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Exotic Rotational Correlations in Emergent Quantum Geometry
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University of Chicago and Fermilab Center for Particle Astrophysics

Estimates are presented of exotic, purely rotational correlations that arise in large systems if
directions in space-time emerge from Planck scale quantum elements with no fixed classical back-
ground space. In the time domain, directions to world lines at finite separation R from any world
line coherently fluctuate in the classical (that is, R → ∞) inertial frame, on a timescale R/c, by

an angle of order R−1/2 in Planck units. The exact exotic correlation function is computed for the
signal in a Sagnac type interferometer of arbitrary shape. The signal variance is equal to twice the
enclosed area divided by the perimeter, in Planck units. It is conjectured that exotic Planck scale ro-
tational correlations, entangled with the strong interactions, determine the value of the cosmological
constant. Cosmic acceleration may be viewed heuristically as centrifugal acceleration by rotational
fluctuations of the matter vacuum. An experiment concept is sketched, based on a reconfiguration
of the Fermilab Holometer.

I. INTRODUCTION

It seems unvaoidable that new exotic correlations— beyond standard predictions based on continuous, infinitely
divisible space and time— should occur if geometry is assembled from discrete elements at the Planck scale, or
otherwise has Planck scale bounds on the number of degrees of freedom, as occurs in many theories of quantum
gravity. Still, in the extensive literature on quantum extensions of general relativity[1–7], there is no generally
accepted theory about the character of exotic quantum-geometrical correlations in large systems.

Exotic correlations refer to quantum correlations of geometry itself: that is, quantum geometry produces spatially
coherent phase displacments in quantum matter fields, and consequently on world lines of massive bodies. This kind
of correlation is predicted to be negligible in standard field theory[8, 9], or in other theories of Planck scale effects[10–
14], such as string theory, that assume relativistic quantum fields in a fixed classical background space-time on large
scales. Some kinds of exotic correlations can be described by phenomenological models based on assumed spectra of
fluctuations in the metric[15–18]; many of these are now ruled out by experimental bounds[19].

Significant exotic correlations could however arise naturally in relational theories, where space-time emerges from a
quantum system of Planck scale elements. In these theories, there is no a priori background space-time; all geometrical
relationships are derived from elements of a discrete quantum system. At least one well-studied formalism, Loop
Quantum Gravity, or Canonical Quantum General Relativity[1–3], predicts a quantized spectrum of geometrical area
states that extends to large systems, which appears to imply new exotic positional correlations. However, there has
been no generally accepted model to connect them with actual physical observables.

The aim of this paper is to create a precise, if still partly heuristic phenomenological model of concrete observables
in this class of theories. Physical constraints such as causality and approximate covariance in the emergent system
strongly constrain the structure of correlations, and allow remarkably precise predictions of exotic signal correlations
in some types of apparatus. This model will help to design and interpret experiments to seek concrete evidence that
space-time is indeed a quantum system composed of Planck scale elements.

The model is based on the hypothesis[20–24] that exotic correlations of geometry display a particular directional
spatial projection pattern, always transverse to separation from the world line of an observer. This form of exotic
Planck correlation is not describable by metric fluctuations, but is motivated by the concept of emergent space-time,
in which a geometrical quantum state hierarchically unfolds in projections determined by causal structure around the
world line of any observer. The amplitude of the correlation can be estimated in various ways summarized below of
combining quantum theory and gravitation, including but not limited to Loop Quantum Gravity. The Planck quantum
limit on directional information imposed by gravity can lead to a new form of “holographic noise” in the signals of
interferometers. It is not ruled out by any experiment to date, but may be measurable with targeted experiments,
such as the Fermilab Holometer, that sample “superluminally”, that is, faster than an inverse light crossing time.

This paper studies particular observable consequences of a restrictive and precise form of this hypothesis: that
exotic transverse correlations appear as purely rotational modes in the emergent space (Eq. 30), associated with
emergence of the classical non-rotating inertial frame from the Planck scale. The purely rotational symmetry, and
holographically bounded information content, considerably restricts the range of possible phenomenology, and leads
in some situations to unique predictions.

It is argued that such exotic rotational correlations should arise if space emerges relationally from Planck scale
elements, with no fixed background. In classical relativity, or any field theory embedded in a fixed classical background
space, any change in directional orientation between two world lines is defined relative to an absolute, locally defined
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nonrotating frame. This inertial frame is exactly defined in principle, even on infinitesimally small scales. Of course
actual physical systems are subject to quantum limits on what can be measured, but in standard theory, measurement
of the inertial frame is limited by standard quantum mechanics[25], not by any limitation of geometry itself. If space
itself is not a smooth classical manifold, but is a quantum system made of Planck scale elements, the situation on the
Planck scale may be radically and qualitatively different from this standard theory. Classical directions on the smallest
scales may not exist, since classical space emerges only as an approximation in large systems. As one approaches the
position of a world-line, the non-rotating frame is less and less well defined relative to the classical frame. There is
no such fundamental thing as an unchanging direction, and all observable quantities at the Planck scale, including
direction, fluctuate wildly at the Planck frequency. In this case, small amplitude exotic rotational fluctuations—
coherent changes in direction about a given world line, relative to the classical inertial frame— should also occur for
separations and durations much larger than the Planck scale. Estimates of their statistical properties based on Planck
scale holographic information content (Eq. 22 below) suggest that exotic rotational fluctuations in large systems are
indeed very small, but much larger than in standard theory. One can heuristically picture the correlations as arising
from rotational quantum-geometrical or holographic noise in the inertial frame: spatially coherent fluctuations in
direction that get smaller, slower and gentler on larger scales.

Some precise quantitative observable consequences of such exotic rotational fluctuations, and their associated exotic
correlations, are calculated here. It is argued that they should appear in signals of interferometers, but only those in
which which light travels in a circuit that encloses a large area, such as a Sagnac type[26, 27]. An exact correlation
function for the signal is computed here from general principles, for a Sagnac interferometer of any shape (Eq. 39).
The variance in the signal is equal to twice the area enclosed by the light path, divided by the perimeter, in Planck
units. One precise normalization is provided by the area quantization spectrum of Loop Quantum Gravity.

These exotic rotational correlations could be measured by a device in a Sagnac configuration, with similar sensitivity
to that already demonstrated by the Fermilab Holometer[28]. A specific experimental concept is sketched as an
example: for a square configuration 20 meters on a side, the computed spectrum predicts an interferometric phase
shift jitter with an rms amplitude of 11 attometers, at a frequency of 3.7 MegaHertz.

Going beyond the precise treatment of exotic interferometer correlations, the behavior of exotic rotational fluctua-
tions suggests an intriguing connection: the possibility that entanglement of the matter vacuum with exotic rotational
geometrical correlations could shape emergent geometry on cosmic scales. In particular, we conjecture that the value
of Einstein’s cosmological constant Λ is fixed by the scale where the average effects of exotic Planck rotational fluctu-
ations entangle significantly with the strongly self-interacting matter vacuum. The spatial amplitude of exotic Planck
correlation matches the strong vacuum correlation length Λ−1

QCD at a radial separation of about 60 km. Rotational
fluctuations at that separation produce a root-mean-square virtual angular rotation rate— and heuristically, a univer-
sal rate of mean centrifugal acceleration— about equal to the observed rate of cosmic acceleration. It is shown below
that within current experimental errors, the density of positional information is the same for cosmic expansion and
the strong interactions. In this scenario, the value of the cosmological constant in the emergent geometry depends
only on known scales of gravity and the Standard Model.

II. ESTIMATES OF EXOTIC QUANTUM GEOMETRICAL CORRELATIONS

Planck Scale Correlations in Large Systems

The content of a quantum theory can be expressed as correlations between observable quantities[29, 30]. In standard
physics, matter is a quantum system, while geometrical relationships are classical. However, it is generally thought
that a quantum system also underlies space and time[1, 2]. If so, the background quantum geometry should also
produce quantum correlations among observable quantities, beyond those of quantum matter.

Quantum correlations have an inverse relation to the information in a system: they vanish in the limit of a
continuous classical system, which has an infinite amount of information. Theoretical extrapolations from standard
theory suggest that quantum gravity limits the amount of information available to a system of matter and geometry,
and therefore, creates new forms of correlation not predicted in standard theory. However, it is not known what form
those correlations take.

