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Abstract
We study the exclusive semileptonic B-meson decays B → K(π)`+`−, B → K(π)νν̄, and

B → πτν, computing observables in the Standard model using the recent lattice-QCD results

for the underlying form factors from the Fermilab Lattice and MILC Collaborations. These pro-

cesses provide theoretically clean windows into physics beyond the Standard Model because the

hadronic uncertainties are now under good control for suitably binned observables. For example,

the resulting partially integrated branching fractions for B → πµ+µ− and B → Kµ+µ− outside the

charmonium resonance region are 1–2σ higher than the LHCb Collaboration’s recent measurements,

where the theoretical and experimental errors are commensurate. The combined tension is 1.7σ.

Combining the Standard-Model rates with LHCb’s measurements yields values for the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements |Vtd| = 7.45(69)× 10−3, |Vts| = 35.7(1.5)× 10−3, and

|Vtd/Vts| = 0.201(20), which are compatible with the values obtained from neutral B(s)-meson os-

cillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from

unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the

Wilson coefficients Re(C9) and Re(C10) from B → πµ+µ− and B → Kµ+µ− are competitive with

those from B → K∗µ+µ−, and display a 2.0σ tension with the Standard Model. Our predictions

for B → K(π)νν̄ and B → πτν are close to the current experimental limits.
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I. INTRODUCTION AND MOTIVATION

The experimental high-energy physics community is searching for virtual effects of new
heavy particles that would give rise to deviations from Standard-Model predictions via a
broad range of precision measurements [1]. Because the masses and couplings of the new
particles are not known a priori, indirect searches are being pursued in many areas of particle
physics, including the charged-lepton sector [2], the Higgs sector [3], and the quark-flavor
sector [4]. Within heavy-quark physics, B-meson semileptonic decays provide numerous
observables such as decay rates, angular distributions, and asymmetries that are expected
to be sensitive to different new-physics scenarios. For example, the rare decays B → K`+`−,
B → Kνν̄, B → π`+`−, and B → πνν̄ proceed via b→ s and b→ d flavor-changing neutral
currents (FCNCs) and are sensitive to the effects of new heavy particles that can arise in
a wide range of models. These include supersymmetry [5–8], leptoquarks [9–11], and a
fourth generation [12]; models with flavor-changing Z ′ gauge bosons [13–20]; and models
with extended [5, 21–25] or composite [10] Higgs sectors. Decays to τ -lepton final states
such as B → πτν are especially sensitive to charged scalars that couple preferentially to
heavier particles [26–31], such as those that occur in two-Higgs-doublet models. Tree-level
CKM-favored b→ u charged-current processes can be modified due to the presence of new
right-handed currents [32–34]. If deviations from the Standard Model are observed in B-
meson semileptonic decays, correlations between measurements can provide information on
the underlying masses and couplings of the new-physics scenario that is realized in Nature.
(See, e.g., Refs. [35, 36] for recent reviews.)

Several tensions between theory and experiment have recently been observed in B-
meson semileptonic decays. The BaBar experiment found excesses in both R(D) ≡
B(B → Dτν)/B(B → D`ν) and R(D∗) ≡ B(B → D∗τν)/B(B → D∗`ν) with a com-
bined significance of 3.4σ [37, 38]. These results were subsequently confirmed by Belle [39]
and LHCb [40], albeit with somewhat lower significance; a recent HFAG average of these
measurements quotes a combined significance of 3.9σ [41]. The LHCb experiment recently
reported a measurement of the ratio of B+ → K+µ+µ− over B+ → K+e+e− branching
fractions (denoted Rµe

K+ below) in the range 1 GeV2 ≤ q2 ≤ 6 GeV2 that is 2.6σ lower than

Standard-Model expectations [42]. The Standard-Model predictions for the B → K(∗)µ+µ−

differential decay rates are slightly, but systematically, higher than experimental measure-
ments by LHCb [43–45]. Discrepancies of 2–3σ between theory and experiment have also
been observed for several B → K∗`` angular observables [46, 47]. The long-standing ≈ 3σ
tensions between determinations of the CKM matrix elements |Vub| and |Vcb| obtained from
inclusive and exclusive tree-level semileptonic B-meson decays were recently confirmed with
a new high-precision lattice-QCD calculation of the B → π`ν form factors [48], the first
unquenched lattice-QCD calculations of the B → D`ν form factors at nonzero recoil [49, 50],
and the first unquenched lattice-QCD calculation of the ratio of Λb → p`ν to Λb → Λc`ν
form factors [51].1

Experimental progress on B-meson semileptonic decays has also been, and will continue
to be, significant. The LHCb experiment recently announced the first measurement of the
B+ → π+µ+µ− differential decay rate [55], as well as for the ratio of B+ → π+µ+µ− to
B+ → K+µ+µ− rates. This enables a more stringent test of the Standard Model via com-
parison of the shape to the theoretical prediction. The Belle experiment recently presented

1 Note, however, that the Belle experiment’s preliminary measurement of the B → D`ν differential decay

rate [52], when combined with lattice-QCD form-factor calculations [49, 50], yields a value of |Vcb| [53]

that is in better agreement with the inclusive determination [54].
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an upper limit on the total rate for B0 → π−τν decay [56] from their first search for this
process that is less than an order of magnitude above that of the Standard-Model predic-
tion. The upcoming Belle II experiment expects to observe B → πτν and other heretofore
unseen processes such as B0 → π0νν̄ [57]. (The charged counterpart B+ → π+νν̄ is part
of the analysis chain B+ → τ+ν, τ+ → π+ν̄ [58–61].) Given the several observed tensions
in semileptonic B-meson decays enumerated above and the recent and anticipated improve-
ment in experimental measurements, it is important and timely to critically examine the
assumptions entering the Standard-Model predictions for semileptonic B-decay observables
and to provide reliable estimates of the theoretical uncertainties.

The Fermilab Lattice and MILC Collaborations (Fermilab/MILC) recently completed
calculations of the form factors for B → K [62] and B → π [48, 63] transitions with
lattice QCD using ensembles of gauge configurations with three dynamical quark flavors.
For B → K, the errors are commensurate with earlier lattice-QCD results [64]. For B → π,
the results of Refs. [48, 63] are the most precise form factors to date, with errors less than
half the size of previous ones [65, 66]. Reference [48] also contains a joint fit of lattice-QCD
form factors with experimental measurements of the differential decay rate from BaBar and
Belle [67–70] to obtain the most precise exclusive determination to date of the CKM matrix
element |Vub| = 3.72(16)× 10−3. This fit also improves the determination of the vector and
scalar form factors f+ and f0, compared to those from lattice-QCD alone, provided that new
physics does not contribute significantly to tree-level B → π`ν (` = e, µ) transitions.

Given the landscape of quark-flavor physics described above, it is timely to use the
form factors from Refs. [48, 62, 63] to obtain Standard-Model predictions for various B-
meson semileptonic-decay observables. (For brevity, the rest of this paper refers to these
results as the “Fermilab/MILC form factors.”) The new ab initio QCD information on
the hadronic matrix elements allows us to obtain theoretical predictions of the observables
with fewer assumptions than previously possible. In this work, we consider the processes
B → K`+`−, B → Kνν̄, B → π`+`−, B → πνν̄, and B → πτν. We present the following
observables: differential decay rates, asymmetries, combinations of B → π and B → K
observables, and lepton-universality-violating ratios. For partially integrated quantities, we
include the correlations between bins of momentum transfer q2. Where possible, we make
comparisons with existing experimental measurements. We also combine our predictions for
the B → K(π)`+`− Standard-Model rates with the most recent experimental measurements
to constrain the associated combinations of CKM matrix elements |VtbV ∗td|, |VtbV ∗ts|, and
|Vtd/Vts|. For the B → π vector and scalar form factors, we use the more precise Standard-
Model determinations, which use experimental shape information from B → π`ν decay.

We do not consider B → K∗ processes in this paper, although there is extensive exper-
imental and theoretical work. Lattice-QCD calculations of the hadronic form factors are
available [44, 71], albeit without complete accounting for the K∗ → Kπ decay [72]. The
phenomenology of these processes [73–79] often assumes various relations deduced from fla-
vor symmetries. Here we use the B → K and B → π form factors obtained directly from
lattice QCD [48, 62, 63] to test some of the symmetry relations employed in the literature.

The semileptonic form factors suffice to parametrize the factorizable hadronic contribu-
tions to B → π and B → K decays in all extensions of the Standard Model. New heavy
particles above the electroweak scale only modify the short-distance Wilson coefficients of
the effective Hamiltonian [80–83]. Here we use the Fermilab/MILC form factors to obtain
model-independent constraints on the Wilson coefficients for the effective operators that
govern b→ d(s) FCNC transitions. To facilitate the use of these form factors for additional
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phenomenological studies, the original papers [48, 62, 63] provided complete parametriza-
tions of the B → π and B → K form factors as coefficients of the z expansions and their
correlations. To enable the combined analysis of both modes, this paper supplements that
information by providing the correlations between the B → π and B → K form-factor
coefficients.

This paper is organized as follows. We first provide an overview of the theoretical frame-
work for the semileptonic decay processes studied in this work in Sec. II. Next, in Sec. III,
we summarize the calculations behind the Fermilab/MILC B → π and B → K form fac-
tors [48, 62, 63], providing a table of correlations among all form factors. Here, we also
use the form factors to directly test heavy-quark and SU(3) symmetry relations that have
been used in previous Standard-Model predictions for rare semileptonic B-meson decay
observables. In Sec. IV, we present our main results for Standard-Model predictions for
B → π`+`−, B → K`+`−, B → K(π)νν̄, and B → πτν observables using the Fermi-
lab/MILC form factors, discussing each process in a separate subsection. Then, in Sec. V
we use our predictions for the partially integrated branching fractions together with exper-
imental rate measurements to constrain the associated CKM matrix elements (Sec. V A)
and relevant Wilson coefficients (Sec. V B). To aid the reader in digesting the information
presented in Secs. IV and V, we summarize our main results in Sec. VI. Finally, we give an
outlook for future improvements and concluding remarks in Sec. VII.

Three Appendices provide detailed, supplementary information. In Appendix A, we tab-
ulate our numerical results for B → π`+`−and B → K`+`−observables in the Standard
Model integrated over different q2 intervals. We present the complete theoretical expres-
sions for the B → K(π)`+`− differential decays rates in the Standard Model, including
nonfactorizable terms, in Appendix B. The numerical values of the parametric inputs used
for our calculations are provided in Appendix C.

II. THEORETICAL BACKGROUND

Here we summarize the Standard-Model theory for the semileptonic decay processes con-
sidered in this work. First, Sec. II A provides the standard definitions of the form factors.
Next, in Sec. II B, we discuss the theoretical framework for rare processes with a charged-
lepton pair final state, b→ q`` (q = d, s). Then we briefly summarize the formulae for rare
decays with a neutrino pair final state b → qνν̄ (q = d, s) in Sec. II C and for tree-level
b → u`ν` semileptonic decays in Sec. II D. The latter two processes are theoretically much
simpler, being mediated by a single operator in the electroweak effective Hamiltonian.

A. Form-factor definitions

The pseudoscalar-to-pseudoscalar transitions considered in this paper can be mediated
by vector, scalar, and tensor currents. It is conventional to decompose the matrix elements
into Lorentz-invariant forms built from the pseudoscalar- and B-meson momenta pP and
pB, multiplied by form factors that depend on the Lorentz invariant q2, where q = pB − pP
is the momentum carried off by the leptons. For the vector current,

〈P (pP )|q̄γµb|B(pB)〉 = f+(q2)

[
(pB + pP )µ − qµM

2
B −M2

P

q2

]
+ f0(q2)qµ

M2
B −M2

P

q2
, (2.1)
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= f+(q2)(pB + pP )µ + f−(q2)(pB − pP )µ. (2.2)

The form factors f+(q2) and f0(q2) couple to JP = 1− and 0+, respectively, and therefore
enter expressions for differential decay rates in a straightforward way. Because the terms
proportional to f0(q2) carry a factor of qµ, their contributions to differential decay rates are
weighted by the lepton mass, m`, and is therefore significant only in the case of τ -lepton
final states. The form factor f−(q2) is useful for a test of heavy-quark symmetry, discussed
in Sec. III B. Partial conservation of the vector current implies that f0 also parametrizes the
matrix element of the scalar current:

〈P (pP )|q̄b|B(pB)〉 =
M2

B −M2
P

mb −mq

f0(q2). (2.3)

Finally, the matrix element of the tensor current is

〈P (pP )|iq̄σµνb|B(pB)〉 =
2

MB +MP

(pµBp
ν
P − pνBpµP )fT (q2), (2.4)

where σµν = i[γµ, γν ]/2.
These form factors suffice to parametrize the hadronic transition when the leptonic part

of the reaction factorizes. Particularly important corrections arise in the penguin decays
B → π`` and B → K`` studied in this work, as discussed in the next subsection and in
Appendix B.

B. Rare b → q`` (q = d, s) decay processes

In this subsection, we first present the effective Hamiltonian for this case in Sec. II B 1, fol-
lowed by a description of how we obtain the short-distance Wilson coefficients of the effective
Hamiltonian at the relevant low scale in Sec. II B 2. To obtain physical observables, one also
needs the on-shell b→ d(s)`` matrix elements of the operators in the effective Hamiltonian.
As discussed in Sec. II B 3, for decays into light charged leptons, ` = e, µ, it is necessary to
treat the different kinematic regions within different frameworks. In Sec. II B 4 we present
the general structure of the double differential decay rate. Details of the calculations at high
and low q2 are relegated to Appendix B.

1. Effective Hamiltonian

The starting point for the description of b → q`` (q = d, s) transitions is the effective
Lagrangian [82]:

Leff = +
4GF√

2
V ∗tqVtb

[
8∑
i=1

Ci(µ)Qi +
αe(µ)

4π

10∑
i=9

Ci(µ)Qi +
6∑
i=3

CiQ(µ)QiQ + Cb(µ)Qb

]

+
4GF√

2
V ∗uqVub

2∑
i=1

Ci(µ) [Qi −Qu
i ] + LQCD×QED. (2.5)

Throughout this paper, as in the literature, we refer to Heff = −Leff as the (electroweak)
effective Hamiltonian.
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At leading order in the electroweak interaction, there are twelve independent operators,
which we take to be

Qu
1 = (q̄LγµT

auL)(ūLγ
µT abL),

Qu
2 = (q̄LγµuL)(ūLγ

µbL),

Q1 = (q̄LγµT
acL)(c̄Lγ

µT abL),

Q2 = (q̄LγµcL)(c̄Lγ
µbL),

Q3 = (q̄LγµbL)
∑
q′

(q̄′γµq′),

Q4 = (q̄LγµT
abL)

∑
q′

(q̄′γµT aq′),

Q5 = (q̄Lγµ1γµ2γµ3bL)
∑
q′

(q̄′γµ1γµ2γµ3q′), (2.6)

Q6 = (q̄Lγµ1γµ2γµ3T
abL)

∑
q′

(q̄′γµ1γµ2γµ3T aq′),

Q7 =
e

16π2
mb(q̄Lσ

µνbR)Fµν ,

Q8 =
g

16π2
mb(q̄Lσ

µνT abR)Ga
µν ,

Q9 = (q̄LγµbL)
∑
`

(¯̀γµ`),

Q10 = (q̄LγµbL)
∑
`

(¯̀γµγ5`).

Because the top-quark mass is above the electroweak scale, only the five lightest quark
flavors q′ = u, d, s, c, b are included in operators Q3 through Q6. All three lepton flavors
` = e, µ, τ appear in operators Q9 and Q10.

Once QED corrections are considered, five more operators must be included, which we
choose to be

Q3Q = (q̄LγµbL)
∑

q′ eq′(q̄
′γµq′),

Q4Q = (q̄LγµT
abL)

∑
q′ eq′(q̄

′γµT aq′),

Q5Q = (q̄Lγµ1γµ2γµ3bL)
∑

q′ eq′(q̄
′γµ1γµ2γµ3q′),

Q6Q = (q̄Lγµ1γµ2γµ3T
abL)

∑
q′ eq′(q̄

′γµ1γµ2γµ3T aq′),

Qb = 1
12

[
(q̄Lγµ1γµ2γµ3bL)(b̄γµ1γµ2γµ3b)− 4(q̄LγµbL)(b̄γµb)

]
.

(2.7)

where eq′ are the electric charges of the corresponding quarks (2
3

or −1
3
).
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2. Wilson coefficients

In the calculation of any b → q (q = d, s) transition, large logarithms of the ratio
µhigh/µlow arise, where µhigh ∼ mt,mW ,mZ is a scale associated with virtual heavy-particle
exchanges and µlow ∼ pext ∼ mb is a scale associated with the typical momenta of the final
state on-shell particles.

The standard procedure to resum these large logarithms is based on the factorization of
short- and long-distance physics, i.e., writing ln(µhigh/µlow) = ln(µhigh/µ) + ln(µ/µlow) and
absorbing the first logarithm into the Wilson coefficients and the second into the matrix
elements of the local operators. The independence of the overall amplitude on the factor-
ization scale µ leads to renormalization group equations for the Wilson coefficients whose
solution resums terms of the type

[
αLs ln(µhigh/µ)

]n
to all orders in perturbation theory.

(L = 0, 1 are known as leading and next-to-leading log approximations.) The scale µ can
then be chosen close to µlow (typically µ ' mb), thus eliminating all large logarithms from
the calculation of the amplitude. Any residual dependence on the scales µhigh and µlow is
taken as an uncertainty from missing higher order perturbative corrections. We follow the
standard practice of varying these scales by a factor of two around some nominal central
values, which we choose to be µhigh = 120 GeV and µlow = 5 GeV.

The b → d(s)`` case is complicated by the fact that the Wilson coefficients for the
leading semileptonic operators Q9 and Q10 carry explicit factors of αe, in addition to the
common factor 4GF/

√
2. Moreover, the current-current operators Q1 and Q2 mix with the

semileptonic operators at one loop in QED and at two loops in mixed QED-QCD. These
complications can all be straightforwardly addressed in a double expansion in αs and αe/αs.
We refer the reader to Ref. [82] for a detailed account of this double expansion as well as
a complete collection of all anomalous dimension matrices required for the running of the
Wilson coefficients and of the QED and QCD couplings. In contrast to earlier analyses [84,
85], we do not include the gauge couplings in the normalization of Q9 and Q10, precisely
to simplify the mixed QCD-QED renormalization group equations. Finally, note that the
operator Qb contributes to the transition amplitude only via mixing with the other operators.

3. Matrix elements

The calculation of exclusive b → s(d)`` matrix elements for the operators Q7,9,10 is rel-
atively simple. Because these operators contain an explicit photon or charged-lepton pair,
the B → K(π)`` matrix element trivially factorizes in QCD into the product of a charged-
lepton current and a form factor. The matrix element of Q7 is proportional to the tensor
form factor fT , while those of Q9,10 only get contributions from the vector-current opera-
tor because of parity conservation and the fact that the incoming and outgoing mesons are
both pseudoscalars. The vector-current matrix element leads to the form factors f+ and f0.
Note that f+ and f0, being matrix elements of a partially conserved vector current, do not
renormalize and have no scale dependence. On the other hand, the µ dependence of fT is
canceled by that of the quark mass and the Wilson coefficient for Q7.

