIMAGE_TYPE= OBJECTS mode.
In addition, we visually inspect the images for effects like satellite
trails that typically are not captured by the SExtractor run. We
compute the fraction of unmasked area fumsk where

fumsk =
Aumsk

Aann
, (21)

where Aumsk is the unmasked area of the annulus and Aann is the
geometric area of the annulus. We measure fumsk as a function of
cluster centric distance for each cluster and use it to apply a correc-
tion to the observed density profile. On average, the unmasked frac-
tion (see Table 2) is≈ 93–96% for all radii and greater than≈ 94%
towards the cluster centre (0.1 6 x 6 0.2). We take the masking
effect into account by applying the fumsk correction to the fitted
model in each radial bin (see Section 4.7).

4.6 Background Profiles and Cluster Stack

We study the magnification bias of a flux-limited galaxy sample
with 20.0 6 g 6 23.5 for the low- and high-redshift background
populations by stacking 19 SPT-selected clusters to enhance the
signal. We stack the 19 clusters after rescaling the radii by the
appropriate R500 derived from the SZE-inferred masses. This ap-
proach exploits the fact that the SZE-signature provides a low scat-
ter mass proxy. Given the factor of two range in mass and redshift of
our sample and the availability of the SZE-inferred masses, a stack
in physical radius would not be advisable. For each of the two back-
ground populations we first derive the radial profile of the surface
number density ni(x) as a function of x = r/R500 at 0.1 6 x 6 2.5
for each cluster i, adopting the BCG position as the cluster centre
and using the SZE derived mass to define R500 (see Section 3.1).

ni(x) =
N i(< mcut,x)

Aanni(x) fumski(x) fcom(x)
, (22)

where N i(< mcut,x) is the observed cumulative number of galaxies
brighter than the magnitude threshold mcut that lie within a particu-
lar radial bin for the cluster and Aanni is the area of the bin. The un-
masked fraction fumsk is used to correct the measured galaxy counts
to the full expected galaxy counts in the absence of masking. The
radial correction fcom is derived from our image simulations to ac-
count for the incompleteness due to blending (see Section 4.1), and
it is the same for all clusters.

We choose bin widths of ∆x = 0.1 for the range 0.1 6 x 6 0.5
and ∆x= 0.25 at 0.56 x6 2.5. The finer radial binning is used near
the cluster centre because the gradient of the magnification signal
is larger in the core. In the end, we stack the radial profiles to create
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the final stacked profile ntot(x),

ntot(x) =
Ncl

∑
i=1

ni(x), (23)

where ni(x) is the radial surface density profile for cluster i as de-
scribed above. Note that the observed profiles are directly stacked
without applying weighting. The observed magnification profile is
given by

µ
2.5s−1(x) =

ntot(x)
ntot(1.5 6 x 6 2.5)

, (24)

where the denominator is the mean of the counts profile in the radial
range 1.5 6 x 6 2.5. To compute uncertainties on the profiles, we
include Poisson noise for the galaxy number counts in each radial
bin. We ignore the variance in the profiles caused by local galaxy
clustering in the individual profiles because this variance is negli-
gible compared to the Poisson noise (Zhang & Pen 2005; Umetsu
& Broadhurst 2008; Umetsu 2013). Through the stacking process
both the variance due to local clustering and the Poisson noise are
reduced because the cluster fields are independent.

The same stacking procedure is performed using the reference
field as a null test. Specifically, we randomly draw 20 apertures
each with R500 taken to be 3′ while avoiding any region that has
been heavily masked. We stack them as in equation (23) after ap-
plying the same background selection as for the cluster fields. Note
that the remaining masked area of the selected apertures is negli-
gible and the procedure of stacking apertures which are randomly
drawn from the reference field can remove any systematic trend of
the residual masking effect. We show the resulting profiles in Fig-
ure 6. The variation of the density profiles is consistent with the
Poisson noise expectation and provides no evidence for an over- or
under-density, providing an indication that our stacking procedure
works.