Here we consider the hypothesis that quantum-geometrical correlations can be expressed as exotic correlations in
the spatial positions of world lines, as traced by trajectories of massive bodies. These correlations can be distinguished
from standard quantum correlations by precise measurements of positions of bodies in space. They carry significant,
specific and quantitative information about the structure of new physics at the Planck scale.

We have previously considered one class of such measurements, those possible with Michelson interferometers[19–
23]. Here, we consider a related but different class of possible correlations, associated with rotational modes, or pure
changes of direction in space. In particular, we argue that measurements sensitive to the phase of radiation that
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travels in a closed circuit, as in a Sagnac interferometer, may detect correlations due to the imperfect emergence, in
a laboratory-scale system, of a local nonrotating frame from quantum relationships of Planck scale elements.

In an interferometer, a quantum-geometrical correlation is ultimately measured as the time domain correlation (or
equivalently, its frequency-domain transform) of an observable x(t), with dimension of length:

Ξ(τ) ≡ 〈x(t)x(t+ τ)〉t. (1)

The quantity x is measured as a light intensity that encodes the phase difference between beams that travel through
an arrangement of mirrors in space. It characterizes the departure from a perfectly static, classical, continuous
geometry. A variety of estimates reviewed below suggest that quantum geometry in a system of size cτ produces
exotic correlations in position with magnitude roughly

Ξ(τ)/cτ ≈ `P , (2)

where `P =
√

~G/c3 denotes the Planck length. They represent a measure of the (inverse of the) information density in
the geometry. We refer to correlations of this magnitude as “exotic” Planck correlations because they are not produced
in standard classical geometry. Experiments with interferometers— in particular, the Fermilab Holometer[31]— have
shown that it is possible to measure position correlations with instrumental metrology at better than the Planck
sensitivity in Eq. (2).

Such experiments can in principle probe Planck scale quantum degrees of freedom [19–24]. A signal is produced
by light interference from a system of mirrors in a specific spatial arrangment. The time correlation of the signal, as
in Eq. (1), depends on the detailed spatial layout of the apparatus, and the detailed character of the exotic 3+1 D
position correlations. An experimental program with a variety of configurations can map out the structure of Planck
scale quantum correlations and their relationship with properties of matter fields.

The projection operators for a given apparatus are not calculable in standard theory, since they depend on a
phenomenology for a still-unknown theory of quantum geometry. On the other hand it is often still possible to compute
the forms of correlation from the symmetries of the apparatus in the emergent system, that is, the arrangment of
mirrors in space, and to make quantitative tests of specific hypotheses about the geometrical correlations. These
hypotheses necessarily lay beyond the framework of standard theory, but provide theoretical estimates of the density
and character of information in a space-time system that can be compared with the magnitude and character of
the correlations in data. In the following sections of this paper, we compute new, specific manifestations of exotic
correlation associated with rotation and emergent direction. First however, we review estimates of the magnitude of
exotic correlations from extrapolations of well tested physics.

Gravitational Bounds on Matter Degrees of Freedom

A classical geometry is a continuous system, with an infinite density of position information. Significant deviations
from this approximation are predicted at the Planck scale. A variety of theoretical estimates suggest that exotic
correlations, originating from Planck scale quantum geometry, may have a magnitude in large systems that corresponds
to position displacements much larger than the Planck length. Those estimates are reviewed here: first, general
bounds on the density of information, and then, more specific indications that these should manifest in observable
exotic position and direction correlations.

Idealized Chandrasekhar Radius and Mass for Gravitating Systems of Relativistic Quanta

It is useful to start by reviewing Chandrasekhar’s instability[32] in gravitating systems of relativistic quantum
matter. Although these systems can be described without quantizing gravity itself, or even invoking the full apparatus
of general relativity or concepts such as black holes, it is no accident that Chandrasekhar’s scales of mass and radius
appear in other, more exotic contexts summarized below: they all invoke similar criteria that relate quantum states of
matter to global properties of a gravitating system. For both astrophysical systems and quantum field systems with
gravity, the behavior changes qualitatively when the typical velocities of particles approach the speed of light.

Chandrasekhar derived solutions for a spherical system of matter in hydrostatic equilibrium, so that gravitational
force is in balance with a gradient in degeneracy pressure. He showed that the system becomes unstable when the
mean velocity of the supporting particles, which in the case of a degenerate dwarf stellar remnant are mostly electrons,
approaches the speed of light. Formally in his calculation, the radius of the equilibrium solution goes to zero. It is not
necessary to invoke the concept of black holes; indeed, it is adequate to use a Newtonian approximation for gravity.
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Suppose the mass is dominated by baryons whose mean number density n equals that of electrons. Denote their
masses by mb and me respectively. Let M and R denote the mass and radius of the system, so that

M ≈ nmbR
3. (3)

(Exact numerical prefactors depend on the detailed model of the system, say, a polytrope model of the density profile;
they do not affect our discussion and are omitted here.) At the onset of the instability, when the velocity of degenerate
electrons approaches the speed of light,

n ≈ (mec/~)3, (4)

where c denotes the speed of light and ~ denotes Planck’s constant. This is also the approximate density of
information— the number density of degrees of freedom of any field up to mass me.

The criterion of hydrostatic equilibrium is approximately that the total kinetic energy of the electrons is the same
as the gravitational binding energy, and at the onset of instability this yields

R3
Chandranmec

2 ≈ GM2
Chandra/RChandra. (5)

From these we derive the Chandrasekhar radius and mass at the onset of instability:

RChandra/`P ≈ m2
P /memb, (6)

and

MChandra/mP ≈ m2
P /m

2
b , (7)

where mP =
√

~c/G denotes the Planck mass. The same critical scales emerge from other kinds of quasi-equilibrium
states dominated not by degeneracy pressure, but by thermal pressure; the stability depends on when the velocity of
the particles that dominate the pressure approach the speed of light.

In this sketch approximation, the (critical maximum) mass MChandra only depends on mb, which makes it clear why
the masses of neutron stars nearly match those of white dwarfs. Indeed, MChandra sets the scale for all stellar-mass
systems. The radius RChandra also depends on the lighter particle mass me; lighter particles yield a larger critical
minimum radius when collapse occurs, so that white dwarves are much larger than black holes of the same mass when
they become unstable.

For the purposes of this paper, it is useful to define an idealized Chandrasekhar radius and mass, in terms of a
single particle mass m, that applies if the gravitational mass and pressure support comes from the same particles:

RC/`P ≡ (m/mP )−2, (8)

and

MC/mP ≡ (m/mP )−2. (9)

For m about the mass of the neutron, these approximately give the radius and mass of a neutron star. Since RC = MC ,
the system is also close to the radius RS of a black hole, for which RS = 2M in Planck units.

While the Chandrasekhar mass has broad significance for shaping astrophysical systems, the idealized Chan-
drasekhar radius (Eq. 8) takes on a special significance in the relationship of field states with quantum geometry:
as discussed below, RC(m) is the distance where the minimum angular spread (Eq. 13) of a Planck wave function
is RC/m. This directional criterion appears in many of the following estimates of standard quantum limits on the
definition of rotation in a Planck limited system (see Fig. 1).

Gravitational Constraint on Virtual States of a Field Vacuum

Consider now a model of matter based on a relativistic quantum field, such as those of the Standard Model,
combined with gravity. An important difference from the system studied by Chandrasekhar is that the quantum
system includes all possible states of the field, including nonzero occupation numbers for all of its modes.

Consider states of a field below some UV cutoff scale with wavelength λ = ~/mc. In a volume R3, the field has
about N ≈ (R/λ)3 independent modes. In a state where each mode has mean occupation number of order unity, the
number of particles per volume is about n ≈ (mc/~)3, as in the Chandrasekhar system. Thus, in a volume with a
size larger than Eq. (8), the excited field state has a mass larger than that of a black hole of the same size, which is
of course an impossible physical state, inconsistent with general relativity.