The calculation of B → P`` (P = K, π) matrix elements of operators that do not involve
an explicit photon or charged-lepton pair is more complicated. Schematically,

〈P``|Qi(y)|B̄〉 ∼ (ū`γµv`)

∫
d4x eiq·(x−y)〈P |T Jµem(x)Qi(y)|B̄〉, (2.8)
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where u` and v` are the lepton spinors and Jµem is the electromagnetic current. The matrix
elements of the T -product include long-distance contributions that are difficult to calculate,
even with lattice QCD. In certain kinematic regions, however, these complex matrix elements
can be expressed in terms of simpler objects, namely the form factors defined in Sec. II A
plus the light-cone distribution amplitudes, up to power corrections of order ΛQCD/mb.

Before discussing the effective theories used to simplify the matrix elements in Eq. (2.8),
let us comment on the role of cc̄ and uū states. The processes B → K(π)`` can proceed
through the following intermediate resonances: B → K(π)ψuu,cc → K(π)`` where ψuu = ρ, ω
and ψcc = ψ(1S, 2S, 3770, 4040, 4160, 4415). In the language of Eq. (2.8), contributions of
intermediate ψcc and ψuu states stem from matrix elements involving the operators Q1,2 and
Qu

1,2, respectively. The two lowest charmonium states have masses below the open charm

threshold (DD̄) and have very small widths, implying very strong violations of quark-hadron
duality; consequently the regions including the ψ(1S) and ψ(2S) masses (also known as J/ψ
and ψ′) are routinely cut from theoretical and experimental analyses alike. Above the ψ(2S),
a resonance compatible with the ψ(4160) has been observed in B → Kµ+µ− decay [86]; the
ψ(3770) is also seen, but the signal for the ψ(4040) and higher resonances is not signifi-
cant. Because the four higher charmonium resonances are broad and spread throughout the
high-q2 region, in this region quark-hadron-duality violation is estimated to be small [77]
for observables integrated over the full high-q2 range. The kinematic region where the light
resonances (ρ, ω, φ) contribute is typically not excluded from experimental analyses. Al-
though their effects on branching fractions and other observables can be substantial, their
contributions cannot be calculated in a fully model-independent manner. References [87, 88]
estimate the size of nonlocal contributions to B → K(π)`` decays from the ρ and ω using
hadronic dispersion relations [89]. They predict an enhancement of the B+ → π+µ+µ−

differential branching fraction at low q2 in good agreement with the q2 spectrum measured
by LHCb [55].

At high q2 the final-state meson is nearly at rest, and the two leptons carry half the
energy of the B meson each. As first discussed by Grinstein and Pirjol [73], the photon
that produces them has q2 ∼M2

B and the T -product in Eq. (2.8) can be evaluated using an
operator product expansion (OPE) in 1/MB [77, 78, 90, 91]. The resulting matrix elements
can be parametrized in terms of the three form factors f+,0,T . In the literature fT is usually
replaced by f+ using heavy quark relations [73, 78, 92, 93], whereas in this paper we use the
lattice-QCD results for fT . Within this framework, the high-q2 rate is described entirely in
terms of the form factors f+,0,T up to corrections of order Λ/MB. It is important to realize
that the high-q2 OPE requires (x− y)2 ∼ 1/m2

b implying that all matrix elements should be
expanded in 1/q2 ∼ 1/m2

b . In Refs. [73, 90], the authors treat mc � mb and expand Q1,2 in
powers of m2

c/q
2. Here we instead follow Ref. [77] by integrating out the charm quark at the

mb scale and including the full mc dependence of the Q1,2 matrix elements. This approach
simplifies the operator basis without introducing any loss of accuracy. We include a 2%
uncertainty to account for quark-hadron duality violations [77].

At low q2 the two leptons are nearly collinear, and the daughter meson recoils with large
energy EP ∼ mb/2. In this kinematic configuration, three scales play an important role:
the hard scale ∼ m2

b , the hard-collinear scale ∼ ΛQCDmb stemming from interactions of
the energetic final state quarks with the light quarks and gluons in the B meson, and the
purely nonperturbative scale ∼ Λ2

QCD. Note that the ratio of any two scales vanishes in
the mb → ∞ limit. In the soft-collinear effective theory (SCET) [94–97], an expansion in
ΛQCD/mb exploits this hierarchy such that all contributions stemming from physics above

8



ΛQCD can be calculated in perturbative QCD. At leading power, the remaining nonpertur-
bative objects are standard form factors and B, π and K mesons light-cone distribution
amplitudes. SCET is therefore a double expansion in αs and ΛQCD/mb. The application of
soft-collinear factorization to exclusive b → s`` decays was pioneered in Refs. [98, 99] and
subsequently employed in many phenomenological analyses; see, for instance, Refs. [83, 100].

The structure of the low-q2 SCET expansion (also known as QCD factorization [94, 95])
for B → P`` (P = K, π) is (omitting prefactors)

Ci 〈P``|Qi|B̄〉 ∼ Ci

[
(1 + αs)fT + (1 + αs)f+ + φB ? T ? φP

]
, i = 1, . . . , 6, (2.9)

C7 〈P``|Q7|B̄〉 ∼ C7 fT , (2.10)

C8 〈P``|Q8|B̄〉 ∼ C8

[
αsfT + αsf+ + φB ? T ? φP

]
, (2.11)

C9 〈P``|Q9|B̄〉 ∼ C9 f+, (2.12)

C10 〈P``|Q10|B̄〉 ∼ C10 f+, (2.13)

where the coefficients of f+ and fT originate from hard interactions, and φB ?T ?φP denotes
a convolution of a short-distance kernel T , originating from hard-collinear interactions, with
the B-meson and final-state meson light-cone distribution amplitudes φB and φP , respec-
tively. As explained in detail in Appendix B, it is customary to collect all terms proportional
to the form factors and introduce effective Wilson coefficients Ceff

7 and Ceff
9 . The structure

of the whole amplitude is then

A(B → P``) ∼ Ceff
7 fT +

(
Ceff

9 + C10

)
f+ + φB ? T ? φP . (2.14)

Further, some terms in 〈Q3〉 through 〈Q6〉 are proportional to 〈Q8〉 and are usually taken
into account with the introduction of the effective Wilson coefficient Ceff

8 .
Within the SCET approach it is also possible to express fT in terms of f+—schematically

fT ∼ (1 +αs)f+ +φB ?T ?φP . Because we have direct access to the lattice-QCD calculation
of fT , this step would only result in the unnecessary introduction of additional uncertainties.

4. Differential decay rates

The double differential B → K(π)`` rate can be written as

d2Γ

dq2 d cos θ
= a+ b cos θ + c cos2 θ, (2.15)

where θ is the angle between the B meson and `− in the dilepton rest frame, and a, b, c are
functions of q2 that depend on the form factors and Wilson coefficients. The three main
observables considered in the literature are the differential rate

dΓ

dq2
= 2

(
a+

c

3

)
, (2.16)

the forward-backward asymmetry, and the flat term [100]. There are two forms of the last
two, either evaluated at a single value of q2 [64]

AFB(q2) =
b

dΓ/dq2
, (2.17)
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FH(q2) =
2(a+ c)

dΓ/dq2
, (2.18)

which is useful for plotting, or a binned form [100]

AFB(q2
min, q

2
max) =

∫ q2max

q2min

b dq2

[∫ q2max

q2min

2
(
a+

c

3

)
dq2

]−1

, (2.19)

FH(q2
min, q

2
max) =

∫ q2max

q2min

(a+ c) dq2

[∫ q2max

q2min

(
a+

c

3

)
dq2

]−1

, (2.20)

which can be compared with experimental measurements. In the Standard Model b = 0,
i.e., the forward-backward asymmetry vanishes (neglecting tiny QED effects). Further, in
the m` = 0 limit (an excellent approximation for ` = e, µ), one finds c = −a, implying a
very small flat term of order m2

`/M
2
B. Thus both the forward-backward asymmetry and flat

term are potentially sensitive to contributions beyond the Standard Model. In addition,
it is possible to consider the isospin and CP asymmetries of the differential dΓ/dq2 rate.
Appendix B provides explicit expressions for a and c in the Standard Model.

C. Rare b → q νν̄ (q = d, s) decay processes

In the Standard Model, the effective Hamiltonian for the rare decay process b→ qνν̄ (q =
d, s) is given by

Heff = −4GF√
2
VtbV

∗
tq CLQL, (2.21)

where

QL =
e2

16π2
(q̄LγµbL)

∑
ν

(ν̄Lγ
µνL) , (2.22)

summing over ν = νe, νµ, ντ , and

CL = −Xt/ sin2 θW . (2.23)

The functionXt parametrizes top-quark-loop effects and includes next-to-leading-order QCD
contributions [101–103] and two-loop electroweak corrections [104]. We take the numerical
value Xt = 1.469(17) from Ref. [104].

The neutrino-pair final state ensures that the complications discussed for B → K(π)`+`−

decays in Sec. II B do not arise in the calculation of the decay rate for this process. In par-
ticular, the decay rate receives no contributions from uū or cc̄ resonances or nonfactorizable
terms. Thus, the systematic uncertainties associated with power corrections, resonances, and
duality violations are absent [18]. In summary, the short-distance flavor-changing-neutral-
current-induced contribution to the Standard Model decay rate for B → Pνν̄ (P = K, π),
which proceeds via the the flavor-changing-neutral-current interaction, depends only on the
vector form factor f+(q2) and can be calculated over the entire kinematic range with full
control over the theoretical errors. The differential branching fraction takes the form [18, 105]

dB(B → Pνν̄)SD

dq2
= CP τB

∣∣VtbV ∗ts(d)

∣∣2 G2
Fα

2

32π5

X2
t

sin4θW
|pP |3f 2

+(q2). (2.24)
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where |pP | is the magnitude of the final-state meson three-momentum in the B-meson rest
frame. The isospin factor CP = 1 for decays to kaons and charged pions (K±, K0, π±), while
CP = 1

2
for decays to neutral pions (π0).

For the neutral modes B0 → K0(π0)νν̄, Eq. (2.24) provides a full Standard-Model de-
scription. For the charged modes B+ → K+(π+)νν̄, however, a tree-level amplitude arises
via an intermediate lepton between two charged interactions [106]. First the B+ meson
decays leptonically, i.e., B+ → `+ν; subsequently, the charged lepton decays as `+ → P+ν̄.
For ` = τ , the intermediate lepton can be on shell, leading to a long-distance contribution.
Interference between the long- and short-distance amplitudes is negligible [106], leaving the
following long-distance contribution to the rate

B(B+ → P+ντ ν̄τ )LD =

∣∣∣G2
FVubV

∗
us(d)fBfP

∣∣∣2
256π3M3

B

2πmτ (M
2
B −m2

τ )
2(M2

P −m2
τ )

2

ΓτΓB
. (2.25)

Superficially, Eq. (2.25) is suppressed relative to the loop-induced rate in Eq. (2.24) by G2
F ,

but the τ width Γτ is of order G2
F , canceling this suppression. The long-distance contribution

is also numerically significant because the τ mass is large. For B+ → π+ντ ν̄τ , it is further
enhanced relative to the short-distance contribution by the CKM factor |Vud/Vtd|2.

Taking the CKM matrix element |Vub| = 3.72(16) × 10−3 from Fermilab/MILC [48],
the combinations |Vud|fπ− = 127.13(2)(13) MeV and |Vus|fK+ = 35.09(4)(4) MeV from
experiment [107], and all other inputs from Table XVII, we obtain for the ντ -pair final state:

B(B+ → π+ντ ν̄τ )LD = 9.48(92)× 10−6, (2.26)

B(B+ → K+ντ ν̄τ )LD = 6.22(60)× 10−7, (2.27)

where the errors stem from the uncertainties on fB and |Vub|, and other parametric errors
are negligible. The long-distance contributions to the B+ → K+(π+)ν`ν̄` rate for ` = e, µ
are of order 10−17–10−18 [106]. Because lattice QCD provides reliable determinations of the
hadronic inputs fB [108–113] and fπ(K) [114–121], the long-distance contributions to the
B+ → K+(π+)νν̄ decay rates are under good theoretical control.

D. Tree-level b → u`ν decay processes

The tree-level semileptonic decay B → π`ν` (` = e, µ, τ) is mediated in the Standard
Model by the charged current interaction, and the resulting Standard-Model differential
decay rate is

dΓ(B → π`ν`)

dq2
= CP

G2
F |Vub|2
24π3

(q2 −m2
`)

2|pP |
q4M2

B

[(
1 +

m2
`

2q2

)
M2

B|pP |2|f+(q2)|2

+
3m2

`

8q2
(M2

B −M2
π)2|f0(q2)|2

]
, (2.28)

where the isospin factor CP is the same as in Eq. (2.24) above. The decay rate depends
upon both the vector (f+) and scalar (f0) form factors. For decays to light charged leptons
(` = e, µ), the contribution from the scalar form factor is suppressed by m2

` and hence
negligibly small. In contrast, the scalar form-factor contribution to decays into τ leptons
is numerically significant. While B → πτντ decay is not a rare, loop-suppressed process in
the Standard Model, the large τ -lepton mass makes it particularly sensitive to contributions
mediated by charged Higgs bosons.
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III. LATTICE-QCD FORM FACTORS AND SYMMETRY TESTS

The first ab-initio lattice-QCD results for the B → K form factors and for the B →
π tensor form factor became available only recently [48, 62–64]. Consequently, previous
theoretical calculations of B → K(π)`+`− observables have sometimes used expectations
from heavy-quark and/or SU(3)-flavor symmetries to relate the unknown form factors to
others that can be constrained from experiment or computed with QCD models (see, e.g.,
Refs. [78, 122]).

In this section, we directly test these symmetry relations, at both high and low q2, using
the complete set of Fermilab/MILC B → K and B → π form factors [48, 62, 63]. For the
B → π case, we use the vector and scalar form factors f+ and f0 obtained from a combined fit
of lattice-QCD data with experiment. This combination improves the precision on the form
factors at low q2, but assumes that no significant new physics contributes to the tree-level
B → π`ν decays for ` = µ, e.

First, in Sec. III A, we briefly summarize the lattice form-factor calculations, highlighting
the properties of the simulations and analysis that enable controlled systematic errors and
high precision. Then, in Sec. III B, we present tests of heavy-quark symmetry relations for
B → π and B → K form factors that were not already presented in Refs. [48] and [62].
Finally, we calculate the size of SU(3)-flavor-breaking effects between the B → K and B → π
form factors and compare with power-counting expectations in Sec. III C.

A. Lattice-QCD form-factor calculations

The Fermilab Lattice and MILC Collaborations carried out the numerical lattice-QCD
calculations in Refs. [48, 62, 63] in parallel. Here we summarize the features of the work
that enabled both high precision and controlled uncertainties. Below we give the correlations
between the B → π and B → K form factors, which have not appeared elsewhere. To put
this new information in context, we summarize the similarities and slight differences between
the B → π [48, 63] and B → K [62] Fermilab/MILC lattice-QCD calculations.

The calculations [48, 62, 63] employed the MILC asqtad ensembles [123–125] at four
lattice spacings from approximately 0.12 fm down to 0.045 fm; physical volumes with linear
size L & 3.8 fm; and several choices for the masses of the sea-quarks, corresponding to
pions with mass as low as 175 MeV. The strange sea-quark mass was chosen close to the
physical strange-quark mass, but varied a bit with lattice spacing, allowing for adjustment
of this mass a posteriori. The Fermilab method was used for the lattice b quark [126]. As
in several other calculations, starting with Ref. [127], the matching of the currents from
the lattice to the continuum was mostly nonperturbative, with a residual matching factor
close to unity computed in one-loop perturbation theory, with matching scale µ = mb for
the tensor current. Because the one-loop calculation was separate from the Monte Carlo
calculation of correlation functions, it was exploited to introduce a multiplicative “blinding”
offset.

The matrix elements for the form factors were obtained from fits to two- and three-point
correlation functions, including one excited B meson in the fit. After matching these lattice-
QCD data to the continuum, as described above, two further analysis steps are crucial
for the present paper. First, the form factors calculated in the kinematic region q2 &
17 GeV2 were extrapolated to zero lattice spacing and to the physical light-quark masses
with a form of chiral perturbation theory (χPT) for semileptonic decays [128] adapted to
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staggered fermions [129]. Because the final-state pion and kaon energies can become large
in the context of standard χPT, the analyses found better fits with SU(2) hard-pion and
hard-kaon χPT [130]. This chiral-continuum extrapolation included terms for heavy-quark
discretization effects, with a functional form taken from heavy-quark effective theory [131–
133], as in Ref. [108].

Next, to extend the form-factor results to the whole kinematically allowed region,
Refs. [48, 62, 63] used the model-independent z expansion based on the analytic struc-
ture of the form factors. In the present paper, we rely on the output of these fits, including
correlations, so we repeat the most pertinent details. Following Refs. [134, 135], the complex
q2 plane is mapped to

z(q2, t0) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

, (3.1)

which maps a cut at q2 > t+ = (MB + MP )2 to the unit circle and maps the semileptonic
region to an interval in z on the real axis. The extent of the interval can be minimized by
choosing t0 = (MB +MP )(

√
MB −

√
MP )2, where MP = Mπ or MK . Unitarity implies that

a power series in z converges for |z| < 1. In Refs. [48, 62, 63], these series were used [135]:

f+(q2) =
1

P+(q2)

K−1∑
n=0

b+
n

[
zn − (−1)K−n

n

K
zK
]
, (3.2)

f0(q2) =
1

P0(q2)

K−1∑
n=0

b0
nz

n, (3.3)

and the same for fT as for f+ (with coefficients bTn ). The pole factor P+,0,T (q2) = 1 −
q2/M2

+,0,T , with M+,0,T chosen as follows: for B → π, M+ = MT = MB∗ = 5.3252 GeV from
experiment [136], M0 → ∞ (i.e., no pole); for B → K, M+ = MT = MB∗s = 5.4154 GeV
from experiment [136], M0 = 5.711 GeV from lattice QCD [137]. The output of the chiral-
continuum extrapolation was propagated to Eqs. (3.2) and (3.3) using either synthetic
data [62] or a functional fitting procedure [48, 63].

Reference [48] also presented determinations of the B → π form factors f+ and f0 from
a combined z fit to the lattice-QCD form factors and experimental measurements of the
B → π`ν differential decay rate from the B factories [67–70]. This fit employed the same
z expansions as above. The experimental data provides information on the shape of f+(q2)
at low q2 beyond the direct reach of lattice-QCD simulations, thereby reducing the form-
factor errors at low q2. In this paper, we use these more precise B → π vector and scalar
form factors for all calculations of B → π observables, thereby improving the precision of
the Standard-Model results at the expense of the assumption that new physics does not
significantly alter the rate of this tree-level transition.