After convincing ourselves that the stacking procedure on the
reference field provides unbiased estimates, we then proceed to
another null test on the cluster fields. This null test is defined by
performing the same end-to-end analysis on the low-z background
with magnitude cut at r = 24 mag instead of g = 23.5 mag used in
our main analysis. The magnitude cut of r = 24 mag is chosen be-
cause the low-z background has s≈ 0.4 at r = 24 (see Figure 5), and
therefore we expect no magnification signal. This is a powerful end
to end test of our analysis; any signal detected in this null test indi-
cates the spurious bias in our magnification analysis. The resulting
low-z profile with the magnitude cut of r = 24 mag is shown in the
black diamonds in Figure 6. The observed profile is consistent with
µ = 1, and no magnification signal is seen. We hence conclude that
our analysis procedure provides unbiased magnification signals.

4.7 Model Fitting

To enable model fitting, we first create a stacked profile of the total
observed number of galaxies Ntot above the magnitude threshold
within each radial bin

Ntot(x) =
Ncl

∑
i=1

Ni(x) , (25)

where N i is the observed number of galaxies in the bin x =
r/R500−SZEi for cluster i with radius R500−SZEi derived using the
SZE-inferred mass and the redshift.

We construct the model of the radial galaxy counts Nmod(x) by
stacking the predicted galaxy counts for the 19 galaxy counts mod-
els Mi(x) using– for each cluster i at radius of x = r/R500−SZEi– the

Figure 6. The null test on the reference field shows the normalized density
profile of 20 randomly chosen apertures on the reference field after applying
the same selection for the low-z (orange circles) and high-z (blue squares)
backgrounds. The null test on the low-z background selected in the stacked
cluster field with the magnitude cut at r = 24 mag (where s = 0.4 and no net
effect is expected) is shown with the black diamonds. The red circles and
blue squares are slightly offset along the horizontal axis for clarity.

Table 2. The observed background galaxies profiles, masking correction
and completeness correction. Column 1–2: the lower and higher bound for
each radial bin. Column 3: the observed galaxy counts for the low-z back-
grounds. Column 4: the observed galaxy counts for the high-z backgrounds.
Column 5: the fraction of the unmasked area fumsk. Column 6: the complete-
ness correction fcom derived from the simulation.

xlo xhi Ntot , low−z Ntot,high−z fumsk fcom

0.10 0.20 35 4 0.953 0.979
0.20 0.30 34 2 0.948 0.977
0.30 0.40 50 4 0.946 0.987
0.40 0.50 66 3 0.942 0.997
0.50 0.75 224 16 0.932 0.996
0.75 1.00 326 18 0.948 0.998
1.00 1.25 352 24 0.931 1.000
1.25 1.50 445 18 0.932 0.998
1.50 1.75 514 37 0.939 0.999
1.75 2.00 576 26 0.943 0.998
2.00 2.25 668 43 0.946 1.000
2.25 2.50 726 49 0.959 1.000

average lensing efficiency 〈β 〉i, the power law index s, the observed
background number density n0i, the unmasked fraction fumski and
the completeness correction fcom. Specifically, the model Nmod(x)
is constructed as

Nmod(x) =
Ncl

∑
i=1

nmodi(x)Aanni(x) fumski(x) fcom(x) , (26)

and

nmodi(x) = n0iµ(M500i,〈β 〉i,x)
2.5s−1 , (27)
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Figure 7. The stacked profiles for the low- and high-z background populations with the best-fit models from different scenarios. The panels contain the fit to
the low-z background alone (left), the fit to the high-z population (middle), and the fit to the combined population (right). In all three panels the orange circles
(blue squares) define the stacked profile of the low-z (high-z) population, the best-fit model is defined with solid lines and the predicted profile for the other
population appears as a dot-dashed line. There is slight (≈ 1.82σ ) tension between the low- and high-z populations, whereas the joint fit (right panel) is in
good agreement with both populations.

Table 3. Magnification analysis mass constraints, cross checks and detection significance. Column 1: background populations used in the fit. Column 2:
best-fit η . Column 3–5: 1, 2, and 3 σ confidence level of the best-fit η . Column 6: reduced Cstat of the fit (degree of freedom: 10, 10 and 21 for the low-z, the
high-z and the combined backgrounds, respectively). Columns 7–8: p-value that the best-fit model in Column 2 rejects the best-fit model in these columns.
Column 9: detection significance over a model with η = 0.