This paradox suggests that even in a vacuum, exotic Planck scale quantum correlations somehow produce an
“infrared cutoff” to field states of mass m at the idealized Chandrasekhar radius (Eq. 8), which of course is much
larger than the Planck scale. Such an infrared constraint would not have been noticed in particle experiments[24, 33].
The entanglement scale is again shown in Fig. (1).
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FIG. 1. Inconsistency of standard field theory and classical geometry in large systems. Matter states entangle significantly
with quantum geometrical states in systems larger than the Chandrasekhar length RC(m) (Eq. 8), in the sense that the
number of degrees of freedom is reduced to a fraction of its classical value much less than unity. The shaded region shows
the size of a system where geometrical entanglement causes only small corrections to field theory for modes below mass
m; above and to the right, quantum geometry significantly affects the number of field degrees of freedom. According to
the directional entanglement hypothesis, the mechanism for the entanglement is that all fields share directional geometrical
correlations with Planck transverse resolution, which have width

√
Ξ(RC) ≈ ~/mc at separation RC(m). These can be measured

with interferometry even though
√

Ξ(RC) on the lab scale is only tens of attometers, much smaller than an optical wavelength.

Black Hole Information, Emergent Spacetime, and Statistical Gravity

Black holes were discovered as classical solutions in a classical theory, general relativity. However, the theory of
black holes suggests that general relativity has another formulation not as a theory of geometry, but as a statistical
system, with a information content determined by the Planck scale.

The family of black hole solutions obeys thermodynamic relations, where the entropy of a black hole is one quarter
of the area of its event horizon in Planck units. The classical solutions obey the analog of thermodynamic laws, and
analysis of field state propagation shows that black holes radiate nearly as black bodies with a temperature determined
by their surface gravity, and in a zero temperature environment, eventually evaporate into particles[34–38]. Thus,
these pure-spacetime structures appear to be statistical systems composed of Planck elements, with a holographic
information content.

Thought experiments suggest that a “Holographic Principle” should apply not just to black holes, but to any
region of space-time, with the information content of any volume of space bounded by an area in Planck units[39,
40]. The principle can be formulated in a covariant way, defining surfaces associated with intervals on a world-
lines using a causal diamond construction[41]. Jacobson[42] showed that the equations of general relativity can be
derived from thermodynamic principles; the curvature of space-time has to obey Einstein’s equations in order for
thermodynamic relations δQ = TdS to hold with appropriate geometry-related definitions of those thermodynamic
quantities. (Verlinde has given a similar derivation of Newtonian gravity[43].) Quantum properties of black hole
spacetimes suggest that information in gravitational systems is not localized as in local field theory on a classical
background[4, 5].

The theoretical behavior of systems of fields and black holes thus suggests that space-time itself is an emergent
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quantum system with Planck scale elements. The information, or number of degrees of freedom in a region of size R,
is about I ≈ R2 in Planck units. In a large system, this is far less than the information in standard field states up to
a UV cutoff m, which as we have seen is about I ≈ (Rm)3.

Emergent gravity can be reconciled with standard physics if states of matter are significantly entangled with those
of quantum geometry in large systems. That is, there should be new forms of correlations in large systems, associated
with exotic Planck scale physics of quantum geometry, that are not included in field theory. At the Chandrasekhar
radius given by Eq. (8), the information in gravitational states is still larger than that in field states, but the
gravitational effect of the matter implies that geometry creates significant entanglement. In the thermodynamic-
gravity view[42], the entanglement is attributed to gravitational lensing of the field modes, which in turn suggests
entanglement associated with a scale of directional resolution, as discussed below.

Exotic Correlations of Transverse Position and Direction

The arguments just given provide estimates of the amount of information, and the scale of entanglement of geometry
and field states. However, they do not reveal the origin or nature of the entanglement. Based on these estimates
alone it is possible to imagine that the entanglement may be of a very subtle nature. The following arguments
more specifically suggest that new Planckian quantum behavior in large systems may appear as long-range, nonlocal
geometrical correlations of the world lines of massive bodies. They take different complementary approximations to
the emergent space but all approximately agree on the magnitude and character of exotic Planck correlation, related
to a transverse width for the geometrical position wave function of a geometrical position operator x̂ that depends on
separation R approximately as

Ξ(cτ = R) ≈ 〈x̂2
⊥〉R = R`P , (10)

or equivalently, a wave function of emergent direction with a separation-dependent width,

〈∆θ2
P 〉R ≈ 〈x̂2

⊥〉R/R2 = `P /R (11)

A consistent toy model of a quantum algebra to describe geometrical states with these properties is reviewed in
Appendix (A).

Quantum Geometrical Information

Quantum mechanics imposes a number of fundamental limits on the precision of position measurements[25]. One
of these[44] enforces a minimum amount of energy associated with measurement of any time interval between events:
the time it takes a quantum system to go from one state to an orthogonal state is greater than or equal to π~/2E,
where E is the expectation value of the energy of the system above the ground state energy. This result has been
used to show[45] that in any volume there is a maximum number of distinguishable events, such that the density of
clocks and signals used to measure their separation, GPS-style, not exceed the density of a black hole. In a spacetime
volume of radius R and duration τ in Planck units, the bound on the number of events is about Rτ . Since cτ ≈ R for
a covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[45]. Note that the area here combines spatial and temporal dimensions, R and τ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting off
of macroscopic objects.

Planck Diffraction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, ∂µ∂

µψ = 0. For
waves of frequency ω propagating in a beam— a stationary, monochromatic wave state proportional to e−iωtψ(x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[∂2
x + ∂2

y − 2iω∂z]ψ = 0, (12)
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the same equation used to model laser beams. The minimum transverse angular spread is thus the diffraction limit
for a Planck frequency beam[22], setting ω ≈ mP c

2/~:

〈∆θ2
P 〉 ≈ `P /R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`P of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`P
describes directional degrees of freedom. By contrast, in a full resolution 3D space the two directional dimensions on
their own would comprise (R/`P )2 degrees of freedom.

Directions in space emerge from the Planck scale in such a way that directional resolution of the emergent space on
any scale is given by Eq. (13). Field states cannot exceed the angular resolution of geometry, so they become strongly
entangled with geometry at a separation where Planck diffraction matches the resolution of matter fields, ≈ (m/R)2;
that separation is given by the idealized Chandrasekhar radius, Eq. (8). Note that a black hole of this size still has a
much larger entropy than field states of mass m < mP in the same volume.

Planckian Wave Packet Spreading

The directional blurring scale can also be derived from standard wave equations applied to quantum states of wave
packets with Planck frequency[22–24]. In this estimation, wave functions of world lines of bodies of any mass spread
at the same rate as those of particles of Planck mass. The scale can be estimated starting from the standard wave
function ψ(xi, t) of a massive body in classical position and time. In its classical rest frame, a massive body obeys a
3+1-dimensional version of the paraxial wave equation (Eq. 12), with propagation in time in place of radial distance,
and rest mass in place of frequency:

[∂2
x + ∂2

y + ∂2
z − 2i(m/~)∂t]ψ = 0. (14)

Again like a laser beam, spreading of this wave function with time is unavoidable; any solution of duration τ has a
mean variance of position at least as large as

〈(r(t+ τ)− r(t))2〉 = σ2
0(τ) > ~τ/2m. (15)

the standard Heisenberg position uncertainty[46–49] for a body measured at times separated by τ . In this wave
picture, it is derived in exact analogy to diffractive spreading of a light beam. Here, the sharp preparatory boundary
condition— the equivalent of the mirror in a laser— is the preparation and measurement of the position state on
spacelike surfaces at sharply defined times.

If emergent world line states correlate over duration τ by about the same amount as the world line of a Planck
mass body, the exotic correlation amplitude is about

Ξ(τ) ≈ 〈(x(t+ τ)− x(t))2〉 ≈ `P cτ/2. (16)

In the directional-entanglement model, this world-line correlation has a pure transverse character; in the radial
direction, the amplitude is limited by the standard quantum uncertainty for mass m, Eq. (15), but the transverse
or directional uncertainty corresponds to that of a Planck mass body, so it is much larger than standard quantum
uncertainty for m >> mP . Moreover, the transverse geometrical component is entangled for states of nearby world
lines, so that quantum- geometrical part of the wave function is not independent from body to body; its spread leads
to coherent fluctuations in direction.