In Sec. III C, we present predictions for combinations of B → π and B → K observables,
which require the correlations between the two channels, not provided before [48, 62, 63].
As co-authors of these papers, we have access to the relevant information. To enable oth-
ers to study both modes together, we provide the correlation coefficients in Table I. With
Eqs. (3.1)–(3.3) and the information contained in Table XIX of Ref. [48], Table XII of
Ref. [62], and Table III of Ref. [63], the supplementary information provided in Table I
enables the reader to reproduce the form factors and combinations of them.

The dominant correlations between the two sets of form factors are statistical, because
both calculations used the same gauge-field ensembles. In practice, however, both the sta-
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TABLE I. Correlations between the z-expansion coefficients of the B → π and B → K vector,

scalar, and tensor form factors, where the B → π vector and scalar form factors include exper-

imental shape information from B → π`ν decay. These should be combined with Table XIX of

Ref. [48], Table III of Ref. [63], and Table XII of Ref. [62], which give the central values of the

coefficients as well as the remaining correlation information.

B → K``

b+0 b+1 b+2 b00 b01 b02 bT0 bT1 bT2

B
→
π
``

b+0 0.273 −0.002 −0.029 0.227 0.063 0.034 0.333 −0.001 −0.005

b+1 0.016 0.085 −0.006 −0.003 0.061 0.067 −0.011 0.075 0.017

b+2 −0.133 −0.069 0.024 −0.094 −0.077 −0.064 −0.124 −0.053 0.006

b+3 −0.077 −0.033 0.060 −0.030 −0.028 −0.023 −0.062 −0.021 0.031

b00 0.278 0.098 0.091 0.299 0.160 0.124 0.285 −0.005 −0.005

b01 −0.004 0.225 0.155 0.065 0.197 0.171 −0.079 0.153 0.092

b02 −0.120 −0.231 −0.163 −0.194 −0.232 −0.183 −0.020 −0.058 −0.006

b03 −0.085 −0.192 −0.155 −0.144 −0.195 −0.171 −0.041 −0.121 −0.079

bT0 0.319 0.051 −0.005 0.279 0.115 0.088 0.392 0.037 0.008

bT1 0.056 0.080 0.012 0.051 0.072 0.063 0.067 0.097 0.048

bT2 0.014 0.022 0.029 0.030 0.026 0.019 0.018 0.014 0.025

bT3 0.005 0.010 0.026 0.023 0.015 0.008 0.010 0.003 0.022

tistical and systematic correlations are diluted in the chiral-continuum extrapolations for
B → π and B → K, which were performed independently. The same holds for several
important systematic uncertainties, namely from the chiral-continuum extrapolations, the
uncertainty in the B∗-B-π coupling, and the heavy-quark discretization errors. The correla-
tions became even smaller once the experimental B → π`ν data were used to constrain the
shape of the B → π vector and scalar form factors. In the end, the only significant correla-
tions are among the leading coefficients b0, which correspond essentially to the normalization,
and are therefore well determined by the data. Even these are typically only ∼ 0.3, with the
largest being ∼ 0.4. Smaller correlations between the leading coefficients and the higher-
order coefficients of ∼ 0.1–0.2 arise from the kinematic constraint f+(0) = f0(0) enforced
in the z-expansion fits. The use of experimental B → π`ν data to constrain the shape of
the B → π vector and scalar form factors, when combined with the kinematic constraint,
leads to the negative entries in the correlation matrix, which correspond to anticorrelations
between b+

i and b0
i for B → π and the other coefficients.

B. Tests of heavy-quark symmetry

Several tests of heavy-quark-symmetry relations for B → π and B → K using the Fermi-
lab/MILC form factors were already presented in Refs. [48, 62]. Figure 16 of Ref. [62] plots
the B → K form-factor ratios f0/f+ and fT/f+ at high q2 obtained from lattice QCD, and
compares them with expectations from heavy-quark symmetry. Similarly, Fig. 25 of Ref. [48]
compares the B → π form factor ratio f0/f+ with heavy-quark-symmetry expectations. Here
we examine heavy-quark-symmetry tests of the B → π tensor form factor.

The simplest heavy-quark-symmetry relation between fT and the other form factors
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FIG. 1. Tests of the heavy-quark symmetry relations for the tensor form factor using the Fer-

milab/MILC form factors [48, 62, 63]. The left plot shows the ratio in Eq. (3.5) at low recoil

for B → π (red hatched band) and B → K (black solid band), which would become unity as

mb → ∞ [138, 139]. The right plot compares (fT /f+)
[
q2/(MB(MB +Mπ))

]
at low recoil (red

curve with error band), for B → π with the theoretical expectation for κ(µ) [78] (black horizontal

line).

is [138, 139]

fT (q2) =
MB +MP

2MB

[
f+(q2)− f−(q2)

]
+O (αs,Λ/mb) , (3.4)

which follows because the right-hand side is proportional to the matrix element 〈P |q̄γib|B〉,
while the left-hand side is proportional to 〈P |q̄γiγ0b|B〉. In Fig. 1, left, we plot the ratio

2MB

MB +MP

fT (q2)

f+(q2)− f−(q2)
(3.5)

vs. q2, calculated directly from the Fermilab/MILC form factors [48, 62, 63]. We show the
range q2 & 15 GeV2 where the error remains small enough to provide a meaningful test
of the relation in Eq. (3.4). In this region, the approximation in Eq. (3.4) fares very well,
especially for B → K.

A refinement of this idea uses heavy-quark symmetry and mb-scaling to eliminate f− [73,
78, 93]:

lim
q2→M2

B

fT (q2, µ)

f+(q2)
= κ(µ)

MB(MB +Mπ)

q2
+O (Λ/mb) , (3.6)

in which the scale-dependent coefficient κ(µ) incorporates radiative corrections and is
given explicitly through order α2

s in Eq. (B49). Figure 1, right, compares the quantity
(fT/f+) [q2/(MB(MB +Mπ))] obtained from the Fermilab/MILC B → π form factors
[48, 63] with the theoretical prediction from Eq. (3.6). For the theoretical estimate, we

take mb = 4.18 GeV and αs
(4)

MS
(mb) = 0.2268, giving κ(mb) ≈ 0.88 [73, 78].

As observed in Ref. [62] for the B → K form factors, the ratio fT/f+ calculated directly
from lattice QCD agrees well with the expectation from Eq. (3.6) for q2 ≈ M2

B. Although
we do not show any errors on the theoretical prediction, we can estimate the size of higher-
order corrections in the heavy-quark expansion from power counting. Taking Λ = 500 MeV
gives Λ/mb ∼ 12%. Equation (3.6) also receives corrections from the pion recoil energy
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of order Eπ/mb. This ratio grows rapidly from Eπ/mb ∼ 3% at q2
max to Eπ/mb ∼ 30% at

q2 ≈ 14 GeV2. The observed size of deviations from the leading heavy-quark-symmetry
prediction are somewhat larger than the rough estimate based on power counting. Although
form factors from ab-initio QCD are now available for B → π and B → K, other analyses
of semileptonic decay processes might still use heavy-quark-symmetry relations. Figure 1
provides quantitative, empirical guides for estimating the associated systematic uncertainty
introduced by their use.

In the limit q2 �M2
B, a collinear spin symmetry emerges for the energetic daughter quark,

and the vector, scalar, and tensor form factors are related to a universal MB-independent
form factor [98, 140]:

f+(q2) =
MB

2EP
f0(q2) =

MB

MB +MP

fT (q2), (q2 �M2
B). (3.7)

The first relation merely recovers the kinematic constraint, f+(0) = f0(0). Unfortunately,
as q2 decreases, so do the correlations between the lattice-QCD determinations of f+ and
fT . The error on the ratio fT/f+ therefore increases, reaching 100% at q2 = 0. Thus, we are
unable to quantitatively test the predicted relationship between fT and f+ at large recoil.

C. Tests of SU(3)-flavor symmetry

The B → π and B → K form factors would be equal in the SU(3)-flavor limit mu = md =
ms and, thus, differ due to corrections that are suppressed by the factor (ms−mud)/Λ, where
Λ is a typical QCD scale inside heavy-light mesons. Indeed, approximate SU(3) symmetry
implies relations among all matrix elements of the form

〈Pqr̄(pP )|q̄Γb|Br(pB)〉, (3.8)

where r denotes the flavor of the spectator quark; Γ is γµ, 1, or iσµν ; and the subscript on
the final-state pseudoscalar denotes its flavor content.

A rule of thumb [141] for SU(3) breaking is that large effects can be traced to the pseu-
doscalar masses—M2

K � M2
π—while SU(3)-breaking effects in matrix elements per se are

small. In considering the matrix elements in Eq. (3.8), the final-state four-momentum pP
cannot be the same for all Pqr̄ mesons, because the mass shells differ. The masses affect the
kinematic variables q2, EP , and pP in different ways.

In Ref. [122] (see also Ref. [141]), SU(3)-breaking was considered as a function of q2, with
the quantities R+,0,T (q2) defined as

Ri(q
2) =

fBKi (q2)

fBπi (q2)
− 1, (3.9)

where i = +, 0, T . In Ref. [122], the ratios R+,0(q2) were calculated using lattice B → π and
B → K form factors from Refs. [142] and [43, 143], respectively. Here we repeat the tests in
Ref. [122] using the more precise Fermilab/MILC B → π vector and scalar form factors [48],
and include an additional test using the Fermilab/MILC B → π tensor form factor [63],
taking the B → K form factors from Fermilab/MILC [62] as well. Figure 2, left, plots
the quantity Ri(q

2), including correlations between the B → π and B → K form factors
from statistics as well as the dominant systematic errors [48, 62, 63]. We find that the sizes
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hatched curves with error bands). Left: ratios R+,0,T (q2) [Eq. (3.9)]. Right: ratios R+,0,T (E)

[Eq. (3.10)]. We do not show RT when the error becomes too large to draw any useful inferences,

although the trend of the error band is shown by the thin lines extending from the RT error bands.

of Ri(q
2) are between 20% and 60%, ranging from commensurate with (ms −mud)/Λ (for

ms ∼ 100 MeV, Λ ∼ 500 MeV) to uncharacteristically large. In the region where the error
on the tensor form factors remain manageable, we find that RT (q2) ≈ [R+(q2)+R0(q2)]/2, as
assumed in Ref. [122]. With the more precise Fermilab/MILC B → π form factors [48, 63],
the resulting SU(3) breaking is larger than that deduced and employed in that work.

As an alternative to Eq. (3.9), we consider the analogous ratio with fixed final-state
energy (in the B rest frame):

Ri(E) =
fBKi (E)

fBπi (E)
− 1. (3.10)

As shown in Fig. 2, right, the SU(3) breaking in Ri(E) is similar to that in Ri(q
2).

A further alternative is to examine

R̃i(|v|) =
fBKi (|v|)PBK

i

fBπi (|v|)PBπ
i

− 1, (3.11)

where v = pP/MP is the final-state three-velocity (in HQET conventions) in the B-meson
rest frame. The factors PBπ

0 = PBK
0 = 1, PBπ

+,T = 1 − q2/M2
B∗ , and PBK

+,T = 1 − q2/M2
B∗s

are
introduced to remove the kinematically important vector-meson pole from the vector and
tensor form factors. As shown in Fig. 3, this measure of SU(3) breaking is under 20% for
f+ and fT , and under 35% for f0 (in the momentum range shown). The result for R̃0 can
be understood in the soft-pion (soft-kaon) limit, where f0 ∝ fB/fP , so

R̃0(|v| → 0) =
fπ
fK
− 1 ≈ −0.16. (3.12)

which agrees very well with our result in Fig. 3 (right). Similarly, for R̃+

R̃+(|v| → 0) =
fπgB∗sBK
fKgB∗Bπ

− 1. (3.13)
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FIG. 3. Velocity-based SU(3)-flavor-breaking ratios R̃+,T (|v|) (left) and R̃0(|v|) (right) using the

lattice-QCD form factors from Refs. [48, 62, 63].

The SU(3)-breaking effects in the couplings can be estimated from the chiral extrapolation
of a recent calculation of gB∗Bπ [144]. The expression of the chiral extrapolation of gB∗Bπ
was given in Eq. (28) of Ref. [144]. Replacing the pions in the loops with kaons, we estimate
gB∗sBK/gB∗Bπ ≈ 1.33 and, consequently, R+ ≈ 0.11. Because of the heavy-quark relation

between fT and f+ discussed above, R̃T should be close to R̃+, and one can see in Fig. 3
(left) that this is indeed the case.

IV. STANDARD-MODEL RESULTS

We now use the Fermilab/MILC B → π and B → K form factors [48, 62, 63] to predict
B → K(π)`+`−, B → K(π)νν̄, and B → πτν observables (and their ratios) in the Standard
Model. For predictions of B → π decay observables, as in the previous section, we use the
more precise B → π vector and scalar form factors obtained using the measured B → π`ν q2

spectrum to constrain the shape. We present results for rare decays with a charged-lepton
pair final state, b → q`` (q = d, s) in Sec. IV A, for rare decays with a neutrino pair final
state b → qνν̄ (q = d, s) in Sec. IV B, and for tree-level b → uτντ semileptonic decays in
Sec. IV C. Where possible, we compare our results with experimental measurements.

We compile our numerical results for the partially integrated B → K(π)`+`− observables
over different q2 intervals in Tables II–XV of Appendix A. To enable comparison with the
recent experimental measurements of B → K(π)`+`− from LHCb, we provide the matrix
of correlations between our Standard-Model predictions for the binned branching fractions
(and the ratio of B → π-to-B → K binned branching fractions) for the same wide q2 bins
below and above the charmonium resonances employed by LHCb [45, 55].

Appendix B provides the complete expressions for the Standard-Model B → K(π)`+`−

(` = e, µ, τ) differential decay rates. The simpler expressions for the B → K(π)νν̄ and
B → πτν decay rates are presented in the main text of Secs. II C and II D, respectively. The
Wilson coefficients and other numerical inputs used for all of the phenomenological analyses
in this work are given in Appendix C.
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` = τ (right) using the Fermilab/MILC form factors [48, 63].

A. Rare b → q `` (q = d, s) decay observables

1. B → π`+`− observables

The Fermilab Lattice and MILC Collaborations already presented some Standard-Model
predictions for B → π`+`− [63]. Figure 4 of that work plots the differential branching
fractions for ` = µ, τ , while Table IV gives the partial branching fractions in selected intervals
of q2 below and above the charmonium resonances, and for the full kinematic range. To
enable correlated analyses of the partially integrated branching fractions for B → π from
Ref. [63] and those for B → K presented in Sec. IV A 2, we update the large-bin numerical
results from Table IV of Ref. [63] in Table IV here by adding digits to the quoted uncertainties
and combining the scale uncertainty (quoted separately in Ref. [63]) with the “other” error.
In addition, we extend the phenomenological analysis of B → π`+`− by providing predictions
for the flat term of the angular distribution, cf. Eqs. (2.18) and (2.20).

Figure 4 plots our Standard-Model predictions for theB+ → π+`+`− flat term F `
H(q2), ` =

e, µ, τ , while Tables II and III report numerical values for the binned version F `
H(q2

min, q
2
max)

for the charged and neutral decay modes, respectively. For the dimuon final state, we find
F µ
H(q2) ∼ 1–2% for most of the kinematic range, which is large enough to be measured

in future experiments. For the electron-positron final state, F e
H(q2) is so small—10−6 or

smaller—that any foreseeable nonzero measurement would indicate the presence of new
physics.

After the Fermilab Lattice and MILC Collaborations submitted Ref. [63] for publication,
the LHCb experiment announced [145] a new measurement of the differential decay rate for
B → πµ+µ− decay, which is now finalized [55]. Here we repeat the main numerical results
of Ref. [63] and compare them to the LHCb measurement. The Standard-Model predictions
for the partially integrated branching ratio in the wide high-q2 and low-q2 bins are [63]

∆B(B+ → π+µ+µ−)SM × 109 =

{
4.78(29)(54)(15)(6) 1 GeV2 ≤ q2 ≤ 6 GeV2,
5.05(30)(34)(7)(15) 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.1)

where the errors are from the CKM matrix elements, form factors, the variation of the high
and low matching scales, and the quadrature sum of all other contributions, respectively.
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FIG. 5. Standard-Model partially integrated branching ratios for B+ → π+µ+µ− decay (left)

and B+ → K+µ+µ− decay (right) using the Fermilab/MILC form factors [48, 62, 63] compared

with experimental measurements from LHCb [45, 55] for the wide q2 bins above and below the

charmonium resonances.

LHCb quotes measured values for binned differential branching fractions [55], which we
convert to partially integrated branching fractions for ease of comparison with Eq. (4.1):

∆B(B+ → π+µ+µ−)exp × 109 GeV2 =

{
4.55

(
+1.05
−1.00

)
(0.15) 1 GeV2 ≤ q2 ≤ 6 GeV2,

3.29
(

+0.84
−0.70

)
(0.07) 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.2)
where the two errors are statistical and systematic.

Figure 5 (left panel) compares the Standard-Model predictions from Ref. [63] and LHCb
for the wide bins. The result for the low q2 interval below the charm resonances agrees with
the experimental measurement, but that for the high q2 interval differs at the 1.9σ level. The
combination of the two bins, including the theoretical correlations from Tables VII, and VIII
and treating the experimental bins as uncorrelated, yields a χ2/dof = 3.7/2 (p = 0.15), and
thus disfavors the Standard-Model hypothesis at 1.4σ confidence level.

Although LHCb’s recent measurement of the B → π`+`+ differential decay rate [55] is
compatible with the Standard-Model predictions, the uncertainties leave room for sizable
new-physics contributions. In the high-q2 interval, 15 GeV2 ≤ q2 ≤ 22 GeV2, the theoretical
and experimental errors are commensurate. Future, more precise measurements after the
LHCb upgrade will refine the comparison, thereby strengthening the test of the Standard
Model.