Population η 1ση 2ση 3ση Cstat/d.o.f p-value to reject best-fit Detection Significance
Low-z High-z

Low-z 1.30 +0.41
−0.39

+0.85
−0.74

+1.29
−1.04 1.23 0.268 0.075 3.34σ

High-z 0.46 +0.33
−0.29

+0.67
···

+1.00
··· 1.06 0.061 0.385 1.31σ

Combined 0.83 +0.24
−0.24

+0.49
−0.46

+0.74
−0.65 1.22 0.186 0.289 3.57σ

where n0i is the number density measured in the range 1.5 6 x 6
2.5 for cluster i with mass M500i.

We parametrize the dark matter halo profile with the NFW
model (Navarro et al. 1997) assuming the mass-concentration re-
lation of Duffy et al. (2008) for each cluster. During the fitting
procedure we hold 〈β 〉i and n0i for each cluster fixed at their pre-
determined values, and we use the appropriate s for each of the two
background populations. We further simplify the model by fitting
for a single multiplicative factor η = M500i/M500−SZEi for all the
clusters. Where for η = 1 there is no net difference between the
SZE-inferred and magnification masses within the full sample. As
seen in equations (26) and (27), the model for the stacked observed
galaxy counts Nmod(x) is then a function of only one variable.

To estimate the best-fit mass using the observed and theoret-
ical total galaxy number profiles Ntot(x) and Nmod(x), we use the
Cash (1979) statistic. The likelihood function for fitting the mag-
nification bias models to the total galaxy number profiles is given

by

Cstat = 2∑
t

Nbins

∑
j=1

(
Nmod,t(x̃ j)−Ntot,t(x j)

+Ntot,t(x j) ln
Ntot,t(x j)

Nmod,t(x̃ j)

)
,

(28)

where t ∈ {low-z, high-z, combined} denotes the background pop-
ulations. Note that to compare the model and the observation at
the same physical radius in the space of x = r/R500 when η 6= 1
(i.e. M500 6= M500−SZE), we compare the observed profile at x to
the model profile at x̃, where x̃ = xR500−SZE/R500 = xη

− 1
3 . When

fitting to the combined sample, we simultaneously fit the models to
the low-z and high-z background populations and then derive the
best-fit η based on the sum of their Cstat values (see eq 28).

Note that the difference of the likelihood estimator from its
best-fit value ∆Cstat, is distributed like a χ2-distribution (Cash
1979) and can be used to define parameter confidence intervals.
Moreover, the best-fit value of Cstat can be used to test the consis-
tency of the data and the model.
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Figure 8. The posterior distribution P(η) of the multiplicative factor η

given the magnification constraints. The grey dotted line marks η = 1 (per-
fect consistency of SZE and magnification masses). The posterior distribu-
tions P(η) estimated from fitting the magnification bias model to the low-z
(orange dashed), high-z (blue dot-dashed), and combined (black solid) pop-
ulations are plotted. None of the magnification constraints show significant
tension with the SZE-inferred masses, indicating 0.77σ , 1.6σ and 0.71σ

differences with η = 1 for the low-z, high-z and combined background
populations, respectively. Note that we express the posterior distribution
in dP

dlnη
= P(η)×η .

5 RESULTS AND DISCUSSION

We present the results in Section 5.1 and then discuss several of the
key systematic uncertainties in Section 5.2. Section 5.3 contains
a comparison of the observed weak lensing shear profile with the
predicted profile derived from the magnification analysis.

5.1 Detection Significance and Mass Constraints

Using the procedure described in the previous section we construct
the observed profiles for the ensemble of 19 massive galaxy clus-
ters. Properties of these profiles, including the number of back-
ground galaxies in the low- and high-z populations and the mask-
ing and completeness corrections, are listed in Table 2; the profiles
themselves appear in Figure 7.

We use these observed profiles to derive best-fit η of
1.30+0.41

−0.39, 0.46+0.33
−0.29 and 0.83± 0.24, for the low-z, high-z, and

combined backgrounds respectively. We detect the magnification
bias effect at 3.3σ , 1.3σ and 3.6σ for the low-z, high-z, and com-
bined populations, respectively, where the confidence levels are de-
fined via the Cstat goodness of fit statistic in comparing the observed
profiles to a model with η = 0 (i.e. zero mass). Table 3 contains an
overview of these fitting results and their statistical uncertainties.