Quantized Area in Loop Quantum Gravity

One formalism to describe relational states of position in an emergent space-time composed of Planck scale elements
is provided by Loop Quantum Gravity. It provides a concrete motivation, and normalization, for exotic geometrical
correlations in large systems. Specifically, it predicts a discrete spectrum of quantum states of area that extends to
large systems, with a holographic information content.
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The discrete spectrum of area states is[1–3, 50, 51]:

Aj = 8πγ~Gc−3
∑

i

√
ji(ji + 1), (17)

where ji are half-integers i/2 for integers i. We will adopt a value for the Immirizi parameter γ, computed to match

black hole entropy for γ = ln 2/π
√

3 (see ref. [1], eq. 6.78), recognizing that this is a result from just one particular
fundamental relational theory. Since an important goal of an experimental program is to distinguish between them,
the absolute normalization should be regarded as a significant observable.

For large areas (i >> 1) we can write the eigenvalues (of so-called “main sequence” states) as

An ≈ AQn2 (18)

for integers n, where

AQ ≡ 2πγ~Gc−3 ≡ `2Q (19)

is a fundamental Planck area unit. As discussed below, the natural fundamental length to adopt according to this

formulation is not the standard Planck length `P , but `Q = `P

√
2 ln 2/

√
3 = 0.895`P . The difference between adjacent

area states is

An+1 −An ≈ 2AQn. (20)

Notice that the spacing grows with n. Thus for larger areas, each area eigenstate is bigger than the last by much
more than a single Planck area pixel. For a system of area A = R2, the difference between adjacent states is

∆A = 2
√
AQA = 2R`Q. (21)

It is natural to identify this quantity with the exotic position correlation amplitude on each scale, Ξ(τ = R/c) ≈
∆A(R). The areal quantization reflects the same blurring or loss of relative positional information on large scales that
appears in wave equation solutions, holographic information constraints, and other “infrared” departures from field
theory reviewed above. It explicitly captures an essential nonlocal feature of geometrical states: that the positional
relationships of the geometry itself depend on separation, and degrade over large areas.

III. ROTATIONAL FLUCTUATIONS

Fluctuations of Emergent Direction: Newton’s Bucket at the Planck Scale

The concept of absolute space was invented by Isaac Newton. In a “Scholium to the Definitions” in the Principia
[52–54], Newton describes a thought experiment with a rotating vessel of water. The curved surface of the water
demonstrates the physical reality of absolute space: “This ascent of the water shows [indicat] its endeavor to recede
from the axis of its motion; and the true and absolute circular motion of the water, which is here directly contrary
to the relative, becomes known [innotescit], and may be measured [mensuratur] by this endeavor.” Newton thereby
differentiates rotation from other types of relative motion: “And therefore this endeavor does not depend upon any
translation of the water in respect of the ambient bodies, nor can true circular motion be defined [defineri] by such
translation. There is only one real circular motion of any one revolving body, corresponding to only one power of
endeavoring to recede from its axis of motion, as its proper and adequate effect; but relative motions, in one and the
same body, are innumerable, according to the various relations it bears to external bodies, and like other relations, are
altogether destitute of any real effect, any otherwise than they may perhaps partake of that one only true motion.”

Newton realized that are two different ways of telling whether a direction to a body is changing. One way is local:
a change of direction causes centrifugal acceleration in the (rotating) frame in which the direction is not changing, as
in Newton’s rotating vessel of water. The other way is to compare with very distant bodies. The agreement between
these two is fundamental and profound. Ernst Mach pointed out that physics needs to explain it, which inspired
Einstein in the development of relativity theory.

Today the coincidence seems less profound, or at least less puzzling, because general relativity indeed provides a
complete, rigorous and well tested account of the classical physics of space, including a precise notion of absolute
space. We now know that distant matter (Newton’s “ambient bodies”) actually does directly affect local space: its
gravitional field influences the local nonrotating frame, via gravitomagnetic frame dragging. In cosmological solutions,
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distant matter even nonlocally defines a preferred cosmic rest frame of motion at any given event, although that cannot
be measured locally. Thus in classical physics, no additional theory is needed.

However, the coincidence of local and global frames requires a fuller explanation in the context of quantum gravity.
In a fully quantum space-time, as in relational theories[1–3], all positions and motions, indeed all observables, have
to be defined within the quantum system. There is no absolute reference standard to define the frame; there are only
elements of the quantum system, starting with the Planck scale.

Relativity preserves Newton’s fundamental distinction between translations and rotations. Lorentz invariance dis-
penses with absolute motion through space as a local observable, but retains an absolute local definition of rotation:
at every event on a world line, there is an absolute, nonrotating inertial frame. The rate of change of any direction is
defined relative to a property of local space. Of course this relationship is still classical, even for quantum systems:
there is no relational quantum theory to explain how the orbital states of atoms “know about” matter in distant
galaxies, to determine what states have zero angular momentum. In standard quantum theory, that relationship is
established via absolute, classical space.

Imagine shrinking Newton’s rotating vessel to a Planck size. In modern standard theory, the Planck size vessel
works much the same as Newton’s. The classical local inertial frame, which defines rotation, provides a complete
(albeit classical) account of its relation to distant matter. This nonrotating frame is precisely defined by the classical
geometry, and hence also in quantum field theory, even at the Planck scale.

By contrast, in a small volume, a relational or emergent theory provides no absolute frame for a Planck size vessel
to refer to; its local rotation rate is defined only with respect to nearby elements, all of which have Planck scale
indeterminacy in their wave functions. The inertial nonrotating frame on the Planck scale is indeterminate, leading
to fluctuations in the rate of change of direction of the order of the Planck frequency. For larger systems and over
longer times, the uncertainty and fluctuations average out, but the averaging is not perfect. Even large systems must
display small residual correlated fluctuations in direction; the theory must display small, exotic Planckian quantum
correlations. The model here is really a hypothesis about how the averaging works— how the quantum system
approaches the well known classical limit of approximately absolute space. The behavior is uniquely constrained
by the symmetries of space, and by the requirement of saturating the holographic bound on information in causal
diamonds.

Quantum Geometry with Exotic Rotational Correlations

Matter and geometry refer to different properties of one quantum system. To a very good approximation in
experiments to date, they refer to nearly-separable subsystems. The goal here is to find a way to detect the exotic
correlations associated with their entanglement.

Matter refers to field-like properties of the system, that is, spatially localized field amplitudes and derivatives, and
geometry refers to position-like properties, that is, directions, radial, and temporal separations. As shown above,
theory suggests that the quantum system underlying space contains a limited, holographic amount of information,
and that this bound affects the behavior of field states in large systems. The hypothesis of this paper is that the
holographic bound particularly affects directions in space, so that radial separations, and the causal structure defined
by null causal diamonds associated with intervals on any world line, retain very nearly their classical structure.

This idea fixes the form of the exotic entanglement of matter and geometry in large systems. Even with no dynamics
or Lagrangian for the system, this hypothesis is sufficiently precise to calculate certain properties of the correlations
and fluctuations. It leads to a specific scenario about how emergence works, and about the spatial character of the
exotic correlations on large scales.

With this hypothesis, radial directions around any world line have a special significance. The null radial trajectories
define causality in all directions, and define a particular set of eigenstates. This projection of the quantum system
is determined by a choice of world line or timelike observer. In the emergent space, spatial structure is defined by
intersecting light cones from the ends of any interval on the world line, called causal diamonds. The invariant emergent
geometrical objects are world lines, intervals of proper time, and causal diamonds.

Rotational fluctuations arise naturally in a system ultimately composed of discrete elements at the Planck scale.
In the emergent system, there is no fixed background space to define an inertial frame. From one moment to the
next, the situation depends only on previous relationships. The causal dependences of rotation around a world line
are mapped out by the light cones emanating from each event. The total geometrical state of a system includes
entanglement of all of the nested causal diamonds, and the total variance in position is the sum of variances from the
nested diamonds (see Figs. 2, 3).