2. B → K`+`− observables

Here we present results for B → K`+`− (` = µ, τ) observables in the Standard Model
using the Fermilab/MILC B → K form factors [62]. Many previous phenomenological anal-
yses of B → K`+`− related the tensor form factor fT to the vector form factor f+ based on
approximate symmetries [78, 100]. The HPQCD Collaboration has also presented results
for B → K observables using their own lattice-QCD form-factor determinations [43]. We
improve upon the Standard-Model predictions in that work and in Ref. [62] by incorporat-
ing hard-scattering contributions at low q2 and by using Wilson coefficients that include

20



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25d
B
(B

→
K
µ
+
µ
−
)/
d
q2
(1
0−

7
G
eV

−
2
)

q2(GeV)2

Form factors + CKM + Others
Form factors only

LHCb14 (B+)
LHCb14 (B0)

Babar12
CDF11
Belle09

J/ψ ψ(2S)
0

0.05

0.1

0.15

0.2

0.25

0.3

14 16 18 20 22 24d
B
(B

→
K
τ
+
τ
−
)/
d
q2
(1
0−

7
G
eV

−
2
)

q2(GeV)2

Form factors + CKM + Others
Form factors only

FIG. 6. Standard-Model differential branching fraction (gray band) for B → Kµ+µ− decay (left)

and B → Kτ+τ− (right), where B denotes the isospin average, using the Fermilab/MILC form

factors [62]. Experimental results for B → Kµ+µ− are from Refs. [45, 146–148]. The BaBar, Belle,

and CDF experiments report isospin-averaged measurements.

logarithmically enhanced QED corrections.
Figure 6 plots the isospin-averaged Standard-Model differential branching fractions for

B → Kµ+µ− and B → Kτ+τ−. For B → Kµ+µ− decay, we compare our results with
the latest measurements by BaBar [148], Belle [146], CDF [147], and LHCb [45]. Tables V
and VI give the partially integrated branching fractions for the charged (B+) and neutral
(B0) meson decays, respectively, for the same q2 bins used by LHCb in Ref. [45]. In the
regions q2 . 1 GeV2 and 6 GeV2 . q2 . 14 GeV2, uū and cc̄ resonances dominate the
rate. To estimate the total branching ratio, we simply disregard them and interpolate
linearly in q2 between the QCD-factorization result at q2 ≈ 8.5 GeV2 and the OPE result at
q2 ≈ 13 GeV2. Although this treatment does not yield the full branching ratio, it enables a
comparison with the quoted experimental totals, which are obtained from a similar treatment
of these regions. Away from the charmonium resonances, the Standard-Model calculation
is under good theoretical control, and the partially integrated branching ratios in the wide
high-q2 and low-q2 bins are our main results:

∆B(B+ → K+µ+µ−)SM × 109 =

{
174.7(9.5)(29.1)(3.2)(2.2), 1.1 GeV2 ≤ q2 ≤ 6 GeV2,
106.8(5.8)(5.2)(1.7)(3.1), 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.3)

∆B(B0 → K0µ+µ−)SM × 109 =

{
160.8(8.8)(26.6)(3.0)(1.9), 1.1 GeV2 ≤ q2 ≤ 6 GeV2,
98.5(5.4)(4.8)(1.6)(2.8), 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.4)

where the errors are from the CKM elements, form factors, variations of the high and low
matching scales, and the quadrature sum of all other contributions, respectively. LHCb’s
measurements for the same wide bins are [45]

∆B(B+ → K+µ+µ−)exp × 109 GeV2 =

{
118.6(3.4)(5.9) 1.1 GeV2 ≤ q2 ≤ 6 GeV2,
84.7(2.8)(4.2) 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.5)
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` = τ (right) using the Fermilab/MILC form factors [62].

∆B(B0 → K0µ+µ−)exp × 109 GeV2 =

{
91.6

(
+17.2
−15.7

)
(4.4) 1.1 GeV2 ≤ q2 ≤ 6 GeV2,

66.5
(

+11.2
−10.5

)
(3.5) 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.6)

where the errors are statistical and systematic, respectively, and again we convert the quoted
differential branching fractions to partially integrated branching fractions for direct compar-
ison with Eqs. (4.3) and (4.4). Figure 5, right, shows the comparison between the Standard
Model and the experimental measurements. The Standard-Model values are higher than
the measurements by 1.8σ and 2.2σ for the low- and high-q2 bins, respectively. The com-
bination of the two bins, including the theoretical correlations from Tables VII and VIII
of Appendix A and treating the experimental bins as uncorrelated, yields χ2/dof = 5.7/2,
p = 0.06, thus disfavoring the Standard-Model hypothesis with 1.9σ significance. Note, how-
ever, that the structures observed in the LHCb data above the ψ(2S) (red points with small
errors bars in Fig. 6) warrant a great deal of caution in comparing theory and experiment
for narrow bins [149].

We also calculate the Standard-Model flat term F `
H(q2) with the Fermilab/MILC form

factors [62] and plot it for B+ → K+`+`− (` = e, µ, τ) in Fig. 7. LHCb reported results for
the binned flat term F µ

H(q2
min, q

2
max) [150] with uncertainties greater than 100% in every bin.

The Standard-Model result for F µ
H agrees with LHCb’s measurement, but the comparison is

limited by the large experimental errors, which will improve with new measurements after
the LHCb upgrade. For future comparisons, Tables IX and X of Appendix A provide results
for the binned F `

H(q2
min, q

2
max) in both the charged and neutral decay modes, respectively.

3. Combinations of B → π and B → K observables

Figure 5 shows that the B → πµ+µ− and B → Kµ+µ− Standard-Model partially in-
tegrated branching ratios are larger than the experimental results for all four wide q2

bins. The four Standard-Model values are, however, highly correlated. Thus the combi-
nation of all four measurements disfavors the Standard-Model hypothesis at the 1.7σ level
(χ2/dof = 7.8/4, p = 0.10). This significance lies in between the individual exclusions from
the two B → πµ+µ− bins and the two B → Kµ+µ− bins.
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in the Standard Model using the Fermilab/MILC form factors [48, 62, 63], compared with experi-

mental measurements from LHCb [55] The errors in the Standard-Model results are dominated by

the form-factor uncertainties; the others are too small to be shown separately.

The first observation of B → π`+`− by LHCb implies that the ratio of branching frac-
tions B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) = 0.053(14)(1), where the errors are statistical
and systematic, respectively [151]. More recently, LHCb reported first results for the par-
tially integrated branching fractions for B+ → π+µ+µ− [55], and also provided the ratio
of ∆B(B+ → π+µ+µ−)-to-∆B(B+ → K+µ+µ−) for the same q2 intervals above and below
the charmonium resonances. This ratio probes new-physics scenarios that would affect the
shape of the q2 distribution differently for B → π`+`− and B → K`+`−. On the other hand,
it is not sensitive to new physics that would affect the overall B → π`+`− and B → K`+`−

rates in the same way.
The ratios of partially integrated differential branching fractions in the wide high-q2 and

low-q2 bins, using the Fermilab/MILC form factors [48, 62, 63], are our main results in this
section:

∆B(B+ → π+µ+µ−)

∆B(B+ → K+µ+µ−)

SM

× 103 =

{
26.8 (0.8)(5.3)(0.4), 1 GeV2 ≤ q2 ≤ 6 GeV2,
47.2 (1.3)(3.4)(1.3), 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.7)

where the errors are from the CKM matrix elements, hadronic form factors, and all others
added in quadrature, respectively. Binned Standard-Model values for additional q2 intervals
and for both the B+ and B0 decay modes are provided in Table XIII. Figure 8 compares
the above Standard-Model values with recent measurements from LHCb for the same q2

bins [55]:

∆B(B+ → π+µ+µ−)

∆B(B+ → K+µ+µ−)

exp

× 103 =

{
38(9)(1), 1 GeV2 ≤ q2 ≤ 6 GeV2,
37(8)(1), 15 GeV2 ≤ q2 ≤ 22 GeV2,

(4.8)

where the quoted errors are statistical and systematic, respectively. The Standard-Model
result for each individual bin is consistent with its experimental measurement [55]—within
1.1σ—but the theory band lies below experiment for the 1 GeV2 ≤ q2 ≤ 6 GeV2 bin, while
it lies above for the 15 GeV2 ≤ q2 ≤ 22 GeV2 bin. Combining the two bins, including the
theoretical correlations from Tables XIV and XV, and treating the experimental bins as
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uncorrelated, shows that the LHCb measurement is compatible with the Standard Model
within 1.1σ (χ2/dof = 2.7/2 and p = 0.26). Given the present uncertainties, however,
ample room remains for new-physics contributions that may be observable with improved
measurements after the LHCb upgrade.

4. Lepton-universality-violating observables

Lepton-universality-violating effects may give rise to observable deviations in ratios of
rare B decays to final states with different charged leptons [9, 13–18, 152–155], and would
constitute a clear sign of physics beyond the Standard Model. A useful observable to look
for such effects is the ratio of partially integrated decay rates to different charged-lepton
final states with the same q2 cuts [156]:

R`1`2
P (q2

min, q
2
max) =

∫ q2max

q2min
dq2 dB(B → P`+

1 `
−
1 )/dq2∫ q2max

q2min
dq2 dB(B → P`+

2 `
−
2 )/dq2

, (4.9)

where P = π,K and `1, `2 = e, µ, τ . The quantities Rµe
π and Rµe

K are predicted to be unity in
the Standard Model, up to corrections of order (m2

`/M
2
B,m

4
`/q

4) [100, 156], which are tiny
for ` = e, µ. Thus any observed deviation of Rµe

K(π) from unity would indicate the presence

of physics beyond the Standard Model.
Measurements of RK at e+e− colliders by BaBar [148] and Belle [146] are consistent

with Standard-Model expectations within large experimental uncertainties of about 20–
30%. The LHCb Collaboration, however, recently reported a measurement of the ratio
Rµe
K+(1 GeV2, 6 GeV2) = 0.745

(
+97
−82

)
[42] that is 2.6σ lower than Standard-Model expecta-

tions. Here we calculate lepton-universality-violating ratios in the Standard Model using
the Fermilab/MILC B → K and B → π form factors [48, 62, 63]. Our predictions for Rµ`

π

(` = e, τ) are the first to use only ab-initio QCD information for the hadronic physics, while
results for R`1`2

K (`1, `2 = e, µ, τ) were previously presented by the HPQCD Collaboration
using their own lattice-QCD form-factor determinations [43].

Tables XI and XII show Rµ`
π and Rµ`

K for ` = e, τ , respectively, using the same q2 bins
employed by LHCb [55]. Figure 9 plots the difference from unity of Rµe

K+ (left) and Rµe
π+

(right) for the wide q2 bins below and above the charmonium resonances. For the same q2

cuts as LHCb’s measurement [42], we obtain[
Rµe
K+(1 GeV2, 6 GeV2)− 1

]
× 103 = 0.50(43), (4.10)

where the error is predominantly from the form-factor uncertainties. This agrees with the
earlier isospin-averaged Standard-Model value (Rµe

K − 1)× 103 = 0.74(35) from HPQCD for
the same q2 interval [43] with a similar error. Thus, explicit calculation with lattice QCD
confirms the intuitively significant deviation between experiment and the Standard Model,
observed by LHCb [42].

B. Rare b → qνν̄ (q = d, s) decay observables

Rare B decays into neutrino-pair final states have not yet been observed. The most recent
bounds on B(B → Kνν̄) from Babar [157] and Belle [158] are, however, only about a factor
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FIG. 9. Standard-Model lepton-universality-violating ratios Rµe
K+ − 1 (left) and Rµe

π+ − 1 (right)

for (q2
min, q

2
max) = (1 GeV2, 6 GeV2) and (15 GeV2, 22 GeV2) using the Fermilab/MILC form

factors [48, 62, 63]. The errors in the Standard-Model results are dominated by the form-factor

uncertainties; the remaining contributions are too small to be visible. The left plot also shows

LHCb’s measurement for the low-q2 bin [42].

of ten larger than Standard-Model expectations, so prospects are good for its observation
by Belle II [57]. The Standard-Model decay rate for B → πνν̄ is further suppressed below
B → Kνν̄ by the relative CKM factor |Vtd/Vts|2 ≈ 0.04, except for B(B+ → π+ντ ν̄τ ), which
is enhanced by long-distance contributions. Indeed, B+ → π+ντ ν̄τ events are included in
measurements of the leptonic decay rate B(B+ → τ+ντ ), where the τ subsequently decays
as τ → π+ν̄τ [58–61].

In anticipation of such measurements, we provide Standard-Model predictions for B →
Kνν̄ and B → πνν̄ observables using the Fermilab/MILC form factors [48, 62]. Previous
analyses of B → K(π)νν̄ used form factors from light-cone sum rules (LCSR) [83, 105] or
perturbative QCD (pQCD) [159]. One recent study of B → K(π)νν̄ [18] combined lattice-
QCD form factors at high q2 [64] with LCSR form factors [160] at low q2 in a simultaneous
z-expansion fit. Our calculations of B → K(π)νν̄ observables are the first to use only ab-
initio QCD information for the hadronic physics. Because experiments cannot identify the
outgoing neutrino flavor, we present results for the sum of contributions from νe, νµ, and ντ .

For the neutral decay modes B0 → K0(π0)νν̄, the dominant contributions to the
Standard-Model decay rate are from FCNC transitions [see Eq. (2.24)]. Figure 10 shows
our Standard-Model prediction for the differential branching fractions for B0 → π0νν̄ and
B0 → K0νν̄. We obtain the total branching fractions

B(B0 → π0νν̄)× 107 = 0.668(41)(49)(16), (4.11)

B(B0 → K0νν̄)× 107 = 40.1(2.2)(4.3)(0.9), (4.12)

where the errors are from the CKM elements, form factors, and the quadrature sum of all
other contributions, respectively. The “other” errors in Eqs. (4.11) and (4.12) are so much
smaller than those from the CKM elements and form factors because uū and cc̄ resonances
do not contribute to the rate in Eq. (2.2), and because the perturbative contributions lumped
into Xt are known to about a percent.

For the charged decay modes B+ → K+(π+)νν̄, we obtain the following contributions to
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FIG. 10. Standard-Model differential branching fraction for B0 → π0νν̄ decay (left) and B0 →
K0νν̄ (right) using the Fermilab/MILC form factors [48, 62].

the Standard-Model branching fractions from FCNC transitions:

B(B+ → π+νν̄)SD × 107 = 1.456(89)(106)(34), (4.13)

B(B+ → K+νν̄)SD × 107 = 43.2(2.3)(4.6)(1.0), (4.14)

where again the errors are from the CKM elements, form factors, and the quadrature sum of
all other contributions. Our result for B(B+ → K+νν̄)SD is consistent with that in Ref. [18],
albeit with a slightly larger error. The smaller error in Ref. [18] stems from their use of an
additional input at low-q2 from LCSR [160]. The results quoted in Ref. [159] for the total
B → K(π)νν̄ branching fractions for both the charged and neutral modes agree with ours,
but they have significantly larger errors.

As discussed in Sec. II C, the decay rates for B+ → K+(π+)ντ ν̄τ also receive substantial
long-distance contributions from intermediate tree-level τ decays. The numerical values for
the long-distance contributions are given in Eqs. (2.26) and (2.27). We add them to the
short-distance contributions in Eqs. (4.13) and (4.14) to obtain the full branching ratios:

B(B+ → π+νν̄)× 106 = 9.62(1)(92), (4.15)

B(B+ → K+νν̄)× 106 = 4.94(52)(6), (4.16)

where here the errors are from the short-distance and long-distance contributions respec-
tively. For B+ → π+νν̄, the intermediate τ -decay channel increases the Standard-Model
rate by an order of magnitude, whereas for B+ → K+νν̄ it only generates about a 10%
enhancement.

C. Tree-level b → u`ν decay observables

The decay B → πτν has not yet been observed experimentally. Recently, however, the
Belle Collaboration reported their first search for B0 → π−τ+ντ decay [56], obtaining a
result for the total branching fraction with a 2.4σ significance, corresponding to an upper
limit not far from the Standard-Model prediction. The upcoming Belle II experiment is
therefore well positioned to measure the branching fraction as well as the q2 spectrum for
this process.
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FIG. 11. Standard-Model differential branching fraction for B0 → π−τ+ντ decay using the Fermi-

lab/MILC form factors and determination of |Vub| from Ref. [48].

Most previous Standard-Model predictions for B → πτν have relied on estimates of the
hadronic form factors from LCSR [161–163] or pQCD [159]. Reference [164] employs form
factors from lattice QCD [65, 142]. The scalar form factor, however, was calculated only
in Ref. [142], and disagrees with more recent continuum-limit results [48, 66]. Because the
total uncertainty on B(B → πτν) in Ref. [164] is dominated by the error on the scalar
form factor, it is now possible to improve the Standard-Model estimate. Here we use the
form factors and value of |Vub|, 3.72(16) × 10−3, from Fermilab/MILC [48], obtained from
a simultaneous z-expansion fit of lattice-QCD results and the measured B → π`ν partial
branching fractions. These form factors and |Vub| carry significant correlations, which we
incorporate below. We reiterate that with this choice of inputs we assume that there are no
significant new-physics contributions to B → π`ν decays with light charged leptons.

Figure 11 shows our Standard-Model prediction for the B0 → π−τ+ντ differential branch-
ing fraction. For the total integrated branching fractions we find

B(B0 → π−τ+ντ ) = 9.35(38)× 10−5, (4.17)

B(B+ → π0τ+ντ ) = 4.99(20)× 10−5, (4.18)

where the error includes the correlated uncertainties from the form factors and |Vub|. Because
of the correlations between the form factors and |Vub|, it is not possible to quote their
errors individually. The uncertainties stemming from the parametric inputs are negligible.
Our results are consistent with those quoted in Refs. [159, 162] within their much larger
uncertainties. Because the Standard-Model branching fraction for B → πτν is of the same
order of magnitude as for B → πµν, the Belle II experiment should be in a good position
to test our prediction of its differential decay rate.

Deviations from Standard-Model expectations have been observed for semileptonic B-
meson decays to τντ final states involving tree-level b → c charged-current interactions.
Given the combined 3.9σ excess quoted by HFAG for their averages of R(D) and R(D∗) [41],
it is interesting to consider the analogous ratio for B → π`ν decay, which instead proceeds
through a tree-level b → u transition. Assuming, again, that there are no new-physics
contributions to decays to light charged leptons, B → π`ν with ` = e, µ, the Fermilab/MILC
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form factors [48] yield the Standard-Model prediction

R(π) ≡ B(B → πτντ )

B(B → π`ν`)
= 0.641(17), (4.19)

for both the charged and neutral B-meson decay modes. Because |Vub| cancels in the ratio,
R(π) provides an especially clean probe of new physics, particularly charged Higgs bosons,
independent of the currently observed tension between determinations of |Vub| from inclusive
and exclusive semileptonic B-meson decays [41, 136, 165].

V. CKM MATRIX ELEMENTS AND WILSON COEFFICIENTS

We now illustrate the broader utility of the Fermilab/MILC form factors [48, 62, 63] for
Standard-Model and beyond-the-Standard-Model phenomenology with two concrete exam-
ples. First, in Sec. V A, starting with the assumption that the Standard Model is a complete
description of Nature, we combine our predicted branching fractions with the recent LHCb
measurements to determine the CKM matrix elements |Vtd|, |Vts|, and their ratio. We then
compare them with results from other processes. Second, in Sec. V B, we make no such
assumption but take the CKM matrix elements from unitarity and combine our theoretical
branching fractions with the experimental measurements to constrain the Wilson coefficients
of the b→ q`` (q = d, s) effective Hamiltonian. We then compare them with Standard-Model
values.

These analyses are possible because, as stressed above, the B → π and B → K form
factors are decoupled, via the effective Hamiltonian, from physics at energy scales above the
electroweak scale.

A. Constraints on Vts, Vtd, and |Vtd/Vts|

In the Standard Model, the ratios of differential branching fractions

∆B(B → π`+`−)

∆B(B → K`+`−)
and

∆B(B → πνν̄)

∆B(B → Kνν̄)

are both proportional to the ratio of CKM matrix elements |Vtd/Vts|2. Thus, they enable
determinations of |Vtd/Vts|, independent of that from the ratio of Bd-to-Bs-meson oscillation
frequencies [136], which is currently the most precise.