In addition to the detection significances and confidence inter-
vals of the best-fit masses, Table 3 provides information on the sta-
tistical consistency of the best-fit models of the low-z, high-z, and
combined background best-fit models. The consistency between
the observed profile and the best-fit model is derived using Cstat.
Given the best-fit model estimated from the low-z (high-z) back-
ground population, the probability of consistency with the high-z

(low-z) background population is 0.075 (0.061). In other words,
there is weak tension at the ≈ 1.82σ level.

Combing both backgrounds yields η = 0.83±0.24. The prob-
abilities of consistency of the two populations with this model are
0.186 and 0.289 for the observed magnification profiles of the low-
and high-z backgrounds, respectively.

Figure 7 contains not only the stacked profiles for the low-
and high-redshift populations but also the best-fit models. In the
left panel is the fit using only the low-z population (solid line), but
the corresponding prediction for the high-z population is presented
with the dot-dashed line. The middle panel shows the fit to only
the high-z population (solid line) with the corresponding prediction
for the low-z population (dot-dashed line). The right panel shows
the joint fit to both populations (solid lines). All panels contain the
same observed profiles for both populations. As is already clear
from Table 3, there is weak tension between the independent fits to
the low- and high-z populations (≈ 1.82σ ) but the joint fit is fully
consistent with both background populations.

The posterior distributions of η derived by fitting the model
to the low-z, high-z and combined background samples are shown
in Figure 8. The η = 1 (dotted line) marks the value where the
SZE-inferred and magnification masses would on average be equal.
The mass factors η estimated from the magnification bias measure-
ments of the low-z (dashed line) and high-z (dot-dashed line) back-
grounds are marginally consistent with one another (≈ 1.82σ dif-
ference). The magnification constraint from the low-z (high-z) sam-
ple yields mass estimates that are 30% higher (54% lower) than the
SZE-inferred masses, corresponding to differences with ≈ 0.77σ

(≈ 1.6σ ) significance. The combined samples prefer magnification
masses that are 17% lower than the SZE-inferred masses, corre-
sponding to a difference of ≈ 0.71σ . Overall, there is no signifi-
cant tension between the magnification constraints and the masses
extracted using the SZE observable-mass scaling relation.

5.2 Systematic Effects

In the following we study the influence of various sources of sys-
tematic errors on η including (1) differences in photometric noise
in the cluster and reference fields, (2) colour biases between the
two fields, (3) flux biases, (4) cluster contamination and (5) biases
in the estimate of the power law slope s. We explain each of these
tests and the resulting impact below. Table 4 contains the results of
our systematics tests.

Noisy photometry σmag: To explore whether the noisier pho-
tometry in the cluster fields is impacting our analysis, we de-
grade the photometry of the reference field and quantify how the
change of the background properties impacts the final mass fac-
tor η . Specifically, we first apply a model of magnitude uncertainty
versus magnitude distribution measured from the cluster field to the
reference field to degrade the photometry. We then randomly per-
turb the magnitude for each object in the reference field assuming
the magnitudes scatter randomly following a normal distribution
with a standard deviation given by the degraded magnitude uncer-
tainty. In the end we re-measure the background properties and re-
peat the whole analysis to study the impact on the final best-fit η .
As can be seen in Table 4, the noisy photometry test results in neg-
ligible systematic uncertainties on the estimations of 〈β 〉, s and η ;
this is due to the fact that the photometry noise for these bright –
relative to the completeness limit – galaxies is small.

Biased colours ∆ Colour: Galaxy colour biases between the
reference and cluster fields could also impact our best-fit η . To il-
lustrate this we measure the power law index s at mcut = 23.5 in
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Figure 9. The power law index s at mcut = 23.5 in g band estimated from
the reference field as a function of the colours (g− r and r− i). The esti-
mations of s are shown in greyscale. The green, orange and blue dashed
lines indicate the colour selections of the cluster members, the low-z and
the high-z backgrounds, respectively, for the cluster at the redshift bin
0.35 6 z < 0.45. The slope s changes rapidly with colour in the regions
near the low-z and the high-z backgrounds.

g band in the reference field as a function of the colours of g− r
and r− i. The resulting s-map overplotted with the colour selec-
tion of the redshift bin 0.35 6 z < 0.45 is shown in Figure 9. The
colour selection of the background populations can be adjusted to
correspond to populations with common s and to ensure that colour
boundaries do not lie where s is changing rapidly.