Briefly, because of the limited directional information, positions in the transverse directions have limited fidelity.
Precision of angles or directions measured over intervals of finite duration are limited to the Planck diffraction limit. On
hypersurfaces defined by one observer’s final emergent (classical) world line, correlations occur at spatial separation
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This operator takes discrete eigenvalues:

|x̂|2|li = l(l + 1)`2P |li. (A5)

The discrete eigenvalues correspond to classical values of separation R according to:

R2 ⌘ l(l + 1)`2P ⇡ l2`2P (A6)

where l are positive integers, quantum numbers of eigenstates of |x̂|2.
Let li denote eigenvalues of position components projected in direction i. In a state |li of separation number l, the

projected position operator x̂i can have eigenvalues in units of `P ,

li = l, l � 1, . . . ,�l, (A7)

giving 2l + 1 possible values. In an eigenstate with a definite value of position in direction i,

x̂i|l, lii = li`P |l, lii. (A8)

The total number of position eigenstates in a 3-sphere is

NQ3S(R) =

lRX

l=1

(2l + 1) = lR(lR + 2) = (R/`P )2, (A9)

where the last equality applies in the large l limit. Thus, the number of quantum-geometrical position eigenstates
in a volume scales holographically, as the surface area in Planck units. This simple Planckian quantization closely
resembles (but is not exactly the same as) the spectrum of area states more rigorously derived within the framework
of loop quantum gravity (Eq. 17).

Direct calculation (e.g., ref.[63]) also leads to the following product of amplitudes for measurements of either of the
transverse components x̂j , with j 6= i:

hli|x̂j |li � 1ihli � 1|x̂j |lii = (l + li)(l � li + 1)`2P /2, (A10)

again for any i. The left side of equation (A10) can be interpreted as the expected value for the operator

x̂j |li � 1ihli � 1|x̂j (A11)

for components with j 6= i, in a state |lii of definite x̂i. For l >> 1 and li ⇡ l, this corresponds to the expected
variance in components of position transverse to separation:

hx̂j |li � 1ihli � 1|x̂ji ! hx̂2
j i. (A12)

We can rewrite this as a formula for the variance of the wave function x̂? in any direction transverse to separation,
given by the right hand side of Eq. (A10) in the limit of l >> 1, for l±li = 1 (or indeed for any value of |l�li| << l1/2):

hx̂2
?i = R`P . (A13)

This simple result is used here to set the scale of transverse position variance, for example in Eqs. (32) and (41). The
same algebra, with j and ~ in place of x and `P , yields a formula for the width of the wave function for transverse
components of standard angular momentum, in the limit of large |j|:

hĵ2
?i = |j|~. (A14)

However, this simple formula does not appear in standard treatments of angular momentum.

Appendix B: Experiment Concept: Superluminally Cross-Correlated, Co-located, Power-Recycled Sagnac
Interferometers

The exotic correlation (Eq. 35) may be detectable using an apparatus similar to the Fermilab Holometer[64],
reconfigured to measure pure rotational modes. The Holometer achieves the sensitivity needed to measure exotic
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These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i /d⌧ = ✏ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i (⌧)/d⌧ , x±
k (⌧) and dx±

j /d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏ijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically. The essential assumptions are just the holographic scaling of
transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |xi(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `P R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `P dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

and the total enclosed area is

A0 =
1

2

ˆ C0

⌧=0

d⌧dA/d⌧ (34)

when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`P = ⌅0/`P � |dA(⌧)/cd⌧ |, (35)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P /C0, (36)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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that can be combined into a quantity that scales like ✏ijkxk`P , in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i (⌧) and x�
i (⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,

although below we will assume a planar apparatus for simplicity. The functions x+
i (⌧) and x�

i (⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i (⌧)
and x�

i (⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j /@⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define Ai(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i /d⌧ = ✏ijk[x+

k (⌧)dx+
j /d⌧ ] (27)

dA�
i /d⌧ = ✏ijk[x�

k (⌧)dx�
j /d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i /d⌧ = ✏ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i (⌧)/d⌧ , x±
k (⌧) and dx±

j /d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏ijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |xi(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `P R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `P dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)
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Thus any volume there is a maximum number of distinguishable events, such that the density of clocks and signals
used to measure their separation, GPS-style, not exceed the density of a black hole[37]. In a spacetime volume of
radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for a
covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[37]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @µ@

µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x + @2

y � 2i!@z] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[14], setting ! ⇡ mP c2/~:

h�✓2P i = `P /R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`P of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`P
describes directional degrees of freedom. By contrast, in a full resolution 3D space the two directional dimensions on
their own would comprise (R/`P )2 degrees of freedom.

Directions in space emerge from the Planck scale in such a way that directional resolution of the emergent space on
any scale is given by Eq. (13). Field states cannot exceed the angular resolution of geometry, so they become strongly
entangled with geometry at a separation where Planck di↵raction matches the resolution of matter fields, ⇡ (m/R)2;
that separation is given by the idealized Chandrasekhar radius, Eq. (8). Note that a black hole of this size still has a
much larger entropy than field states of mass m < mP in the same volume.

Planckian Wave Packet Spreading

The directional blurring scale can also be derived from standard wave equations applied to quantum states of wave
packets with Planck frequency[14, 16, 17]. In this estimation, wave functions of world lines of bodies of any mass
spread at the same rate as those of particles of Planck mass. The scale can be estimated starting from the standard
wave function  (xi, t) of a massive body in classical position and time. In its classical rest frame, a massive body
obeys a 3+1-dimensional version of the paraxial wave equation (Eq. 12), with propagation in time in place of radial
distance, and rest mass in place of frequency:

[@2
x + @2

y + @2
z � 2i(m/~)@t] = 0. (14)

Again like a laser beam, spreading of this wave function with time is unavoidable; any solution of duration ⌧ has a
mean variance of position at least as large as

h(r(t + ⌧) � r(t))2i = �2
0(⌧) > ~⌧/2m. (15)

the standard Heisenberg position uncertainty[38–41] for a body measured at times separated by ⌧ . In this wave
picture, it is derived in exact analogy to di↵ractive spreading of a light beam. Here, the sharp preparatory boundary

A B

FIG. 2. Rotational fluctuations in a large volume of space emerging from Planck scale elements. Transverse position and
directional width of the geometrical wave function are shown on a 3-surface in the rest frame of a particular world line, at a
particular proper time t = 0. The light cone of a Planck scale 4-volume (center) shows a large uncertainty in any direction
and its time derivative because there is no fixed reference frame on that scale. As space emerges over larger intervals of proper
time, information about the nonrotating frame is correlated with distant parts of the system by hierarchical entanglement (see
also Fig. 3). Along a particular world line, the directions collapse in nested light cones; just as at the Planck scale, there is no
reference or memory at times separated by interval 2τ/c beyond a separation R = cτ . Directions within that surface fluctuate
coherently, relative to more distant world lines, with variance 〈θ2

P 〉 = `P /R on a time scale τ = R/c. As discussed in the
following section, the correlation Ξ(τ) in an interferometer signal is determined by the mapping R(τ) = |xi(τ)| defined by the
light circuit, as well as the geometrical projection of the transverse directional variance. On a laboratory scale the direction
fluctuates by about 〈θ2

P 〉1/2 ≈ 10−18, in a fraction of a microsecond, corresponding to a net rotation rate of enclosed matter of
about one radian per ten thousand years.

R, on timescale R/c, with amplitude Ξ ≈ 〈x2
⊥〉 ≈ R`P . The amplitude corresponds to a Planck scale diffraction

bound on directional resolution in space, or to a discrete Planck random walk in transverse position. Field theory
becomes significantly entangled for modes of momentum m— that is, the number of degrees of freedom is significantly
changed— a separations larger than about RC ≈ m−2 in Planck units. The directional correlations can be visualized
as rotational fluctuations, where each component of direction to a world line at position x fluctuates about its classical
value at an angular rotation rate ωi = θ̇i ≡ εijkẋj/xk, with 〈ω2〉1/2 ≈ (R/`P )−3/2 — a form of holographic noise.

Exotic rotational fluctuations can be thought of as a quantum differential rotation of space: everything closer
than R rotates relative to everything more distant than R, by a very small amount. It is helpful to visualize them
as a sum of coherent discrete transverse spatial displacements, or twists, associated with discrete displacements in
time. Consider a null trajectory from a distant source to an observer. For each Planck step, it experiences a random
transverse displacement from the classical trajectory, in which it shares common with other radial trajectories at the
same R. The exotic correlation arises from the sum of coherent transverse displacement at the 2D boundaries of
the nested causal diamonds. The transverse displacements are random quantum variables, because projections onto
different spatial directions do not commute. The fluctuation spectrum thus resembles a discrete, purely transverse
random walk. The total transverse displacment is the sum of random transverse Planck steps, as causal diamonds
are built up of null radial steps. The nested world lines of the space contained in a causal diamond are advected
transversely, with coherent fluctuations in position, shared consistently by all nearby world lines. At the end of the



11

A B

8

The discrete spectrum of area states is[1–3, 50, 51]:

Aj = 8⇡�~Gc�3
X

i

p
ji(ji + 1), (17)

where ji are half-integers i/2 for integers i. We will adopt a value for the Immirizi parameter �, estimated from black

hole entropy to be � = ln 2/⇡
p

3 (see ref. [1], eq. 6.78), recognizing that this is a result from just one particular
fundamental relational theory. Since an important goal of an experimental program is to distinguish between them,
the absolute normalization should be regarded as a significant observable.