The LHCb experiment’s initial observation of B → πµ+µ− [151] enabled the first deter-
mination of this ratio of CKM matrix elements from rare semileptonic B decays. In that
work, they obtained |Vtd/Vts| = 0.266(35) using form factors from light-cone sum rules [166]
and neglecting the theoretical uncertainty. More recently, LHCb measured the differential
decay rate for B → πµ+µ− and the ratio ∆B(B → πµ+µ−)/∆B(B → Kµ+µ−) in two bins
of q2 below and above the charmonium resonances [55]. Although the measurement errors
decreased, the quoted error in |Vtd/Vts| = 0.23(+5

−4) increased from including now the theory
uncertainty. Here we obtain the first determination of |Vtd/Vts| from rare b → d(s)`+`−

decay processes using only ab-initio lattice-QCD information for the hadronic form factors.
Following Refs. [122, 151] we calculate

F π/K ≡
∣∣∣∣VtsVtd

∣∣∣∣2 ∆B(B+ → π+µ+µ−)

∆B(B+ → K+µ+µ−)
, (5.1)
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which removes the CKM matrix elements. Taking Eq. (4.7) for the second factor in Eq. (5.1)
and removing the CKM ratio used there (from Table XVII), we obtain

F π/K =

{
0.60(12), 1 GeV2 ≤ q2 ≤ 6 GeV2

1.055(81), 15 GeV2 ≤ q2 ≤ 22 GeV2 , (5.2)

where the errors stem predominantly from the form-factor uncertainties. Combining this
Standard-Model calculation of F π/K with LHCb’s recent measurement [55], Eq. (4.8), yields

|Vtd/Vts| =
{

0.252(25)(30), 1 GeV2 ≤ q2 ≤ 6 GeV2

0.187(7)(20), 15 GeV2 ≤ q2 ≤ 22 GeV2 , (5.3)

where the errors are from theory and experiment, respectively. A joint fit over both bins
including theoretical correlations (which in practice are negligible) yields our final result for
the ratio of CKM matrix elements:

|Vtd/Vts| = 0.201(20), (5.4)

where the error includes both experimental and theoretical uncertainties, and the combined
χ2/dof = 2.3/1 (p = 0.13). Equation (5.4) agrees with the more precise determination from
the oscillation frequencies of neutral Bd,s mesons, |Vtd/Vts| = 0.216(1)(11), as well as that
from CKM unitarity, |Vtd/Vts| = 0.2115(30) [167].

The error on |Vtd/Vts| in Eq. (5.4) is more than two times smaller than that obtained
by LHCb in Ref. [55] using the same experimental information. This improvement stems
entirely from the more precise form factors. Because the error on |Vtd/Vts| in Eq. (5.4)
is dominated by the experimental uncertainty, especially for the high-q2 bin, it will be
reduced as measurements of B → K(π)`+`− decays improve. Better form-factor calculations
will also aid the determination of |Vtd/Vts| from the low-q2 region. Future observations of
B → K(π)νν̄ in combination with our Standard-Model predictions in Sec. II C will enable
yet another way to determine |Vtd/Vts|.

We can also determine the products of CKM elements |VtbV ∗td| and |VtbV ∗ts| that appear in
the individual decay rates for B → π`+`− and B → K`+`− decay, respectively. In analogy
with the analysis above, we combine our calculations of the CKM-independent quantities
∆B(B+ → π+µ+µ−)/|VtbV ∗td|2 and ∆B(B+ → K+µ+µ−)/|VtbV ∗ts|2 with experimental mea-
surements of the partial branching fractions for the same q2 intervals. Using the B → πµ+µ−

partial branching fractions measured by LHCb [55], and quoted in Eq. (4.2), we obtain

|VtbV ∗td| × 103 =

{
8.34(49)(95), 1 GeV2 ≤ q2 ≤ 6 GeV2,
6.90(26)(81), 15 GeV2 ≤ q2 ≤ 22 GeV2.

(5.5)

Similarly, using the B → Kµ+µ− measurement from Ref. [45], quoted in Eq. (4.5), we obtain

|VtbV ∗ts| × 103 =

{
33.3(2.8)(1.0), 1.1 GeV2 ≤ q2 ≤ 6 GeV2,
36.0(1.1)(1.1), 15 GeV2 ≤ q2 ≤ 22 GeV2.

(5.6)

The errors given in Eqs. (5.5) and (5.6) are from theory and experiment, respectively. Com-
bining the values from the individual q2 bins above including correlations gives

|VtbV ∗td| × 103 = 7.45(69), (5.7)

|VtbV ∗ts| × 103 = 35.7(15), (5.8)
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for our final results, where the errors include both the experimental and theoretical uncer-
tainties.

Taking |Vtb| = 0.9991 from CKM unitarity [167], where the error is of order 10−5 and
hence negligible, we can infer values for the magnitudes of the individual CKM elements
|Vtd| and |Vts|. We find

|Vtd| = 7.45(69)× 10−3, (5.9)

|Vts| = 35.7(1.5)× 10−3, (5.10)

where the errors include both the experimental and theoretical uncertainties. This determi-
nation of |Vtd| agrees with the Particle Data Group (PDG) value |Vtd| = 8.4(6)× 10−3 [136]
obtained from the oscillation frequency of neutral Bd mesons, with commensurate precision.
Our |Vts| is 1.4σ lower than |Vts| = 40.0(2.7)×10−3 from Bs-meson oscillations with an error
that is almost two times smaller. Compared with the determinations |Vtd| = 7.2(+9

−8)× 10−3

and |Vts| = 32(4)× 10−3 by LHCb [55]—using the same experimental inputs but older form
factors—the uncertainties in Eqs. (5.9) and (5.10) are 1.2 and 2.7 times smaller, respectively.
Again, this illustrates the value added from using the more precise hadronic form factors.
It is worth noting that the errors on the B-mixing results [136] are dominated by the un-
certainties on the corresponding hadronic matrix elements [168, 169]. Therefore the errors
on |Vtd| and |Vts| from both neutral B-meson oscillations and semileptonic B decays will de-
crease with anticipated lattice-QCD improvements (see Refs. [170, 171] and our discussion
in Sec. VII).

Finally, assuming CKM unitarity, our result for |Vts| implies a value for |Vcb| via |Vcb| =
|Vts| = Aλ2 + O(λ4), where the explicit expression for the correction can be found in
Ref. [167]. Taking numerical values for {A, λ, ρ̄, η̄} from Table XVII to estimate the correc-
tion term, we obtain |Vcb| = 36.5(1.5) × 10−3, where the error stems from the uncertainty
in |Vts| in Eq. (5.9) and the parametric uncertainty due to higher-order corrections in λ is
negligible. This alternate result for |Vcb| is 1.6σ below the exclusive |Vcb| determination from
B → D∗`ν [172], 2.6σ below that from B → D`ν [53], and 3.5σ below the inclusive |Vcb|
determination [54]. This tension is simply another perspective on the differences we found
between the experimental measurements for the B → Kµ+µ− partially integrated branching
fractions and our Standard-Model predictions, discussed in Sec. IV A 2.

B. Constraints on Wilson coefficients

In this section, we investigate the constraints on the Wilson coefficients of the effective
Hamiltonian implied by present B → (K, π)µ+µ− measurements combined with the Fermi-
lab/MILC form factors [48, 62, 63]. We focus on high-scale (µ0 ' 120 GeV) contributions
to the Wilson coefficients C9 and C10:

C9(µ0) = CSM
9 (µ0) + CNP

9 (µ0) , (5.11)

C10(µ0) = CSM
10 (µ0) + CNP

10 (µ0) , (5.12)

where the Standard-Model matching conditions are given in Eqs. (25) and (26) of Ref. [82]
and, for our choice of inputs, correspond to CSM

9 (µ0) = 1.614 and CSM
10 (µ0) = −4.255.

The excellent agreement between the experimental and theoretical determinations of B →
Xsγ (see, for instance, Ref. [173] and references therein) suggests that any new-physics
contributions to C7 and C8 are small, so we do not consider them here. We also assume that
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the Wilson coefficients for b→ s`` and b→ d`` transitions are identical, as they would be in
minimal flavor violation, where new-physics contributions to the semileptonic operators for
b → q`` are proportional to VtbV

∗
tq. We further assume that there are no new CP -violating

phases and take CNP
9 (µ0) and CNP

10 (µ0) to be real.
To obtain the constraints shown here, we employ the measured B+ → π+µ+µ− and

B+ → K+µ+µ− branching ratios in the wide q2 intervals [1(1.1), 6] GeV2 and [15, 22] GeV2

from LHCb [45, 55], which are quoted in Eqs. (4.2) and (4.5). We adopt a frequentist
approach, and construct a χ2 statistic for these four measurements using a covariance matrix
constructed from the correlation matrices given in Tables VII and VIII, and from the errors
quoted in Table IV of Ref. [63] and in Table V. We obtain the experimental contribution
to the covariance matrix by assuming that the four LHCb measurements in Eqs. (4.2) and
(4.5) are uncorrelated, which should be a good approximation because the high- and low-q2

bins are statistically independent, and the B+ → π+µ+µ− measurement is dominated by
statistical errors, while that for B+ → K+µ+µ− is limited by systematics.

The resulting allowed regions in the Re
(
CNP

9

)
-Re

(
CNP

10

)
plane are shown in Fig. 12. In the

top two panels we present the 1σ constraints from B+ → K+µ+µ− (left) and B+ → π+µ+µ−

(right), where we show the allowed regions implied by each of the two bins separately (unfilled
bands) as well as their combination (solid bands). The lower left panel shows the constraint
from combining B+ → K+µ+µ− and B+ → π+µ+µ− branching ratios. Comparing the top
and bottom left panels, we see that the combined B → (K, π)µ+µ− constraint is currently
controlled by the high-q2 B+ → K+µ+µ− [15, 22] GeV2 bin. In the lower right panel, the
orange and yellow solid bands are the 1σ and 2σ regions allowed by B → (K, π)µ+µ− data.
Allowing for new-physics contributions to C9 and C10 yields a best fit with χ2

min/dof = 1.8/2,
corresponding to p = 0.41. We find a 2.0σ tension between the Standard-Model values for
CNP

9 = CNP
10 = 0 and those favored by the B → (K, π)µ+µ− branching ratios.

In the lower right panel of Fig. 12, we compare our allowed region in the Re(CNP
9 )-Re(CNP

10 )
plane obtained from B → (K, π)µ+µ− branching fractions alone with the constraints from
inclusive B → Xs`

+`− and exclusive B → K∗µ+µ− measurements. The region favored
by inclusive observables (black contours) is taken from Ref. [174], where the most recent
experimental results from BaBar [175, 176] and Belle [177] were used. Similarly, the region
favored by B → K∗µ+µ− angular observables (red contours) is taken from Ref. [36]. Global
analyses of b → s data similar to that performed in Ref. [36] have also been presented in
Refs. [9, 152, 178–186].

In Fig. 13 we add the constraint from the leptonic decay rate B(Bs → µ+µ−), for which
lattice QCD also gives a reliable input for the hadronic matrix element fBs [108–112, 187].
The expression for the Standard-Model rate is given in Eqs. (3) and (6) of Ref. [188], and is
proportional to f 2

Bs
and to the CKM combination |VtbV ∗ts|2. For fBs we use the recent PDG

value fBs = 226.0(2.2) GeV [107], which was obtained by averaging the lattice QCD results
of Refs. [108, 110, 112, 113, 187]. We take the remaining parametric inputs from Table XVII
to obtain the Standard-Model total branching ratio

B(Bs → µ+µ−)SM = 3.39(18)(7)(8)× 10−9 , (5.13)

where the errors are from the CKM elements, decay constant, and the quadrature sum of all
other contributions, respectively. We take the nonparametric uncertainties to be 1.5% [188].

In the most general Standard-Model extension, new-physics contributions to Bs → µ+µ−

decay can arise from six operators in the effective Hamiltonian: in addition to Q10, there
are operators with lepton currents ¯̀̀ and ¯̀γ5`, and three additional operators obtained
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FIG. 12. Constraints on the Re
(
CNP

9

)
-Re

(
CNP

10

)
plane implied by B → (K,π)µ+µ− data. In

the top two panels, the light and dark unfilled bands show the 1σ constraints from the low-q2

([1(1.1), 6] GeV2) and high-q2 ([15, 22] GeV2) bins, respectively, for B+ → K+µ+µ− (left) and

B+ → π+µ+µ− (right). The filled bands show the 1σ allowed regions when the two bins are

combined. Note that the outer low- and high-q2 B → K contours almost completely overlap.

The lower left panel shows these two 1σ regions with an unfilled band obtained from combining

the two constraints (almost coincident with the filled B → K`+`− band). The lower right panel

compares the 1σ and 2σ bands [in orange (gray) and yellow (light gray), respectively] from the

B → (K,π)µ+µ− data with the constraints from B → K∗`` angular observables (red unfilled

contours, dotted for 2σ) [36] and inclusive processes (black open contours, dashed for 2σ) [174].
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FIG. 13. Constraints on the Re(CNP
9 )-Re(CNP

10 ) plane implied by B → (K,π)µ+µ− and Bs → µ+µ−

data. The right panel shows the same contours as the left panel, but focuses on the region near

the Standard-Model value. The color and styling is the same as in Fig. 12 (lower right).

by flipping the chirality of the quark current [189]. In order to combine information from
Bs → µ+µ− with the constraints on the Wilson coefficients C9 and C10 from B → K(π)µ+µ−

branching ratios presented above, we assume that only C10 is affected by new physics. Under
this assumption, the Bs → µ+µ− rate is proportional to |C10|2, so its inclusion reduces
constraint from a ring to a smaller, roughly elliptical, region. Taking the measured branching
ratio B(Bs → µ+µ−)exp = 2.8(+0.7

−0.6)× 10−9 from CMS and LHCb [190], we obtain the yellow
and orange shaded bands in Fig. 13. As shown in the left panel, at the 1σ level there are four
distinct allowed regions in the Re(CNP

9 )-Re(CNP
10 ) plane, which merge into two larger nearly

horizontal bands at 2σ. The lower-right orange contour is close to the Standard-Model value,
and we zoom in on this region in Fig. 13, right. The region allowed by B → K(π)µ+µ−

and Bs → µ+µ− branching ratios is compatible with the constraint from B → K∗µ+µ−

angular observables, but is in slight tension with the constraint from inclusive B → Xs`
+`−

decays. Because the Standard-Model Bs → µ+µ− total branching ratio is compatible with
experiment, including this information slightly decreases the tension between the Standard-
Model prediction and experimental measurements of B → (K, π)µµ branching ratios. The
compatibility with the Standard-Model hypothesis increases from p = 0.10 to p = 0.13, and
the significance of the tension decreases from 1.7σ to 1.5σ. Allowing for new physics in C9

and C10 yields a best fit with χ2
min/dof = 1.8/3, corresponding to p = 0.61, and values of

Re(CNP
9 ) and Re(CNP

10 ) that differ by 2.1σ from the Standard Model.

Because the constraints from B → π(K)µ+µ− branching ratios on the Re(CNP
9 )-Re(CNP

10 )
plane are limited by the experimental uncertainties, the widths of the corresponding bands
in Figs. 12 and 13 will be reduced with new measurements by LHCb from the recently
started LHC run and by the upcoming Belle II experiment. Therefore, these decays will
continue to squeeze the allowed region in the Re(CNP

9 )-Re(CNP
10 ) plane.
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VI. SUMMARY OF MAIN RESULTS

We now summarize our main results to help the reader digest the large quantity of
information presented in the previous two sections. We present them in the same order in
which they appeared above.

We begin with tests of heavy-quark and SU(3) symmetries. By and large, the results
given in Sec. III show marginal-to-excellent agreement with the symmetry limits, but the
sizable q2 dependence we observe is an obstacle to providing a simple rule of thumb.

Our findings for the Standard-Model observables for decays with a charged-lepton pair in
the final state, B → K(π)`+`− with ` = e, µ, τ are more interesting. Here, the most reliable
results are those for the wide q2 regions above and below the charmonium resonances. For
decays with a muon pair, we compare our results for the partially integrated branching frac-
tions with the latest experimental measurements from the LHCb experiment [45, 55]. For the
wide q2 bins below and above the charmonium resonances, we find that the Standard-Model
expectations for both ∆B(B → πµ+µ−) and ∆B(B → Kµ+µ−) are in slight tension with the
experimental measurements (see Fig. 5), with the Standard-Model values being 1–2σ higher.
The Standard-Model expectations for the ratio ∆B(B → πµ+µ−)/∆B(B → Kµ+µ−) are
compatible with experiment, however, within 1.1σ (see Fig. 8). We also provide Standard-
Model values for the flat terms and lepton-universality-violating ratios for all lepton final
states ` = e, µ, τ . We confirm the 2.6σ discrepancy observed for Rµe

K+ by LHCb [42]. Semilep-
tonic B decays with τ pairs in the final state have yet to be observed, so our results for the
associated observables are theoretical predictions that will be tested by experiment.

For decays with a neutrino pair in the final state, B → K(π)νν̄, we provide Standard-
Model predictions for the total branching fractions. We do not present partially integrated
branching fractions because there are not yet experimental measurements of these processes
to guide our choice of q2 intervals. Like B → K(π)`+`−, these processes involve a b →
d(s) FCNC transition, and thus probe some of the same underlying physics. The decay
rates for B → K(π)νν̄, however, depend on only a single operator in the Standard-Model
effective Hamiltonian. Hence, once measured, they will provide complementary information.
Moreover, the B → K(π)νν̄ decay rates do not receive contributions from uū, cc̄ resonances
or nonfactorizable terms, making the theoretical predictions particularly clean. Because the
current bounds on B(B → Kνν̄) from Babar [157] and Belle [158] are only about a factor
of ten larger than Standard-Model expectations, one may anticipate that this process will
be observed by the forthcoming Belle II experiment [57]. Once experimental analyses of the
B → K(π)νν̄ differential decay rates have settled on bin sizes, we can provide predictions
for the partially integrated branching fractions matched to the q2 bins employed.

We also predict the total branching ratio for the tree-level decay B → πτν. Although this
is not a FCNC process, the large τ -lepton mass makes this process sensitive to contributions
from charged Higgs or other scalar bosons. The ratio of the decay rate for B → πτν over
the decay rate for B → π`ν (` = e, µ) is of particular interest given the combined 3.9σ
deviation from the Standard Model for the analogous ratios for B → D`ν and B → D∗`ν
semileptonic decays [41]. We obtain

R(π) ≡ B(B → πτντ )

B(B → π`ν`)
= 0.641(17), (6.1)

where the error quoted includes statistical and systematic uncertainties. Because the CKM
element |Vub| cancels in the ratio, R(π) provides an especially clean test of the Standard
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Model independent of the tension between inclusive and exclusive determinations [4, 41,
136, 165, 191]. The Belle experiment recently presented a preliminary 2.4σ measurement
of the B0 → π−τ+ντ total branching fraction, setting an upper limit only about five times
greater than the Standard Model prediction, so Belle II may be able to measure not only the
total branching fraction but also the q2 spectrum for this process [57]. Again, we can provide
partially integrated branching ratios corresponding to the bins used in future experimental
analyses once they are needed.