We test the impact of a bias in the galaxy colours, which are
calibrated with respect to the stellar locus, by shifting the whole
g− r versus r − i distribution systematically by the systematic
colour uncertainty 0.03 mag (see Section 3.2). Specifically, we shift
each object in the colour-colour space by decreasing the value of
g− r by 0.03 mag combined with the systematics shift ±0.03 mag
in the colour of r− i. The objects that shift across the colour cut
into the background regions are then set to have redshift zero to
estimate the largest possible impact from the foreground or cluster
members. We derive the systematic uncertainties of the mass factor
η by taking the average of the systematic mass shifts associated
with the shift of ±0.03 mag in r− i colour. We find that the slope
s changes at the ≈ 2% (≈ 1%) level for the low-z (high-z) popula-
tion, implying systematic uncertainties in η on the order of ≈ 8%
(≈ 6.7%). The resulting systematic change in the combined anal-
ysis is at the level of ≈ 7%. We stress that this systematic uncer-
tainty states the extreme case assuming all the galaxies with biased
colours are cluster members. These uncertainties are smaller than
the current statistical uncertainties.

Biased fluxes ∆ Flux: A bias in the absolute magnitude cali-
bration between the cluster field and reference field could lead to a
biased estimation of s for a given mcut. To test a flux bias at the level
of the systematic flux uncertainty of 6 0.05 mag (see Section 3.2),
we extract the s estimation in g at the magnitude of mcut+0.05 mag
and repeat the whole analysis. This results in a change in the esti-
mation of s by≈ 1% in the low-z population, leading to a shift in η

at the ≈ 4% level. The impact on the high-z population is smaller
with a ≈ 0.6% shift in s and a ≈ 2% bias in η .

Table 4. Influence of systematic effects on the estimated η . Column 1: sys-
tematic. Column 2–3: change in 〈β 〉 for the low- and high-z backgrounds.
Column 4–5: change in s for the low- and high-z backgrounds. Column 6–8:
change in η for fitting the low low-z, high-z and combined backgrounds.

Sources ∆〈β 〉
〈β 〉 [%] ∆s

s [%] ∆η

η
[%]

Lo-z Hi-z Lo-z Hi-z Lo-z Hi-z Cmb

σmag −0.1 −1.5 0.3 1.5 1.2 −0.4 1.0
∆ Colour −2.4 −4.0 −1.9 −0.9 8.0 6.7 7.4
∆ Flux · · · · · · −1.0 0.6 3.8 −2.2 2.7
Contam · · · · · · · · · · · · −2.9 −1.7 −2.5
∆s · · · · · · −0.7 −1.6 3.5 3.0 3.2
σ tot

sys · · · · · · · · · · · · 10.0 7.9 8.9

† ∆≡ (Values considering the systematics)− (Original values).

Contamination: In addition to studying the photometry ef-
fects, we also examine the impact of the cluster member contam-
ination of the background populations. The cluster contamination
in the innermost bin is 0±0.56% inferred from the decomposition
of the observed P(β ,0.1 6 x 6 0.2) of the low-z background (see
Section 4.3). The cluster contamination of the high-z background
is 0% in the inner most bin with much larger uncertainty (≈ 25%)
because the galaxy counts are ≈ 10 times lower than in the low-z
case. However, because the P(β ) of the high-z background is fur-
ther separated from the P(β ) of the cluster members than the low-z
background (see Figure 4), the well constrained cluster contamina-
tion of the low-z background sets a reasonable upper bound for the
cluster contamination also of the high-z population. We therefore
use the uncertainty of the cluster contamination inferred from the
low-z background as the baseline to quantify the systematic uncer-
tainty for both populations.

We explore the impact of residual contamination by repeating
the whole analysis after introducing cluster contamination into the
Nmod(x) with 1% contamination in the innermost bin and decreas-
ing towards the cluster outskirts following a projected NFW profile
with concentration C500 = 1.9 (Lin et al. 2004). Contamination of
this sort leads to a mass factor η biased high by ≈ 3%.