For large areas (i >> 1) we can write the eigenvalues (of so-called “main sequence” states) as

An ⇡ AQn2 (18)

for integers n, where

AQ ⌘ 2⇡�~Gc�3 ⌘ `2Q (19)

is a fundamental Planck area unit. As discussed below, the natural fundamental length to adopt according to this

formulation is not the standard Planck length `P , but `Q = `P

q
2 ln 2/

p
3 = 0.895`P . The di↵erence between adjacent

area states is

An+1 � An ⇡ 2AQn. (20)

Notice that the spacing grows with n. Thus for larger areas, each area eigenstate is bigger than the last by much
more than a single Planck area pixel. For a system of area A = R2, the di↵erence between adjacent states is

�A = 2
p

AQA = 2R`Q. (21)

It is natural to identify this quantity with the exotic position correlation amplitude on each scale, ⌅(⌧ = R/c) ⇡
�A(R). The areal quantization reflects the same blurring or loss of relative positional information on large scales that
appears in wave equation solutions, holographic information constraints, and other “infrared” departures from field
theory reviewed above. It explicitly captures an essential nonlocal feature of geometrical states: that the positional
relationships of the geometry itself depend on separation, and degrade over large areas.

III. ROTATIONAL FLUCTUATIONS

Fluctuations of Emergent Direction: Newton’s Bucket at the Planck Scale

The concept of absolute space was invented by Isaac Newton. In a “Scholium to the Definitions” in the Principia
[52–54], Newton describes a thought experiment with a rotating vessel of water. The curved surface of the water
demonstrates the physical reality of absolute space: “This ascent of the water shows [indicat] its endeavor to recede
from the axis of its motion; and the true and absolute circular motion of the water, which is here directly contrary
to the relative, becomes known [innotescit], and may be measured [mensuratur] by this endeavor.” Newton thereby
di↵erentiates rotation from other types of relative motion: “And therefore this endeavor does not depend upon any
translation of the water in respect of the ambient bodies, nor can true circular motion be defined [defineri] by such
translation. There is only one real circular motion of any one revolving body, corresponding to only one power of
endeavoring to recede from its axis of motion, as its proper and adequate e↵ect; but relative motions, in one and the
same body, are innumerable, according to the various relations it bears to external bodies, and like other relations, are
altogether destitute of any real e↵ect, any otherwise than they may perhaps partake of that one only true motion.”

Newton realized that are two di↵erent ways of telling whether a direction to a body is changing. One way is local:
a change of direction causes centrifugal acceleration in the (rotating) frame in which the direction is not changing, as
in Newton’s rotating vessel of water. The other way is to compare with very distant bodies. The agreement between
these two is fundamental and profound. Mach pointed out the need for an explanation for this agreement, which
inspired Einstein in the development of relativity theory.

Today the coincidence seems less profound, or at least less puzzling, because general relativity provides a complete,
rigorous and well tested account of the classical physics of space, including a precise notion of absolute space. We
now know that distant matter (Newton’s “ambient bodies”) actually does directly a↵ect local space: its gravitional
field influences the local nonrotating frame, via gravitomagnetic frame dragging. In cosmological solutions, distant

FIG. 3. Spacelike 2D surfaces bounding nested causal diamonds around world lines A and B, as shown in Fig. (2). One spatial
dimension is suppressed. The rotational state of the entire system must collapse self consistently, requiring entanglement of
states around all enclosed world lines. The incremental transverse Planck displacement at B, associated with the next Planck
increment of separation from A, agrees with the transverse displacement in the smaller nested tangent causal diamonds at the
same event. For null propagation in any direction by one Planck length, a random transverse displacement occurs by about
one Planck length.

day, there is no new effect locally observable on a single world line, and no new effect on any observable that entails
purely radial signal propagation.

This exotic correlation is a quantum effect, not describable by a metric, or with fixed background space. Possibly,
it could be described as a superposition of states, an example of sum of histories with particular set of states [55].
The particular branch of the whole wavefunction depends on the world line (but not on any other property of) an
observer. Again, there is no disagreement between observers about any actual observable. The transverse position
of whole space does not become ”real” until a measurement is made, and any measurement is unique to a particular
world line.

In the quantum states of an interferometer, fields are entangled with geometry, and the states of both finally collapse
at the beamsplitter, where the radiation emerging coherently combines states from macroscopically different paths
through the space. The projection of geometrical quantum states is determined by the true causal structure of the
space, the therefore by the transverse to the observer’s radial direction, not to a measured propagating field. The
relationship between the two (dt/dτ) is explored in the next section in the context of an interferometer signal.

Behavior of Exotic Rotational Fluctuations in Large Systems

In the frequency domain, exotic correlations appear as noise, which we can heuristically picture as rotational
fluctuations of space itself. That is, the apparent direction to any body, compared to any much more distant body,
fluctuates randomly in time. The effect can also be regarded as fluctuations in the inertial nonrotating frame relative
to which directional changes are defined. The fluctuation in direction is very small, with zero mean relative to its
classical value. It behaves like a fluctuation in the rotation of space itself, in the sense that it is coherently shared by
different bodies close to each other in space and time.
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Like zero point fluctuations of a field excitation in a vacuum, this quantum “motion” represents a quantum system
with a nonzero width of a wave function that has a zero mean. In this picture, the zero point refers to a stationary
direction in the classical nonrotating frame. A quantum relationship with matter out to the cosmic event horizon
prepares the global state and defines zero rotation. A zero net rotation state is defined by the classical geometry, but
there is a nonzero quantum variance that depends on distance from an observer. The wave function width is identified
with the exotic correlations and fluctuations.

Directional degrees of freedom are subject to the usual holographic bounds on information, so the above estimates
of directional variance lead to an estimate of the exotic directional correlations and their associated fluctuations,
as shown in Figure (2). Heuristically, the amplitude of the exotic rotational “motion” can be thought of simply as
a Planckian random walk in transverse position: at every Planck step away from the observer, there is a random
transverse positional displacement of one Planck length. The variation at separation R in the proper time t of an
observer is

〈(d∆x⊥/dt)
2
R〉 = (d〈∆x2

⊥〉/dR)(dR/dτ) = c`P . (22)

The displacement is a pure rotation, coherent in all directions from the observer at a constant radial separation defined
by its causal structure— that is, on the unique spacelike 2-surfaces defined by causal diamonds. For calculational
simplicity, in this paper we focus on results in nearly-flat space relevant for experiments, but the formulation should
generalize covariantly to curved spaces.

A precise, mathematically controlled holographic toy model of 3D quantum positional states is summarized in
Appendix (A), based on a well known quantum mechanical system, a spin algebra. As in the standard spin system,
there are actually two independent space dimensions, the radial position and the projection onto any axis. This
model is sufficient for the calculations here and agrees with the scaling of information indicated in the previous
section, including that provided by Loop Quantum Gravity. The model has one scale— the Planck length— which
can be normalized to agree with black hole entropy.

The model is not presented as a fundamental theory, and indeed, does not even have any dynamics; since it is in 3D
instead of 4D, time evolution is still treated heuristically, both here and in the calculation of interferometer response
below. However, it provides a consistent holographic model of quantum position states in 3D, and we can use classical
space-time for the time projection, as in Eq. (22).