The differential decay rates for B → π`+`−(νν̄) and B → K`+`−(νν̄) decay are pro-
portional to the combinations of CKM elements |VtdV ∗tb| and |VtsV ∗tb|, respectively. Thus
they enable determinations of |Vtd|, |Vts|, and their ratio that can be compared with the
current most precise results obtained from the oscillation frequencies of neutral Bd and Bs

mesons. Assuming the Standard Model, we combine the theoretical values for ∆B(B →
π`+`−), ∆B(B → K`+`−), and their ratio with the recent experimental measurements from
LHCb [45, 55] to obtain the CKM matrix elements

|Vtd| = 7.45(69)× 10−3, |Vts| = 35.7(1.5)× 10−3,

∣∣∣∣VtdVts
∣∣∣∣ = 0.201(20), (6.2)

where we take |Vtb| from CKM unitarity [167], and the errors include both experimental and
theoretical uncertainties. These results are compatible with the PDG values from neutral
B-meson oscillations [136], with a commensurate uncertainty for |Vtd|, and an error on |Vts|
that is almost two times smaller. Compared with the determinations |Vtd| = 7.2(+9

−8)× 10−3,
|Vts| = 32(4) × 10−3, and |Vtd/Vts| = 0.24(+5

−4) by LHCb [55] using the same experimental
inputs but older form factors, the uncertainties above are 1.2, 2.7, and 2.3 times smaller,
respectively. This illustrates the impact of using the precise hadronic form factors from
ab-initio lattice QCD [48, 62, 63]. Further, our predictions for B(B → πνν̄), B(B → Kνν̄),
and their ratio will facilitate new, independent determinations of |Vtd|, |Vts|, and their ratio
once these processes have been observed experimentally.

Finally, we also explore the constraints on possible new-physics contributions to the Wil-
son coefficients C9 and C10 implied by the LHCb data for the partially integrated wide-bin
B → K(π)µ+µ− branching ratios when combined with the new lattice-QCD form factors.
We find a 1.7σ tension between the Standard Model and the values for Re(C9) and Re(C10)
preferred by semileptonic B-meson decay data alone, as shown in Fig. 12. Including the con-
straint from Bs → µµ, for which reliable hadronic input from lattice QCD is also available,
shrinks the allowed region and also slightly decreases the significance of the tension with the
Standard Model. The region allowed by these theoretically clean decay modes is consistent
with the constraints obtained from B → K∗`` observables, and the widths of the bands
are comparable in size. The B → K∗ constraints, however, make use of additional theo-
retical assumptions, which are not needed in lattice-QCD calculations of B-meson leptonic
decays or semileptonic decays with a pseudoscalar meson in the final state. Hence, using the
Fermilab/MILC form factors from ab-initio QCD [48, 62, 63], we obtain theoretically clean
constraints on the Wilson coefficients with uncertainties similar to previous analyses.

VII. CONCLUSIONS AND OUTLOOK

Rare semileptonic B-meson decays provide a wealth of processes and observables with
which to test the Standard Model and search for new physics. Exploiting this wealth, how-
ever, requires that both the experimental measurements and the corresponding theoretical
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calculations are sufficiently precise and reliable. Recent progress in both areas has been
significant, in particular, on the form factors that parametrize the momentum-dependent
hadronic contributions to B-meson semileptonic decays with a pseudoscalar meson in the
final state. In this paper, we explore the phenomenological implications of new calculations
of the B → π [48, 63] and B → K [62] transition form factors by the Fermilab Lattice and
MILC Collaborations. With the new ab-initio QCD information on the hadronic matrix
elements, we are able to calculate the observables with fewer assumptions than previously
possible. Indeed, the comparison of our Standard-Model results for the B → K(π)µ+µ−

partial branching fractions with experimental measurements reveals that the theoretical un-
certainties are now commensurate with the experimental errors, especially in the high-q2

region. As a result, these decays are already providing theoretically clean and quantita-
tively meaningful tests of the Standard Model and constraints on new physics. Once the
rare decays B → K(π)νν̄ and B → πτν are observed, our predictions for these processes
will enable further Standard-Model tests, and, if deviations are seen, provide complementary
information on the underlying new physics.

Our work reveals 1–2σ deviations between the Standard Model and experiment for both
B → πµ+µ− and B → Kµ+µ− decays, where the theory values lie systematically above the
measurements for all four wide q2 bins outside the charmonium resonance region. Although
the combined tension is less than 2σ, at the current level of uncertainty, there is still ample
room for new physics. Sharpening this and other tests and potentially revealing evidence
for new physics will require improvements in both experiment and theory, both of which are
expected. On the experimental side, measurements will continue to improve at the currently
running LHCb experiment. Further, the soon-to-start Belle II experiment expects a great
increase in luminosity compared to the previous Belle experiment. It may therefore observe
heretofore unseen decays such as B → K(π)νν̄ and B → πτν, for which the Standard-Model
predictions are particularly clean. On the theoretical side, more precise B → K and B → π
form factors from lattice QCD are anticipated. A dominant uncertainty in the form factors
from Refs. [48, 62, 63] employed in this work, and for similar efforts using different light-
and b-quark actions [66, 143, 192], is the combined statistical plus chiral-extrapolation error.
Fortunately, three- and four-flavor lattice gauge-field ensembles with the average light-quark
mass (mu + md)/2 tuned to the physical value are becoming increasingly available [193–
196], the use of which will essentially eliminate this source of error. Further, the form-
factor uncertainties at q2 = 0 are quite large due to the extrapolation from the range of
simulated lattice momenta q2 & 16 GeV2 to the low-q2 region using the model-independent
z expansion. Reducing the form factor uncertainties at low-q2 is necessary in order to
make better use of experimental data at low-q2, and to sharpen comparisons of q2 spectra
between theory and experiment. Lattice-QCD ensembles with finer lattice spacings but
similar spatial volumes will enable simulations with larger pion and kaon momenta, thereby
shortening the extrapolation range and reducing the associated error. In particular, the form-
factor calculations of Refs. [48, 62, 63] will be repeated by the Fermilab Lattice and MILC
Collaborations on a new set of ensembles recently generated by the MILC Collaboration [196,
197] using the highly improved staggered quark action [198]. These four-flavor ensembles
include dynamical up, down, strange, and charm quarks; physical-mass light quarks; and
planned lattice spacings as small as approximately 0.03 fm.

We note that semileptonic B-meson decays with a vector meson in the final state, such
as B → K∗``, provide an even richer set of observables with which to test the Standard
Model, many of which are already measured experimentally. For example, for the analysis
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of the Wilson coefficients, the constraint from B → K∗µ+µ− angular observables in the
Re
(
CNP

9

)
-Re

(
CNP

10

)
plane is approximately perpendicular to that from B → π(K)µ+µ−

branching ratios and provides complementary information. The presence of an unstable
hadron in the final state, however, makes ab initio calculations of their form factors much
more complicated. In fact, finite-volume methods for properly including the width of an
unstable final state hadron in semileptonic B-meson decays are still being developed [72].
Once such methods are fully established, they will bring the hadronic uncertainties for
B → K∗µ+µ− observables under equally good theoretical control as for B → π(K)µ+µ−.
B-meson leptonic and semileptonic decays are already testing the Standard Model in

the quark-flavor sector, in some cases yielding tantalizing discrepancies at the 2–3σ level.
As discussed above, even more experimental and theoretical progress is anticipated. We
are therefore optimistic that the rare semileptonic B-meson decays studied in this work—
B → K(π)µ+µ−, B → K(π)νν̄, or B → πτν—may eventually reveal the presence of new
flavor-changing interactions or sources of CP -violation in the quark sector.
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Appendix A: Numerical results for B → K(π)`+`− observables

Here we tabulate the numerical values of B → K(π)`+`− observables in the Standard
Model integrated over different q2 intervals. We select the same ranges of momentum transfer
as the most recent experimental measurements from LHCb [45, 55].
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TABLE II. Standard-Model binned flat term F `H(q2
min, q

2
max) for B+ → π+`+`− decay. Errors

shown are from form factors and the quadrature sum of all other contributions, respectively.

[q2
min, q

2
max] (GeV2) 108 F eH 103 FµH 101 F τH

[0.10, 2.00] 242.0(2.2,0.6) 96.1(0.8,0.2)

[2.00, 4.00] 50.6(1.1,0.1) 21.5(0.5,0.1)

[4.00, 6.00] 28.6(1.0,0.1) 12.2(0.4,0.0)

[6.00, 8.00] 19.9(0.9,0.1) 8.5(0.4,0.0)

[15.00, 17.00] 10.2(0.6,0.3) 4.3(0.3,0.1) 8.5(0.1,0.2)

[17.00, 19.00] 10.1(0.6,0.3) 4.3(0.3,0.1) 8.0(0.1,0.2)

[19.00, 22.00] 10.9(0.6,0.3) 4.7(0.3,0.1) 7.8(0.1,0.2)

[1.00, 6.00] 52.7(1.3,0.2) 22.3(0.5,0.1)

[15.00, 22.00] 10.4(0.6,0.3) 4.4(0.3,0.1) 8.0(0.1,0.2)

[4m2
` , (MB+ −Mπ+)2] 55.6(3.6,1.8) 17.1(1.0,0.5) 8.2(0.1,0.2)

TABLE III. Standard-Model binned flat term F `H(q2
min, q

2
max) for B0 → π0`+`− decay. Errors

shown are from form factors and the quadrature sum of all other contributions, respectively.

[q2
min, q

2
max] (GeV2) 108 F eH 103 FµH 101 F τH

[0.10, 2.00] 249.6(1.8,0.8) 98.9(0.7,0.3)

[2.00, 4.00] 51.0(1.0,0.1) 21.7(0.4,0.1)

[4.00, 6.00] 28.7(0.9,0.1) 12.2(0.4,0.0)

[6.00, 8.00] 19.9(0.8,0.1) 8.5(0.4,0.0)

[15.00, 17.00] 10.1(0.6,0.3) 4.3(0.3,0.1) 8.5(0.1,0.2)

[17.00, 19.00] 10.0(0.6,0.3) 4.3(0.3,0.1) 8.0(0.1,0.2)

[19.00, 22.00] 10.8(0.6,0.3) 4.6(0.3,0.1) 7.7(0.1,0.2)

[1.00, 6.00] 53.1(1.2,0.2) 22.5(0.5,0.1)

[15.00, 22.00] 10.3(0.6,0.3) 4.4(0.3,0.1) 8.0(0.1,0.2)

[4m2
` , (MB0 −Mπ0)2] 58.1(3.9,2.0) 17.4(1.0,0.6) 8.2(0.1,0.2)

TABLE IV. Standard-Model partially integrated branching fractions for B+ → π+µ+µ− decay.

Results for B+ → π+e+e− are nearly identical. Errors shown are from the CKM elements, form

factors, and the quadrature sum of all other contributions, respectively. Results are from Ref. [63],

but additional digits are presented and the scale error has been included in the “other” error quoted

here, to facilitate use with the correlation matrices in Tables VII and VIII.

[q2
min, q

2
max] (GeV2) 109 ∆B(B+ → π+µ+µ−)

[1.00, 6.00] 4.781(0.286,0.541,0.165)

[15.00, 22.00] 5.046(0.303,0.338,0.162)
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TABLE V. Standard-Model partially integrated branching fractions for B+ → K+`+`− decay.

Results for B+ → K+e+e− are nearly the same as for B+ → K+µ+µ−. Errors shown are from

the CKM elements, form factors, and the quadrature sum of all other contributions, respectively.

Results for the electron and muon final states are indistinguishable at the current level of precision.

At low q2, we present two wide bins [1 GeV2, 6 GeV2] and [1.1 GeV2, 6 GeV2] to enable comparison

with the LHCb measurements in Refs. [55] and [45], respectively.

[q2
min, q

2
max] (GeV2) 109 ∆B(B+ → K+µ+µ−) 109 ∆B(B+ → K+τ+τ−)

[0.10, 2.00] 68.03(3.70,13.72,1.55)

[2.00, 4.00] 71.72(3.91,12.44,1.63)

[4.00, 6.00] 70.59(3.84,10.36,1.54)

[6.00, 8.00] 68.94(3.75,8.47,1.46)

[15.00, 17.00] 46.15(2.51,2.48,1.62) 39.92(2.17,2.22,1.40)

[17.00, 19.00] 34.91(1.90,1.68,1.13) 39.31(2.14,1.81,1.33)

[19.00, 22.00] 25.73(1.40,1.17,0.86) 43.23(2.35,1.80,1.57)

[1.00, 6.00] 178.35(9.71,29.80,4.00)

[1.10, 6.00] 174.75(9.52,29.07,3.92)

[15.00, 22.00] 106.79(5.82,5.21,3.49) 122.46(6.67,5.63,4.17)

[4m2
` , (MB+ −MK+)2] 605.33(32.96,65.14,17.03) 160.36(8.73,7.87,5.46)

TABLE VI. Standard-Model partially integrated branching fractions for B0 → K0`+`− decay.

Results for B0 → K0e+e− are nearly the same as for B0 → K0µ+µ−. Errors shown are from

the CKM elements, form factors, and the quadrature sum of all other contributions, respectively.

Results for the electron and muon final states are indistinguishable at the current level of precision.

At low q2, we present two wide bins [1 GeV2, 6 GeV2] and [1.1 GeV2, 6 GeV2] to enable comparison

with the LHCb measurements in Refs. [55] and [45], respectively.

[q2
min, q

2
max] (GeV2) 109 ∆B(B0 → K0µ+µ−) 109 ∆B(B0 → K0τ+τ−)

[0.10, 2.00] 63.38(3.45,12.70,1.51)

[2.00, 4.00] 65.88(3.59,11.35,1.46)

[4.00, 6.00] 64.94(3.54,9.47,1.37)

[6.00, 8.00] 63.60(3.46,7.76,1.32)

[15.00, 17.00] 42.76(2.33,2.30,1.51) 36.96(2.01,2.04,1.30)

[17.00, 19.00] 32.25(1.76,1.55,1.04) 36.34(1.98,1.67,1.23)

[19.00, 22.00] 23.53(1.28,1.07,0.79) 39.74(2.16,1.65,1.44)

[1.00, 6.00] 164.09(8.94,27.23,3.59)

[1.10, 6.00] 160.75(8.75,26.56,3.51)

[15.00, 22.00] 98.54(5.37,4.80,3.22) 113.05(6.16,5.19,3.85)

[4m2
` , (MB0 −MK0)2] 558.80(30.43,59.72,15.73) 147.45(8.03,7.22,5.02)
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TABLE VII. Correlations between the form-factor contributions to the errors in the Standard-

Model partially integrated branching fractions for B+ → π+`+`− decay and B+ → K+`+`−

decay. These should be combined with the central values and form-factor errors in the bottom

panels of Table IV from Ref. [63] and Table V above. The results for the neutral decay modes

B0 → π0(K0)`+`− should be taken as 100% correlated with those for the charged decays.

[q2
min, q

2
max] (GeV2) [1, 6]π+ [15, 22]π+ [1, 6]K+ [1.1, 6]K+ [15, 22]K+

[1, 6]π+ 1.0000 0.6071 0.0426 0.0428 0.1190

[15, 22]π+ 0.6071 1.0000 0.1020 0.1023 0.2631

[1, 6]K+ 0.0426 0.1020 1.0000 1.0000 0.5099

[1.1, 6]K+ 0.0428 0.1023 1.0000 1.0000 0.5112

[15, 22]K+ 0.1190 0.2631 0.5099 0.5112 1.0000

TABLE VIII. Correlations between the “other” contributions to the errors in the Standard-Model

partially integrated branching fractions for B+ → π+`+`− decay and B+ → K+`+`− decay. These

should be combined with the central values and “other” errors in the bottom panels of Table IV

from Ref. [63] and Table V above. The correlation between the combinations of CKM elements

that enter the B+ → π+`+`− and B+ → K+`+`− decay rates (|VtdV ∗tb| and |VtsV ∗tb|) is 0.878. The

results for the neutral decay modes B0 → π0(K0)`+`− should be taken as 100% correlated with

those for the charged decays.

[q2
min, q

2
max] (GeV2) [1, 6]π+ [15, 22]π+ [1, 6]K+ [1.1, 6]K+ [15, 22]K+

[1, 6]π+ 1.0000 0.4504 0.9730 0.9728 0.4860

[15, 22]π+ 0.4504 1.0000 0.4212 0.4207 0.6098

[1, 6]K+ 0.9730 0.4212 1.0000 1.0000 0.4510

[1.1, 6]K+ 0.9728 0.4207 1.0000 1.0000 0.4504

[15, 22]K+ 0.4860 0.6098 0.4510 0.4504 1.0000

TABLE IX. Standard-Model binned flat term F `H(q2
min, q

2
max) for B+ → K+`+`− decay. Errors

shown are from form factors and the quadrature sum of all other contributions, respectively.

[q2
min, q

2
max] (GeV2) 108 F eH 103 FµH 101 F τH

[0.10, 2.00] 248.0(2.2,0.5) 98.3(0.8,0.2)

[2.00, 4.00] 55.7(0.7,0.0) 23.6(0.3,0.0)

[4.00, 6.00] 33.3(0.6,0.0) 14.2(0.2,0.0)

[6.00, 8.00] 24.3(0.5,0.0) 10.3(0.2,0.0)

[15.00, 17.00] 14.0(0.3,0.4) 6.0(0.1,0.2) 8.9(0.0,0.3)

[17.00, 19.00] 14.7(0.3,0.5) 6.3(0.1,0.2) 8.6(0.0,0.2)

[19.00, 22.00] 19.7(0.4,0.7) 8.4(0.2,0.3) 8.7(0.0,0.2)

[1.00, 6.00] 57.8(1.1,0.1) 24.5(0.5,0.0)

[15.00, 22.00] 15.6(0.3,0.5) 6.6(0.1,0.2) 8.7(0.0,0.2)

[4m2
` , (MB+ −MK+)2] 71.5(6.1,2.1) 22.2(1.7,0.7) 8.9(0.0,0.3)
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TABLE X. Standard-Model binned flat term F `H(q2
min, q

2
max) for B0 → K0`+`− decay. Errors shown

are from the form factors and the quadrature sum of all other contributions, respectively.

[q2
min, q

2
max] (GeV2) 108 F eH 103 FµH 101 F τH

[0.10, 2.00] 258.6(2.4,0.4) 101.8(0.9,0.2)

[2.00, 4.00] 55.8(0.7,0.0) 23.6(0.3,0.0)

[4.00, 6.00] 33.3(0.6,0.0) 14.2(0.2,0.0)

[6.00, 8.00] 24.3(0.5,0.0) 10.3(0.2,0.0)

[15.00, 17.00] 14.0(0.3,0.4) 6.0(0.1,0.2) 8.9(0.0,0.3)

[17.00, 19.00] 14.7(0.3,0.5) 6.3(0.1,0.2) 8.6(0.0,0.2)

[19.00, 22.00] 19.8(0.4,0.7) 8.4(0.2,0.3) 8.7(0.0,0.2)

[1.00, 6.00] 58.0(1.1,0.1) 24.5(0.5,0.0)

[15.00, 22.00] 15.6(0.3,0.5) 6.7(0.1,0.2) 8.7(0.0,0.2)

[4m2
` , (MB0 −MK0)2] 73.5(6.4,2.2) 22.4(1.7,0.7) 8.9(0.0,0.3)

TABLE XI. Standard-Model lepton-universality-violating ratios for B → π`+`− decay. Results are

shown for both the charged (Rπ+ , left) and neutral (Rπ0 , right) modes. Errors shown are from the

form factors and the quadrature sum of all other contributions, respectively.