We further quantify the impact of cosmic variance of the de-
rived Pcl(β ) on the estimated cluster contamination fcl. Specifi-
cally, we derive the Pcl(β ) from 20 realizations, where each realiza-
tion has 200 cluster galaxy members randomly drawn from the ref-
erence field. We then estimate the contribution of cosmic variance
to the derived Pcl(β ) by calculating the uncertainty of the mean
Pcl(β ) of these 20 realizations. As a result, the cosmic variance con-
tributing to the derived Pcl(β ) is at the level of . 3% for a given β ,
indicating that the uncertainty of fcl due to cosmic variance is at the
same level of ≈ 3%. Accordingly, a 3% contamination would lead
to a mass factor η biased high at the level of≈ 9%. In this work we
use the fcl(0.1 6 x 6 0.2) = 1%, which is ≈ 2 times of the derived
statistical uncertainty of fcl, to estimate the systematic uncertainty
of η . The resulting change in mass estimates is shown in Table 4.
We stress that the proper uncertainty of cluster contamination fcl
estimated from the method of Gruen et al. (2014) should include
both the statistical variation of the observed P(β ) at each radial bin
and the cosmic variance of the derived Pcl(β ) of cluster members.
In this work, we only use the statistical uncertainty of the radial
fitting while fixing the derived Pcl(β ) and P(β ,1.5 6 x 6 2.5).

Biased slope ∆s: We quantify the systematic uncertainty (see
Section 4.4) caused by the differences between the values of s mea-
sured in the cluster and reference fields. The difference of the mea-
sured s between the reference and cluster fields is negligible, caus-
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Figure 10. The shear profiles from the stacked catalogs with the model prediction based on the best-fit η of the magnification analysis. The η estimated
from fitting to the combined background populations yields a mass estimate of (5.37±1.56)×1014M� given the mean of 19 SZE-inferred masses. The shear
profile of the low-redshift background is shown in the left panel, and that of the high-redshift background is shown in the right panel. The open and solid
points indicate the tangential shear (g+) and cross shear (g×) components of the reduced shear, respectively. The gray shaded regions show the shear profile
predictions with 1σ confidence region. Data points are horizontally offset for clarity.

ing the systematic uncertainties of η at the level . 3.5% for fitting
the low-z, high-z and combined backgrounds.

Total systematic uncertainty σ tot
sys: Reviewing these estimates,

the most important source of systematic uncertainty in the best-fit η

comes from colour biases. Thereafter, the other sources aside from
noisy photometry are of roughly equal importance. It is important
to note that if the cluster contamination cannot be controlled at the
level of ≈ 1% then it could easily become the dominant source of
systematic uncertainty. If we combine these estimates in quadra-
ture, the total estimated systematic uncertainties for the mass of
the low- and high-z populations and the combined analysis are
σ tot

sys = 10.0%, σ tot
sys = 7.9% and σ tot

sys = 8.9%, respectively. This
results in the final mass factor η of 1.30+0.41

−0.39(stat)± 0.13(sys),
0.46+0.33

−0.29(stat) ± 0.036(sys) and 0.83 ± 0.24(stat) ± 0.074(sys)
from the analysis of the low-z, high-z, and combined background
populations, respectively. The statistical uncertainties are dominant
in all cases.

5.3 Comparison to Shear Profile

As a cross-check we examine whether the weak lensing shear pro-
files agree with the expectation, given our weak lensing magnifica-
tion constraints. To construct the shear profiles we use the shape
catalogs derived as described elsewhere (Hoekstra et al. 2012,
2015, Dietrich et al. in prep.) of the low-z and high-z populations
with exactly the same colour selections used in our magnification
analysis. We stack the shape catalogs after the colour and mag-
nitude selections. We find that 5.2% (3.3%) of the low-z (high-z)
background galaxies do not have shape measurements, which is
mainly due to blending issues associated with the different source
finder (i.e. hfindpeaks) used in the shape measurement pipeline).
We stress that the shear profile is less sensitive to the missing ob-