In this narrative of emergent geometry, directional orientation on scale R has an angular wave function with a width
fixed by the Planck diffraction angle (Eq. 13), 〈∆θ2

P 〉R ≈ (R/`P )−1. The nearly-classical inertial frame emerges, along
with space itself, only as a long time average. A long duration on the world line entails a causal relation with a large
region of distant emergent space, and the matter within it. On the time scale R/c, any direction is “refreshed”
from a distribution of variance ≈ 〈∆θ2

P 〉R— there is no internal reference, so this is the maximum precision available
within a causal diamond of duration τ ≈ R/c. As a large scale nearly-classical space emerges from Planck scale
quantum elements, the wave function of the system “collapses” hierarchically, in nested causal diamonds[6, 7]. The
emergent unfolding and collapse of the quantum system leads to macroscopically coherent fluctuations in direction,
corresponding to a time series of pure rotations. Directions to matter world lines within radius R fluctuate together,
with a small angular variance 〈∆θ2

P 〉R that varies randomly, on timescale R/c, about the classical nonrotating inertial
frame, defined by the long time average as τ →∞ and R→∞.

This picture of fluctuations is based on the emergent model of space. New information flows into the system along
light cones from far away parts of the system that define the nearly-classical inertial frame. Information arriving at an
observer collapses the wave function in a set of nested causal diamonds[6, 7]. The rest frame proper time t defines a
foliation of spacelike 3-surfaces. On each surface (that is, at each time t) a 2-sphere at distance R corresponds to the
boundary of a causal diamond over an interval t±τ , where τ = R/c. Within the diamonds, the inertial frame collapses
into a consistent definite state. Directions at distance R vary on on timescale ≈ R/c, by about ∆θ ≈ (`P /R)1/2.
At large distances, fluctuations become slower and smaller in angle, approaching the classical limit. The directional
fluctuations increase at smaller distances on short timescales, but the long time average on all scales converges to
the classical nonrotating frame. The directional fluctuations are far too small to observe directly, for fundamental
reasons: they would be at the limit of observability even with Planck frequency radiation. The main observable effect
of rotational fluctuations is the exotic correlation they create in interferometer signals, via the apparatus-dependent
mapping discussed below.

We can describe the effect as statistical fluctuations in rotation rate around any axis. An ordinary rotation corre-
sponds to motion of a body at xj according to the classical relation,

dxi/dt = εijkxjωk, (23)

where ωk is the rotation rate for component k. The typical (root mean square) fluctuation in any component of
rotation rate averaged over a time R/c is about

ωR ≈ c∆θ/R = c`
1/2
P R−3/2. (24)
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The coherence time for fluctuations on scale R is about R/c. Note that the effect entangles states over an enormous
range of scales: the tiny displacement ≈ R1/2 in Planck units, a coherence time ≈ R, and an inverse angular rotation
rate ≈ R3/2. The fluctuation coherence time in a laboratory setting— about a light crossing time— is less than a
microsecond, even though the rotation rate is only about one radian in ten thousand years.

Exotic rotational correlations create the directional entanglement between geometry and field degrees of freedom
indicated by the arguments of the previous section. The geometrical state is the same for all field modes; for modes
of a each scale, entanglement becomes gravitationally significant beyond the corresponding idealized Chandrasekhar
radius when particles of a given mass become relativistic. But even at smaller radii, states of all matter fields should
inherit small phase shifts from states of geometry.

For distances larger than the Planck length, the effect of the fluctuations in single-particle interactions is always
small, and it is very small at observed particle energies, which are less than about 10−16mP c

2. Interferometry by
contrast uses very large numbers of particles to make a coherent, collective nonlocal position measurement of wave
positions, with precision much smaller than a wavelength. The in-common transverse displacement on all fields the
laboratory scale is on the scale of attometers, an amplitude which may be detectable in precision interferometry.
Rotational fluctuations in transverse variance of position in space at separation R (Eq. A13) leads to exotic signal
correlations in interferometers that enclose a nonzero area, as shown in the following section.

For long time averages at a given radius, τ > R/cτ , the time-averaged rotation rate about the asymptotic classical

inertial frame is smaller by a factor ≈
√
R/cτ , as the state of the system is prepared with fresh data from far away:

〈ωR〉τ = c`
1/2
P R−1(cτ)−1/2. (25)

Thus, interferometric experiments need to have superluminal sampling, to resolve the phase motions on timescales
shorter than the causal crossing time of the apparatus.

IV. EXOTIC ROTATIONAL SIGNAL CORRELATIONS IN INTERFEROMETERS

Projection of Exotic Position Correlations onto Signal Correlations

An interferometer maps the world lines of a set of mirrors in space and time onto a single time series, x(t). The
effect of quantum geometry on its correlation function Ξ(τ) depends on the path taken by the light through space-time
before the signal is produced, and in particular, on its interaction with world lines of massive mirrors that change its
direction. Thus, the correlation is determined by the arrangement of the mirrors in the apparatus. The measured
quantity in an interferometer is the time correlation function of the dark port signal,

Ξ(τ) ≡ 〈x(t)x(t+ τ)〉t (26)

where x(t) represents the phase difference between beams arriving and interfering at the beamsplitter, measured in
length units. This observable is chosen because it is by far the best position measurement in the system. The estimates
discussed above predict a typical magnitude of the correlation function of order

Ξ(τ)/τc2 ≈ tP ≡
√

~G/c5 = 5× 10−44sec, (27)

where correlated signals from interferometers can now measure or constrain Planck scale effects.
The observable displacement between the two beams arriving at the beamsplitter, x(t), connects to the properties

of quantum geometry via a projection operator Pµνκ(τ) that characterizes an experiment:

Ξ(τ) ≡ 〈x(t)x(t+ τ)〉 = Pµνκ(τ)Ξµν(xκ) (28)

Here, indices run from 0 to 3, xκ represents the classical 4D separation vector between points, and Ξµν(xκ) denotes
a quantum geometrical correlator in 3+1 D:

Ξµν(xκ) =

ˆ

dxλ∆xν(xλ)∆xµ(xλ + xκ). (29)

The projection Pµνκ(τ), defined for a specific interferometric experiment, determines the mapping of exotic geometrical
correlations onto the 1D signal.

In principle, a quantum theory of geometry should allow calculations of both Ξµν(xκ) and Pµνκ(τ). In practice,
there is not yet a theory of quantum geometry that allows a fully general phenomenology to be calculated for arbitrary
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configurations. Instead possible correlations are constrained by the symmetries of the apparatus and properties of
the emergent space time, such as causal structure. Previous papers[19, 23] show worked examples for the specific
setup of Michelson interferometers, allowing a constraint on strain and shear modes. Here, we study how a Sagnac
interferometer can probe the emergence of pure rotational modes associated with emergence of directions from the
Planck scale.

Exotic Signal Correlation in a Sagnac interferometer

It is possible to sharpen these general considerations into an exact spectrum for signal correlations in a given
apparatus. A specific predicted form of the spectrum, with no parameters, can be derived from the antisymmetry
associated with pure rotations, together with a normalization from holographic gravity.

We describe the apparatus in the rest frame and local inertial frame of the beamsplitter in a Sagnac interferometer,
the world line in an apparatus where the wave function of geometry is entangled with that of measured radiation,
prior to its “collapse” in the square-law detector. In this frame, based on general considerations of holographic scaling
and statistical isotropy, we conjecture the following form for the 3D projection of the exotic correlation (Eq. 29), at
a single time in this frame:

Ξij(xk, τ = 0) = εijkxk`P , (30)

where xk denotes the separation from a classical reference world-line, and εijk represents the antisymmetric 3-tensor.
This form of exotic correlation includes quantum properties of emergent directions. It corresponds to a pure rotation,
and also to a consistent noncommutative quantum algebra of position operators with a holographic density of degrees
of freedom (see Appendix A)— a “toy model” of quantum geometry. The correlation components are orthogonal to
each other, and to their separation xk from an observer, or specifically in this case, from the beamsplitter.

We do not have a complete theory of the apparatus projection Pijk for the emergent 3+1 D system, but we can
guess at relations between the 3D correlations and the 1D correlation in a Sagnac signal, based on the antisymmetric
character of rotational motion. The approach is to define geometric quantities in the rest frame of the apparatus
that can be combined into a quantity that scales like εijkxk`P , in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions
and the signal records their phase difference at the beamsplitter. Let τ+ and τ− denote affine parameters along
the path in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the
beamsplitter, by x+

i (τ) and x−i (τ), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D
spatial indices, although below we will assume a planar apparatus for simplicity. The functions x+

i (τ) and x−i (τ) can
be visualized as the trajectories of “tracer photons” in each direction around the circuit; they map positions on the
circuit in 3-space to points on an interval on the real line, (−P0,+P0), where P0 denotes the perimeter of the circuit,
the origin maps to the beamsplitter, and τ represents a time interval in the proper time of the beamsplitter. The
effects of quantum geometry on the measured correlation Ξ(τ) depends only on the classical path, defined by x+

i (τ)
and x−i (τ), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is ∂x±j /∂τ .