[q2
min, q

2
max] (GeV2) 103 (Rµe

π+ − 1) Rµτ
π+ 103 (Rµe

π0 − 1) Rµτ
π0

[0.10, 2.00] −5.81(0.62 0.07) −4.70(0.50 0.02)

[2.00, 4.00] −1.66(0.46 0.06) −1.49(0.41 0.05)

[4.00, 6.00] −1.38(0.42 0.05) −1.33(0.40 0.04)

[6.00, 8.00] −1.14(0.39 0.04) −1.13(0.39 0.04)

[15.00, 17.00] 0.14(0.64 0.01) 0.52(0.08 0.00) 0.11(0.63 0.00) 0.54(0.08 0.00)

[17.00, 19.00] 0.58(0.82 0.02) 0.21(0.06 0.00) 0.54(0.82 0.02) 0.22(0.06 0.00)

[19.00, 22.00] 1.38(1.21 0.05) −0.05(0.04 0.01) 1.33(1.21 0.05) −0.04(0.04 0.01)

[1.00, 6.00] −1.64(0.45 0.06) −1.45(0.40 0.05)

[15.00, 22.00] 0.72(0.90 0.02) 0.18(0.06 0.01) 0.68(0.90 0.02) 0.19(0.06 0.01)

TABLE XII. Standard-Model lepton-universality-violating ratios for B → K`+`− decay. Results

are shown for both the charged (RK+ , left) and neutral (RK0 , right) modes. Errors shown are

from the form factors and the quadrature sum of all other contributions, respectively.

[q2
min, q

2
max] (GeV2) 103 (Rµe

K+ − 1) Rµτ
K+ 103 (Rµe

K0 − 1) Rµτ
K0

[0.10, 2.00] −3.30(0.20 0.02) −4.27(0.22 0.03)

[2.00, 4.00] 0.50(0.38 0.02) 0.44(0.39 0.02)

[4.00, 6.00] 0.62(0.59 0.02) 0.59(0.59 0.02)

[6.00, 8.00] 0.72(0.86 0.02) 0.70(0.85 0.02)

[15.00, 17.00] 1.79(3.20 0.06) 0.16(0.02 0.01) 1.78(3.20 0.06) 0.16(0.02 0.01)

[17.00, 19.00] 2.55(4.23 0.09) −0.11(0.02 0.01) 2.56(4.23 0.09) −0.11(0.02 0.01)

[19.00, 22.00] 5.08(5.95 0.19) −0.40(0.01 0.01) 5.13(5.94 0.19) −0.41(0.01 0.01)

[1.00, 6.00] 0.50(0.43 0.02) 0.43(0.44 0.02)

[15.00, 22.00] 2.83(4.20 0.10) −0.13(0.02 0.01) 2.84(4.19 0.10) −0.13(0.02 0.01)
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TABLE XIII. Standard-Model ratio of partially integrated branching ratios ∆B(B →
π`+`−)/∆B(B → K`+`−). Errors shown are from the CKM elements, form factors, and the

quadrature sum of all other contributions, respectively.

[q2
min, q

2
max] (GeV2) 103 ∆B(B+→π+µ+µ−)

∆B(B+→K+µ+µ−)
103 ∆B(B0→π0µ+µ−)

∆B(B0→K0µ+µ−)

[0.10, 2.00] 26.63(0.76,6.31,0.42) 13.07(0.37,3.12,0.20)

[2.0, 4.0] 26.73(0.76,5.48,0.37) 13.04(0.37,2.68,0.17)

[4.0, 6.0] 27.01(0.77,4.74,0.35) 13.20(0.37,2.32,0.16)

[6.0, 8.0] 27.47(0.78,4.11,0.34) 13.46(0.38,2.02,0.16)

[15.0, 17.0] 36.64(1.04,2.95,1.05) 18.18(0.52,1.47,0.52)

[17.0, 19.0] 43.37(1.23,3.15,1.24) 21.63(0.61,1.58,0.62)

[19.0, 22.0] 71.37(2.02,4.69,2.03) 36.11(1.02,2.38,1.03)

[1.0, 6.0] 26.82(0.76,5.30,0.37) 13.09(0.37,2.60,0.17)

[15.0, 22.0] 47.21(1.34,3.38,1.34) 23.59(0.67,1.70,0.67)

TABLE XIV. Correlations between the form-factor contributions to the errors in the Standard-

Model ratio of partially integrated branching ratios ∆B(B → π`+`−)/∆B(B → K`+`−). These

should be combined with the central values and form-factor errors in the bottom panel of Table XIII

above. The results for the ratio of neutral decay modes should be taken as 100% correlated with

those for the charged decays.

[q2
min, q

2
max] (GeV2) [1, 6] [15, 22]

[1, 6] 1.0000 0.4905

[15, 22] 0.4905 1.0000

TABLE XV. Correlations between the “other” contributions to the errors in the Standard-Model

ratio of partially integrated branching ratios ∆B(B → π`+`−)/∆B(B → K`+`−). These should

be combined with the central values and “other” errors in the bottom panel of Table XIII above.

The CKM errors are 100% correlated between the two bins. The results for the ratio of neutral

decay modes should be taken as 100% correlated with those for the charged decays.

[q2
min, q

2
max] (GeV2) [1, 6] [15, 22]

[1, 6] 1.0000 0.0917

[15, 22] 0.0917 1.0000
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Appendix B: B → K(π)`+`− differential decay rates

Here we summarize the theoretical expressions for the B → K(π)`+`− differential decay
rates in the Standard Model, including the complete dependence on the charged-lepton mass
m`. We encourage the users of these formulae to cite explicitly the original papers [73, 76–
78, 90, 91, 98, 99, 199–204], in which the results collected below were first derived. In
Appendix B 1 we present a complete set of expressions needed to describe the high-q2 region.
The discussion of the running of the tensor form factor fT surrounding Eq. (B9) has not
been discussed in reference to exclusive b → s`` decays elsewhere in the literature. The
additional nonfactorizable terms of the type φB ? T ? ΦP required at low-q2 are collected in
Appendix B 2. For the ` = τ case, the lower boundary of kinematic range, q2

min = 4m2
τ , is

larger than the ψ′ mass implying that the high-q2 OPE is sufficient to completely describe
this mode. Relations between the form factors fT and f+ valid at low and high-q2 are
presented in Appendix B 3. A discussion of scale and power-correction uncertainties is given
in Appendix B 4.

1. Main formulas

The double differential B → P`` (P = K, π ; ` = e, µ, τ) decay rate is given by (see, for
instance, Ref. [78])

d2Γ

dq2 d cos θ
= a+ b cos θ + c cos2 θ, (B1)

a = Γ0λ
1/2
0 β`

[
λ0

4
|G|2 + |C10|2

(
λ0

4
β2
l |f+|2 +

m2
`

q2
(M2

B −M2
P )2|f0|2

)]
(B2)

b = 0, (B3)

c = −1

4
Γ0λ

3/2
0 β3

`

(
|G|2 + |C10f+|2

)
, (B4)

G = Ceff
9 f+ +

2mMS
b (µ)

MB +MP

Ceff
7 fT , (B5)

Γ0 = CP
G2
Fα

2
e

∣∣VtbV ∗tq∣∣2
512π5M3

B

, (B6)

λ0 = 4M2
B|pP |2 = M4

B +M4
P + q4 − 2(M2

BM
2
P +M2

Bq
2 +M2

P q
2), (B7)

β` =

√
1− 4m2

`

q2
, (B8)

where θ is the angle between the negative lepton direction and the B incoming direction in
the dilepton center of mass frame, and |pP | =

√
E2
P −M2

P is the three-momentum of the
final-state meson in the B-meson rest frame. The isospin factor in Eq. (B6) CP = 1 for
decays to kaons and charged pions (π±), while CP = 1/2 for decays to neutral pions (π0).
When m` = 0, c = −a.

The form factor f+ is scale independent while the scale dependence of fT is simply
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controlled by the anomalous dimension of the tensor current:

fT (µ2) = fT (µ1)

(
αs(µ2)

αs(µ1)

)−γ(0)T /2β0

, (B9)

where β0 = (11Nc − 2Nf )/3 = 23/3 (with Nf = 5 active flavors) is the leading order QCD
beta function, and the leading order anomalous dimension of the tensor current is given by
the anomalous dimension of the operator Q7 minus the contribution of the explicit bottom

mass that appears in Q7, γ
(0)
T = γ

(0)
7 − γ(0)

m = 8CF − 6CF = 2CF = 8/3 (see, for instance,
Ref. [205]).

We obtain the expressions for the effective Wilson coefficients Ceff
7 and Ceff

9 starting from
Eq. (47) of Ref. [201] where the notation C̃eff

7,9 is used; we also use results from Refs. [90,
99, 204]. We have made a number of changes in notation, however, and also removed some
terms, as described below. Reference [201] uses the notation ξi = VibV

∗
id with i = u, c, t, which

can be generalized to replace d by q so that the final state quark can be either d or s. In
either case, third-column and qth-column unitarity implies ξu + ξc + ξt = 0, or equivalently,

ξc/ξt = −1 − ξu/ξt = −1 − λ
(q)
u , defining λ

(q)
u = V ∗uqVub/(V

∗
tqVtb). Also, the extra factor

αs/(4π) in the definition of the operators Q7,9 has to be taken into account by replacing
4π/αsC7,9 → C7,9 in Eq. (48) of Ref. [201]. Our notation simplifies that of Ref. [201] by not
being explicit about the µ dependence of the Ci. We set ω7,9 → 0 to remove bremsstrahlung
contributions. We absorb the terms proportional to ln(mb/µ) in Eq. (48) of Ref. [201] into
the definitions of the functions h(m, q2) that we adopt here in Eqs. (B12)-(B14), so that

they are scale dependent. We use the exact relation F
(7)
2,c = −6F

(7)
1,c to simplify Eq. (B10).

Finally, we keep only the first term for A8 in Eq. (48) of Ref [201] since the other terms are
higher order, and take A8 = C8 because of different operator normalization.

With the above choices, our expressions for Ceff
7 and Ceff

9 become

Ceff
7 = C7 −

1

3

[
C3 +

4

3
C4 + 20C5 +

80

3
C6

]
− αs

4π

[
(C1 − 6C2)F

(7)
1,c + C8F

(7)
8

]
− αs

4π
λ(q)
u (C1 − 6C2)

(
F

(7)
1,c − F (7)

1,u

)
, (B10)

Ceff
9 = C9 +

4

3
C3 +

64

9
C5 +

64

27
C6 + h(0, q2)

(
−1

2
C3 −

2

3
C4 − 8C5 −

32

3
C6

)
+ h(mb, q

2)

(
−7

2
C3 −

2

3
C4 − 38C5 −

32

3
C6

)
+ h(mc, q

2)

(
4

3
C1 + C2 + 6C3 + 60C5

)
+ λ(q)

u

[
h(mc, q

2)− h(0, q2)
](4

3
C1 + C2

)
− αs

4π

[
C1F

(9)
1,c + C2F

(9)
2,c + C8F

(9)
8

]
− αs

4π
λ(q)
u

[
C1

(
F

(9)
1,c − F (9)

1,u

)
+ C2

(
F

(9)
2,c − F (9)

2,u

)]
. (B11)

Numerically, the CKM factor |λ(s)
u | ' 0.02 � |λ(d)

u | ' 0.4; thus terms proportional to λ
(q)
u

are significant only for the B → π mode. Reference [204] provides a Mathematica notebook

for the functions F
(7,9)
1,2 in the charm-pole-mass scheme. Our expressions for Ceff

7 and Ceff
9 are

similar to Eqs. (2.6) and (2.7) in Ref. [90]; however, we have included terms proportional to
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λ
(q)
u for Ceff

7 , and for Ceff
9 we have not expanded h(mc, q

2) and F
(7,9)
i,c in powers of m2

c/q
2 as

in Eq. (2.7) of Ref. [90].

The function h(mq, q
2) is given in Eq. (11) of Ref. [99]. The function h(mq, q

2) for
mq = 0,mb is also given explicitly in Eqs. (3.11) and (3.12) of Ref. [76]. The functions

F
(7,9)
8 , B0, and C0 are given in Eqs. (B.1)–(B.3), and (29) of Ref. [99]. The functions F

(7,9)
1,u ,

F
(7,9)
2,u are given in Eqs. (22)–(31) of Ref. [202] but with an extra minus sign compared with

the convention adopted here and in Refs. [200, 201, 204]). For the convenience of the reader,
we present the explicit expressions for all required functions here:

h(mc, q
2) =

4

9

(
ln
µ2

m2
c

+
2

3
+ z

)
− 4

9
(2 + z)

√
|z − 1|

{
arctan 1√

z−1
z = 4m2

c

q2
> 1

ln 1+
√

1−z√
z
− iπ

2
z = 4m2

c

q2
≤ 1

, (B12)

h(0, q2) =
8

27
+

4

9

(
ln
µ2

q2
+ i π

)
, (B13)

h(mb, q
2) =

4

9

(
ln
µ2

m2
b

+
2

3
+ z

)
− 4

9
(2 + z)

√
z − 1 arctan

1√
z − 1

, z =
4m2

b

q2
, (B14)

F
(7)
8 = − 32

9
ln

µ

mb

− 8

9

ŝ

1− ŝ ln ŝ− 8

9
iπ − 4

9

11− 16ŝ+ 8ŝ2

(1− ŝ)2

+
4

9

1

(1− ŝ)3

[
(9ŝ− 5ŝ2 + 2ŝ3)B0(ŝ)− (4 + 2ŝ)C0(ŝ)

]
, (B15)

F
(9)
8 =

16

9

1

1− ŝ ln ŝ+
8

9

5− 2ŝ

(1− ŝ)2
− 8

9

4− ŝ
(1− ŝ)3

[(1 + ŝ)B0(ŝ)− 2C0(ŝ)] , (B16)

B0(ŝ) = − 2
√

4/ŝ− 1 arctan
1√

4/ŝ− 1
, (B17)

C0(ŝ) =

∫ 1

0

dx
1

x (1− ŝ) + 1
ln

x2

1− x (1− x) ŝ
, (B18)

F
(7)
1,u = F

(7)
1,c |mc→0 = −A(ŝ), (B19)

F
(7)
2,u = F

(7)
2,c |mc→0 = −6F

(7)
1,c |mc→0 = 6A(ŝ), (B20)

F
(9)
1,u = F

(9)
1,c |mc→0 = −B(ŝ)− 4C(ŝ), (B21)

F
(9)
2,u = F

(9)
2,c |mc→0 = −3C(ŝ) + 6B(ŝ), (B22)

A(ŝ) = − 104

243
ln(

m2
b

µ2
) +

4ŝ

27(1− ŝ)
[
Li2(ŝ) + ln(ŝ) ln(1− ŝ)

]
+

1

729(1− ŝ)2

[
6ŝ
(

29− 47ŝ
)

ln(ŝ) + 785− 1600ŝ+ 833ŝ2 + 6πi
(

20− 49ŝ+ 47ŝ2
)]

− 2

243(1− ŝ)3

[
2
√
z − 1

(
− 4 + 9ŝ− 15ŝ2 + 4ŝ3

)
arccot(

√
z − 1) + 9ŝ3 ln2(ŝ)

+ 18πiŝ
(

1− 2ŝ
)

ln(ŝ)
]

+
2ŝ

243(1− ŝ)4

[
36 arccot2(

√
z − 1) + π2

(
− 4 + 9ŝ− 9ŝ2 + 3ŝ3

)]
, (B23)
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B(ŝ) =
8

243ŝ

[
(4− 34ŝ− 17πiŝ) ln(

m2
b

µ2
) + 8ŝ ln2(

m2
b

µ2
) + 17ŝ ln(ŝ) ln(

m2
b

µ2
)
]

+
(2 + ŝ)

√
z − 1

729ŝ

[
− 48 ln(

m2
b

µ2
) arccot(

√
z − 1)− 18π ln(z − 1) + 3i ln2(z − 1)

− 24iLi2(−x2/x1)− 5π2i+ 6i
(
− 9 ln2(x1) + ln2(x2)− 2 ln2(x4)

+ 6 ln(x1) ln(x2)− 4 ln(x1) ln(x3) + 8 ln(x1) ln(x4)
)

− 12π
(

2 ln(x1) + ln(x3) + ln(x4)
)]

− 2

243ŝ(1− ŝ)
[
4ŝ
(
− 8 + 17ŝ

)(
Li2(ŝ) + ln(ŝ) ln(1− ŝ)

)
+ 3
(

2 + ŝ
)(

3− ŝ
)

ln2(x2/x1) + 12π
(
− 6− ŝ+ ŝ2

)
arccot(

√
z − 1)

]
+

2

2187ŝ(1− ŝ)2

[
− 18ŝ

(
120− 211ŝ+ 73ŝ2

)
ln(ŝ)

− 288− 8ŝ+ 934ŝ2 − 692ŝ3 + 18πiŝ
(

82− 173ŝ+ 73ŝ2
)]

− 4

243ŝ(1− ŝ)3

[
− 2
√
z − 1

(
4− 3ŝ− 18ŝ2 + 16ŝ3 − 5ŝ4

)
arccot(

√
z − 1)

− 9ŝ3 ln2(ŝ) + 2πiŝ
(

8− 33ŝ+ 51ŝ2 − 17ŝ3
)

ln(ŝ)
]

+
2

729ŝ(1− ŝ)4

[
72
(

3− 8ŝ+ 2ŝ2
)

arccot2(
√
z − 1)

− π2
(

54− 53ŝ− 286ŝ2 + 612ŝ3 − 446ŝ4 + 113ŝ5
)]
, (B24)

C(ŝ) = − 16

81
ln(ŝ

m2
b

µ2
) +

428

243
− 64

27
ζ(3) +

16

81
πi, (B25)

where ŝ = q2/m2
b , x1 = (1 + i

√
z − 1)/2, x2 = (1 − i

√
z − 1)/2, x3 = (1 + i/

√
z − 1)/2,

x4 = (1 − i/
√
z − 1)/2 and z = 4/ŝ. Note that our functions F

(9)
i follow the conventions

used in Ref. [204]. All charm- and bottom-quark masses that appear in these formulae are
in the pole scheme, with the exception of the explicit instance of the bottom MS mass in
Eq. (B5).

2. Additional nonfactorizable contributions required at low q2

The additional contributions of the form φB ? T ? φP that arise in the SCET expansion
at low q2 have been calculated in the m` = 0 limit in Ref. [99]. Some of these terms are
truly nonfactorizable effects while others appear when fT is expressed in terms of f+ [see
Eq. (B48) below]; the latter have to be removed because, in this work, we use the tensor
form factor fT computed directly from lattice QCD.