jects due to blending than the magnification analysis, we hence ig-
nore this effect in deriving stacked shear profiles. We derive both
tangential shear (g+) and cross shear (g×) profiles including the
lensing weight (Hoekstra et al. 2012, 2015, Dietrich et al. in prep.)
of each single galaxy. We predict the g+ profile using the best-fit
η , the average lensing efficiency 〈β 〉 for each background popu-
lation, and a fiducial cluster located at the median redshift of the
19 clusters. Specifically, we use the mean of the 19 SZE-inferred
masses (6.47×1014M�) multiplied by the η estimated from fitting
the combined background populations, which is consistent with the
SZE-inferred masses, as the input mass for predicting the shear pro-
files. As a result, the η estimated from fitting the combined back-
ground samples yields a mass estimate of (5.37±1.56)×1014M�.

Figure 10 shows the predicted and observed shear profiles for
the low- and high-z populations. We emphasize that the gray shaded
regions are model shear profiles derived from the magnification
analysis and not fits to the observed shear profiles. Both low- and
high-z population observed shear profiles are statistically consistent
with the predicted shear profiles. The probabilities that the data are
described by the model are 0.87 and 0.25, for the low- and high-
z backgrounds, respectively. The observed cross shear (g×) pro-
files are both consistent with zero. The good consistency between
the observed tangential shear (g+) profiles and the models inferred
from the magnification analysis provides a clear indication that the
magnification bias signal we observe is not a spurious signal caused
by cluster members. Such contaminating cluster member galaxies
would not have a tangential alignment with respect to the cluster
centre.
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6 CONCLUSIONS

By stacking the signal from 19 massive clusters with a mean SZE-
inferred mass of M500 = (6.47±0.31)×1014M�, we detect the en-
hancement in the number density of a flux-limited (g 6 23.5) and
colour (g−r and r− i) selected background population with z≈ 0.9
at 3.3σ confidence. We find only very weak indications of the mag-
nification bias signal using the same data but colour selecting for a
higher redshift background population at z≈ 1.8. This background
sample at z ≈ 1.8 is significantly smaller than that at z ≈ 0.9, in-
creasing the Poisson noise and thus reducing the significance of the
measurement.

We estimate the mass factor η , which is the ratio of the magni-
fication and SZE-inferred masses extracted from the whole cluster
ensemble. We find a best-fit η of 0.83±0.24(stat)±0.074(sys) by
fitting to the combined low- and high-redshift background popula-
tions. This indicates that there is no tension between the magnifi-
cation masses and those estimated using the SZE observable-mass
relation.

We analyze the potential impact of systematic errors caused
by photometric scatter and bias, cluster galaxy contamination, and
uncertainties in the estimation of the average lensing efficiency 〈β 〉
and power law index s of the galaxy count-magnitude relation for
each of the two background populations. We quantify how these
effects impact the final mass factor η estimated from the fit. We
find that the systematic source with the largest potential to affect
η estimates (7.4% bias for the combined constraint) is the bias in
the calibration of the photometric colour, which would lead to an
inconsistency between the estimation of the background properties
of the data and the reference field. The other biases each contribute
systematic uncertainties at the 6 5% level, which we combine in
quadrature to estimate a final 7.4% systematic uncertainty on the
combined η constraint. We conclude that the mass constraints can
be reliably estimated using the magnification bias if the unbiased
background properties can be estimated. The uncertainty of the η

estimation in this work is currently dominated by the statistical un-
certainty, which is due to the lack of background galaxies needed
to suppress the Poisson noise.

This work underscores the promise of using magnification
bias of normal background galaxy populations to calibrate the
observable-mass scaling relation and measure cluster masses in
multi-band imaging survey data with depths similar to those in the
Dark Energy Survey. For the clusters detected in the 2500 deg2

SPT-SZ survey, there are ≈ 200 with redshifts 0.3 6 z 6 0.6. By
carrying out the same analysis as discussed in this work, we expect
the detection significance of the magnification effect would be in-
creased to ≈ 10σ and ≈ 4σ for the low-z and high-z background
populations, respectively. Therefore, by stacking samples of hun-
dreds to thousands of clusters in such a dataset, it is possible to
carry out important cross-checks of masses extracted through weak
lensing shear, galaxy dynamics and other methods.
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