Following the notation of Ref. [100], all of these terms are included in the quantity τP
defined in Eq. (B.1) of that work. Compared to that work,2 we set the terms C

(0,f,nf)
P and

2 Note that in Eq. (B.2) of Ref. [100] there is a typo in the definition of C
(f)
P and its overall sign has to be

reversed.
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T
(f)
P,± to zero in our formulae (where the superscripts “f” and “nf” denote factorizable and

nonfactorizable, respectively). Some of these terms correspond to contributions that we
have already included in Ceff

7,9. Others appear in the SCET expansion of fT , which we do not
use here because we have the tensor form factor from lattice QCD, or in the perturbative
expansion of the MS b-quark mass in terms of the potential subtracted one, which is not
relevant because we adopt the MS scheme.

The remaining contributions T
(0,nf)
P,± are genuine nonfactorizable corrections. From the

expression for FV = G/f+ given in Eq. (3.2) of Ref. [100], we see that these terms all can
be included in a shift in the effective coefficient Ceff

9 :

∆Ceff
9 =

2mb

MB

∆τP
f+

, (B26)

∆τP =
π2

Nc

fBfP
MB

∑
±

∫
dω

ω
ΦB,±(ω)

∫ 1

0

duΦP (u)
[
T

(0)
P,± + α̃sCF T

(nf)
P,±

]
. (B27)

The functions T
(0,nf)
P,± = −T (0,nf)

‖,± are given in Eqs. (17) and (18), (25) and (26), and (28)–(32)

of Ref. [99] and read

T
(0)
P,+ = 0, (B28)

T
(0)
P,− = eq

MBω

MBω − q2 − iε
4MB

mb

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)
, (B29)

T
(nf)
P,+ = − MB

mb

[
eut‖(u,mc) (−C1/6 + C2 + 6C6)

+ ed t‖(u,mb) (C3 − C4/6 + 16C5 + 10C6/3),

+ ed t‖(u, 0) (C3 − C4/6 + 16C5 − 8C6/3)
]

(B30)

t‖(u,mq) =
2MB

ūE
I1(mq) +

ūM2
B + uq2

ū2E2

(
B0(ūM2

B + uq2,mq)−B0(q2,mq)
)
, (B31)

E =
M2

B +M2
P − q2

2MB

, (B32)

I1(mq) = 1 +
2m2

q

ū(M2
B − q2)

[
L1(x+) + L1(x−)− L1(y+)− L1(y−)

]
, (B33)

L1(x) = ln
x− 1

x
ln(1− x)− π2

6
+ Li2

(
x

x− 1

)
, (B34)

x± =
1

2
±
(

1

4
− m2

q

ūM2
B + uq2

)1/2

, (B35)

y± =
1

2
±
(

1

4
− m2

q

q2

)1/2

, (B36)

B0(q2,mq) = − 2
√

4m2
q/q

2 − 1 arctan
1√

4m2
q/q

2 − 1
, (B37)

T
(nf)
P,− = − eq

MBω

MBω − q2 − iε

[
8C eff

8

ū+ uq2/M2
B
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+
6MB

mb

(
h(mc, ūM

2
B + uq2) (−C1/6 + C2 + C4 + 10C6)

+ h(mb, ūM
2
B + uq2) (C3 + 5C4/6 + 16C5 + 22C6/3)

+ h(0, ūM2
B + uq2) (C3 + 17C4/6 + 16C5 + 82C6/3)

− 8

27
(−15C4/2 + 12C5 − 32C6)

)]
, (B38)

Ceff
8 = C8 + C3 −

1

6
C4 + 20C5 −

10

3
C6, (B39)

where α̃s = αs/(4π), ū = 1− u, h(mq, q
2) is defined in Eq. (B12), and eq, which appears in

Eq. (B29), is the charge of the spectator quark (i.e., eq = −1/3 for neutral B and eq = 2/3
for B±). The correct imaginary parts are obtained by replacing m2

q → m2
q − iε. Note that

in Ref. [99] the functions repeated above are given in terms of barred coefficients Ci that
are simple linear combinations of the coefficients Ci (explicit expressions that relate the two
sets of coefficients are given in Appendix A of Ref. [99]). The nonfactorizable contribution
∆τP in Eq. (B27) depends upon the light-cone distribution amplitudes (LCDA) of the kaon,
ΦK(u), of the pion, Φπ(u), and of the B meson, ΦB,±(ω). It is customary to expand the kaon
and pion LCDAs in terms of Gegenbauer polynomials and keep only the first few terms [206]
(see Eqs. (48)–(54) in Ref. [99]):

ΦK(u) = 6u(1− u)
[
1 + aK1 C

(3/2)
1 (2u− 1) + aK2 C

(3/2)
2 (2u− 1) + · · ·

]
, (B40)

Φπ(u) = 6u(1− u)
[
1 + aπ2 C

(3/2)
2 (2u− 1) + aπ4 C

(3/2)
4 (2u− 1) + · · ·

]
. (B41)

Note that aπ1 vanishes due to G-parity. The u dependence of ΦP (u) is needed because the

convolutions involve nontrivial functions of u. The first few coefficients aπ,Ki have been
computed in lattice QCD [206–209]. The B-meson LCDAs are known less precisely, but
enter only through the first inverse moments:

λ−1
B,+ =

∫ ∞
0

dω
ΦB,+(ω)

ω
, (B42)

λ−1
B,−(q2) =

∫ ∞
0

dω
ΦB,−(ω)

ω − q2/MB − iε
. (B43)

Following Ref. [99], we model ΦB,+ and ΦB,− as

ΦB,+(ω) =
ω

ω2
0

e−ω/ω0 , (B44)

ΦB,−(ω) =
1

ω0

e−ω/ω0 . (B45)

The value of ω0 can be fixed using λB,+, giving

ω0 = λB,+, (B46)

λ−1
B,−(q2) =

e−q
2/(MBλB,+)

λB,+

[
−Ei

(
q2

MB

λB,+

)
+ i π

]
. (B47)
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3. Form-factor relations

We now present details on the relations between the form factors fT and f+, tested in
Sec. III B. At low-q2 SCET gives [98]

MB

MB +MP

fT = f+

[
1 +

αs
4π
CF

(
ln
m2
b

µ2
+ 2L

)]
− π

Nc

fBfP
E

αsCF

∫
dω

ω
ΦB,+(ω)

∫ 1

0

du

ū
ΦP (u), (B48)

where L = −[2E/(MB − 2E)] ln(2E/MB). The extension of this relation to order α2
s is also

available [210].
At high-q2 the corresponding relation obtained from the high-q2 OPE reads [73, 78]

MB

MB +MP

fT =
M2

B

q2
f+κ(µ) =

M2
B

q2
f+

(
1 + 2

D
(v)
0

C
(v)
0

)
mb

MB

, (B49)

D
(v)
0 =

αs
4π
CF

(
2 ln

µ

mb

+ 2

)
, (B50)

C
(v)
0 = 1− αs

4π
CF

(
3 ln

µ

mb

+ 4

)
. (B51)

Note that we do not use these expressions, except to test them, because we take the form
factors directly from lattice QCD.

4. Scale and power-correction uncertainties

Scale uncertainties are intended to account for errors introduced by truncating a pertur-
bative expansion, and should reflect the size of omitted higher-order perturbative correc-
tions. The standard approach for estimating such missing terms is to vary the unphysical
scales: in our case we vary the two scales µb ∼ mb and µ0 ∼ mW ,mt. Higher-order correc-
tions will cancel exactly the explicit dependence in the expressions for the branching ratios
that we use, while the residual scale dependence will be suppressed by one more power
of the strong coupling αs. In this work we adopt the standard choices µb = 5 GeV and
µ0 =

√
mWmt = 120 GeV. The scale uncertainty is then obtained by varying simultane-

ously these scales by a factor of two and taking half the difference between the maximum
and minimum observed values.

Uncertainties associated with power corrections are more difficult to estimate because
higher-order terms in the OPE are dynamically suppressed; i.e., the suppression is expected
to appear in the nonperturbative calculation of the matrix elements of higher-dimensional
operators. We estimate this uncertainty by varying by 10% all terms in the amplitude that
are not directly proportional to C9,10f+ or C7fT .

Appendix C: Numerical inputs

Here we tabulate the numerical inputs used for the Standard-Model predictions in Secs. IV
and V. Table XVI provides the Wilson coefficients, while Table XVII provides the other
inputs.
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TABLE XVI. Numerical values of the Standard-Model Wilson coefficients used for the calculations

in this work, taken from Ref. [82]. The dominant source of error in the coefficients is from the

variation of the scale µlow ∈ [2.5, 10] GeV. The scale dependencies of the coefficients in some cases

are somewhat large, but are meant to cancel against the corresponding scale dependence of the

matrix elements.

Ci(µb) value

C1 −0.29(16)

C2 1.009(10)

C3 −0.0047(42)

C4 −0.081(39)

C5 0.00036(31)

C6 0.00082(97)

C7 −0.297(26)

C8 −0.152(15)

C9 4.04(33)

C10 −4.292(73)
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TABLE XVII. Numerical inputs used in the phenomenological analysis of this paper. The CKM

combinations are obtained using the determinations of the Wolfenstein parameters {A, λ, ρ̄, η̄} ={
0.810(+18

−24), 0.22548(+68
−34), 0.1453(+133

−73 ), 0.343(+11
−12)

}
from the CKMfitter group’s global analysis in-

cluding results through CKM 2014 [167]. The hadronic parameters (decay constants and light-cone

distribution amplitudes) are taken from unquenched lattice-QCD calculations except for λB,+, for

which lattice results are unavailable. Coupling constants, masses, and lifetimes are taken from the

PDG [136] unless otherwise specified.

αs(mZ) = 0.1185(6) αe(mZ) = 1/127.940(18)

s2
W ≡ sin2 θW = 0.23126(5) GF = 1.1663787(6)× 10−5 GeV−2

mW = 80.385(15) GeV mZ = 91.1876(21) GeV

me = 510.998928(11) keV mµ = 105.6583715(35) MeV

mτ = 1.77682(16) GeV mt,pole = 173.21(87) GeV

MB± = 5.27926(17) GeV MB0 = 5.27958(17) GeV

τB± = 1.638(4) ps τB0 = 1.519(5) ps

Mπ± = 139.57018(35) MeV Mπ0 = 134.9766(6) MeV

MK± = 493.677(16) MeV MK0 = 497.614(24) MeV

mpole
b = 4.91(12) GeV [122] mpole

c = 1.77(14) GeV [122]

mMS
b (mb) = 4.18(3) GeV mMS

c (mc) = 1.275(25) GeV

|V ∗tsVtb| = 4.04(11)× 10−2 |V ∗tdVtb| = 8.55(26)× 10−3

|λ(s)
u | = 0.01980(62) arg(λ

(s)
u ) = 114.0(1.9)◦

|λ(d)
u | = 0.404(14) arg(λ

(d)
u ) = −88.9(2.0)◦

|Vtd/Vts| = 0.2115(30)

fB = 190.5(4.2) MeV [211] fK = 156.3(9) MeV [211]

aK1 = 0.061(4) [209] aK2 = 0.18(7) [209]

aπ2 = 0.23(7) [209] λB,+(1.5 GeV) = 0.51(12) GeV [212–214]

µb = 5
(

+5
−2.5

)
GeV µ0 = 120

(
+120
−60

)
GeV

µf = 2 GeV
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[128] D. Bećirević, S. Prelovšek, and J. Zupan, Phys. Rev. D67, 054010 (2003), arXiv:hep-

lat/0210048.

[129] C. Aubin and C. Bernard, Phys. Rev. D76, 014002 (2007), arXiv:0704.0795 [hep-lat].

[130] J. Bijnens and I. Jemos, Nucl. Phys. B840, 54 (2010), arXiv:1006.1197 [hep-ph].

[131] A. S. Kronfeld, Phys. Rev. D62, 014505 (2000), arXiv:hep-lat/0002008.

[132] J. Harada, S. Hashimoto, K.-I. Ishikawa, A. S. Kronfeld, T. Onogi, and N. Yamada, Phys.

Rev. D65, 094513 (2002), arXiv:hep-lat/0112044.

[133] M. B. Oktay and A. S. Kronfeld, Phys. Rev. D78, 014504 (2008), arXiv:0803.0523 [hep-lat].

[134] C. G. Boyd, B. Grinstein, and R. F. Lebed, Phys. Rev. Lett. 74, 4603 (1995), arXiv:hep-

ph/9412324.

[135] C. Bourrely, I. Caprini, and L. Lellouch, Phys. Rev. D79, 013008 (2009), arXiv:0807.2722

[hep-ph].

[136] K. A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014).

[137] C. B. Lang, D. Mohler, S. Prelovšek, and R. M. Woloshyn, Phys. Lett. B750, 17 (2015),

arXiv:1501.01646 [hep-lat].

[138] N. Isgur and M. B. Wise, Phys. Rev. D42, 2388 (1990).

[139] G. Burdman and J. F. Donoghue, Phys. Lett. B270, 55 (1991).

[140] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys. Rev. D60, 014001

(1999), arXiv:hep-ph/9812358.

[141] B. Bajc, S. Fajfer, and R. J. Oakes, (1996), arXiv:hep-ph/9612276.

56

http://dx.doi.org/ 10.1103/PhysRevD.91.114505
http://arxiv.org/abs/1406.6192
http://dx.doi.org/ 10.1103/PhysRevLett.100.062002
http://dx.doi.org/ 10.1103/PhysRevLett.100.062002
http://arxiv.org/abs/0706.1726
http://dx.doi.org/10.1103/PhysRevD.81.054507
http://dx.doi.org/10.1103/PhysRevD.81.054507
http://arxiv.org/abs/1001.4692
http://arxiv.org/abs/1012.0868
http://arxiv.org/abs/1112.4861
http://dx.doi.org/10.1103/PhysRevD.87.094514
http://arxiv.org/abs/1208.4412
http://dx.doi.org/10.1103/PhysRevD.88.074504
http://dx.doi.org/10.1103/PhysRevD.88.074504
http://arxiv.org/abs/1303.1670
http://dx.doi.org/10.1103/PhysRevD.90.074509
http://arxiv.org/abs/1407.3772
http://dx.doi.org/10.1103/PhysRevD.91.054507
http://arxiv.org/abs/1411.7908
http://dx.doi.org/10.1103/PhysRevD.89.094021
http://arxiv.org/abs/1312.2523
http://dx.doi.org/10.1103/PhysRevD.64.054506
http://arxiv.org/abs/hep-lat/0104002
http://dx.doi.org/10.1103/PhysRevD.70.094505
http://arxiv.org/abs/hep-lat/0402030
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://arxiv.org/abs/0903.3598
http://dx.doi.org/10.1103/PhysRevD.55.3933
http://arxiv.org/abs/hep-lat/9604004
http://dx.doi.org/10.1103/PhysRevD.64.014502
http://dx.doi.org/10.1103/PhysRevD.64.014502
http://arxiv.org/abs/hep-ph/0101023
http://dx.doi.org/10.1103/PhysRevD.67.054010
http://arxiv.org/abs/hep-lat/0210048
http://arxiv.org/abs/hep-lat/0210048
http://dx.doi.org/10.1103/PhysRevD.76.014002
http://arxiv.org/abs/0704.0795
http://dx.doi.org/10.1016/j.nuclphysb.2010.06.021, 10.1016/j.nuclphysb.2010.10.024
http://arxiv.org/abs/1006.1197
http://dx.doi.org/10.1103/PhysRevD.62.014505
http://arxiv.org/abs/hep-lat/0002008
http://dx.doi.org/ 10.1103/PhysRevD.65.094513, 10.1103/PhysRevD.71.019903
http://dx.doi.org/ 10.1103/PhysRevD.65.094513, 10.1103/PhysRevD.71.019903
http://arxiv.org/abs/hep-lat/0112044
http://dx.doi.org/10.1103/PhysRevD.78.014504
http://arxiv.org/abs/0803.0523
http://dx.doi.org/10.1103/PhysRevLett.74.4603
http://arxiv.org/abs/hep-ph/9412324
http://arxiv.org/abs/hep-ph/9412324
http://dx.doi.org/10.1103/PhysRevD.82.099902, 10.1103/PhysRevD.79.013008
http://arxiv.org/abs/0807.2722
http://arxiv.org/abs/0807.2722
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/j.physletb.2015.08.038
http://arxiv.org/abs/1501.01646
http://dx.doi.org/10.1103/PhysRevD.42.2388
http://dx.doi.org/10.1016/0370-2693(91)91538-7
http://dx.doi.org/ 10.1103/PhysRevD.60.014001
http://dx.doi.org/ 10.1103/PhysRevD.60.014001
http://arxiv.org/abs/hep-ph/9812358
http://arxiv.org/abs/hep-ph/9612276


[142] E. Gulez, A. Gray, M. Wingate, C. T. H. Davies, G. P. Lepage, and J. Shigemitsu

(HPQCD Collaboration), Phys. Rev. D73, 074502 (2006), (E) Phys. Rev. D75, 119906

(2007), arXiv:hep-lat/0601021.

[143] C. Bouchard, G. P. Lepage, C. Monahan, H. Na, and J. Shigemitsu (HPQCD Collaboration),

Phys. Rev. D88, 054509 (2013), (E) Phys. Rev. D88, 079901 (2013), arXiv:1306.2384 [hep-

lat].

[144] J. M. Flynn, P. Fritzsch, T. Kawanai, C. Lehner, B. Samways, C. T. Sachrajda, R. S. Van de

Water, and O. Witzel (RBC and UKQCD Collaborations), (2015), arXiv:1506.06413 [hep-

lat].

[145] T. Tekampe (LHCb Collaboration), “First measurement of the differential branching fraction

and CP asymmetry of the B+ → π+µ+µ− decay,” talk presented at DPF 2015 (2015).

[146] J.-T. Wei et al. (Belle Collaboration), Phys. Rev. Lett. 103, 171801 (2009), arXiv:0904.0770

[hep-ex].

[147] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 201802 (2011),

arXiv:1107.3753 [hep-ex].

[148] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D86, 032012 (2012), arXiv:1204.3933

[hep-ex].

[149] J. Lyon and R. Zwicky, (2014), arXiv:1406.0566 [hep-ph].

[150] R. Aaij et al. (LHCb Collaboration), JHEP 1302, 105 (2013), arXiv:1209.4284 [hep-ex].

[151] R. Aaij et al. (LHCb Collaboration), JHEP 1212, 125 (2012), arXiv:1210.2645 [hep-ex].

[152] W. Altmannshofer and D. M. Straub, Eur. Phys. J. C73, 2646 (2013), arXiv:1308.1501 [hep-

ph].

[153] A. Datta, M. Duraisamy, and D. Ghosh, Phys. Rev. D89, 071501 (2014), arXiv:1310.1937

[hep-ph].

[154] S. Biswas, D. Chowdhury, S. Han, and S. J. Lee, JHEP 02, 142 (2015), arXiv:1409.0882

[hep-ph].

[155] S. L. Glashow, D. Guadagnoli, and K. Lane, Phys. Rev. Lett. 114, 091801 (2015),

arXiv:1411.0565 [hep-ph].
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