It will be convenient to express a general form for the functional dependence of Ξ(τ) on the classical path in terms
of the “swept-out area”, A(τ), similar to the concept used in Kepler’s second law of planetary motion. Define Ai(τ)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i /dτ = εijk[x+

k (τ)dx+
j /dτ ] (31)

dA−i /dτ = εijk[x−k (τ)dx−j /dτ ]. (32)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA×i /dτ = εijk
1

2
[dx+

j /dτ + dx−j /dτ ][x+
k (τ)− x−k (τ)]. (33)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
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the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±i (τ)/dτ , x±k (τ) and dx±j /dτ combine
into a function of τ that depends on the exotic correlation εijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 4). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
τ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA±/dτ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
θ′(τ). This angle determines the affine mapping between t and τ via dt/dτ = sin θ′, and the swept area via

dA±/dτ = sin θ′dA±/dt = R(τ) sin θ′, (34)

where R(τ) = |xi(τ)|. The contribution to the exotic signal correlation at each τ , apart from a constant offset fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 30, A13) :

(Ξ(τ) + constant) = 〈∆x2
⊥〉1/2R(τ) sin θ′ = `PR(τ) sin θ′. (35)

Since this also scales linearly with R(τ), the swept area rate is simply related to the signal correlation by

(Ξ(τ) + constant) = `P dA/cdτ. (36)

Define the total swept area A(τ) as a sum of the rotational components in the two directions, so that

|dA/dτ | = |dA+/dτ + dA−/dτ |, (37)

and the total enclosed area is

A0 =
1

2

ˆ P0

τ=0

dτdA/dτ (38)

when integrated over the total perimeter P0.
Adding the contributions from the two directions in Eq. (36) then leads to the following formula for exotic correlation

in a planar Sagnac interferometer of any shape:

Ξ(τ)/`P = Ξ0/`P − |dA(τ)/cdτ |, (39)

where the correlation at zero lag,

Ξ0 ≡ Ξ(τ = 0) = 2A0`P /P0, (40)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |cτ | > P0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (5).

It is interesting to compare the exotic correlations with the classical Sagnac effect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
ω0, relative to the local nonrotating inertial frame, is

c∆t = 4A0ω0/c. (41)

The exotic effect produces the tiny fluctuations around this value, due to the imperfect definition of the frame. The
exotic correlation amplitude for a Sagnac device on any scale (Eq. 40), which is a mean square displacement, is
proportional to the classical displacement for an apparatus rotating at angular velocity ω0 = c/2P0, times the Planck
length; once again, the exotic phase displacement resembles a Planckian random walk.
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IV. SIGNAL CORRELATIONS ASSOCIATED WITH EMERGENT ROTATION

Fluctuations of the Local Inertial Frame: Scaling from Newton’s Bucket at the Planck Scale

Newton used the thought experiment of the curved surface of water in a rotating bucket to illustrate the physical
reality of absolute space. Although relativistic invariance dispensed with many features of absolute space, it retains
an absolute definition of rotation: at every event on a world line, there is an absolute, nonrotating inertial frame.

Imagine shrinking Newton’s rotating bucket to a Planck size. In standard theory, the Planck size bucket works much
the same as Newton’s. The classical local inertial frame, defined by lack of rotation, provides a consistent (classical)
account of its relation to distant matter. The nonrotating frame is precisely defined by the classical geometry, and
hence also in quantum field theory, even at the Planck scale. By contrast, a quantum theory of emergent space-time
should explain how the orbital states of atoms “know about” matter in distant galaxies; that is, the frame arises from
a quantum relationship that includes Planckian correlations and fluctuations.

In a fully quantum space-time, all positions and motions should be defined within the system. There is no absolute
reference standard to define the frame; there are only Planck scale elements of the system. Locally, there is no frame
for a Planck size Newton bucket to refer to; its rotation is defined only with respect to nearby elements, all of which
have Planck scale indeterminacy in their wave functions. The inertial frame on the Planck scale is indeterminate, with
a rotational uncertainty of the order of the Planck frequency. The inertial frame emerges with space itself, gradually,
on larger scales. The nonrotating frame only is defined as a long term average, and emerges along with a relation to
a large scale causal diamond of distant material.

Thus, in large systems there should be residual correlated fluctuations in the nonrotating frame, detectable in an
appropriate di↵erential measurement. If these obey holographic bounds as suggested above, rotational fluctuations
at spatial separation R, on timescale R/c, should occur with angular amplitude ⇡ (R/`P )�1/2. Equivalently, any
component of angular rotation fluctuates about zero at a rate ⇡ (R/`P )�3/2.

Model for Planckian Rotational Signal Correlation in a Sagnac interferometer

It is possible to sharpen these general considerations into an exact spectrum for a given apparatus, with no param-
eters. The form of the spectrum is constrained by the antisymmetry associated with pure rotations.

Consider the rest frame and local inertial frame of beamsplitter in a Sagnac interferometer. In this frame, based
on general considerations of holographic scaling and statistical isotropy, we conjecture the following form for the 3D
correlation at a single time in this frame:

⌅ij(xk, ⌧ = 0) = ✏ijkxk`P h�xi�xji (22)

Here, �xi represents the deviation from a classical world-line. This correlation connects with a simple spin algebra
of position commutators, that can be shown to have a holographic density of position states. (see Appendix) The
correlation components are orthogonal to each other, and to their separation from the beamsplitter.

To make a specific calculation of the correlation in a Sagnac apparatus of arbitrary shape, it is useful to visualize
the e↵ect on interferometer signal correlation with a graphical model. In a Sagnac interferometer, the path of light is
a closed circuit. The light follows the same path in two directions and the signal records their phase di↵erence at the
beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path in the two directions. Each one maps a closed
circuit around the circumference, in two directions starting from the beamsplitter, to an interval of ⌧ on the real line
from the origin to ±C0. The beamsplitter maps onto the origin.

Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter, by x+
i (⌧+) and x�

i (⌧�),
in the two directions. Here i = 1, 2, 3 still denotes the 3D spatial index, although we assume a planar apparatus for
simplicity. The a�ne parameters ⌧+ and ⌧� represent time elapsed in the proper time of the beamsplitter. The maps
x+

i (⌧+) and x�
i (⌧�) then represent the trajectories of “tracer photons” in the two directions around the circuit. The

e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+
i (⌧+)

and x�
i (⌧�), with ⌧ = ⌧+ = ⌧�, that is, the positions of a pair of tracer photons, that begin and end their circuit at

the same time.
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. A(⌧) is defined
in the inertial rest frame as the area swept out by lines connecting points at the positions of x+

i (⌧+) and x�
i (⌧�),

that is, the area swept out by lines from the beamsplitter to the tracers in the two directions. The rate of change in
the area between these lines is the sum of the rate of change of the two swept out areas:

dAi/d⌧ = ✏ijk[x+
k (⌧)dx+

j /d⌧+ + x�
k (⌧)dx�

j /d⌧�] (23)
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Consider the rest frame and local inertial frame of beamsplitter in a Sagnac interferometer. In this frame, based
on general considerations of holographic scaling and statistical isotropy, we conjecture the following form for the 3D
correlation at a single time in this frame:

⌅ij(xk, ⌧ = 0) = ✏ijkxk`P (23)

Here, �xi represents the deviation from a classical world-line. This correlation connects with a simple spin algebra
of position commutators, that can be shown to have a holographic density of position states (see Appendix). The
correlation components are orthogonal to each other, and to their separation xk from an observer, in this case, from
the beamsplitter.

To make a specific calculation of the correlation in a Sagnac apparatus of arbitrary shape, it is useful to visualize
the e↵ect on interferometer signal correlation with a graphical model. In a Sagnac interferometer, the path of light is
a closed circuit. The light follows the same path in two directions and the signal records their phase di↵erence at the
beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path in the two directions. Each one maps a closed
circuit around the circumference, in two directions starting from the beamsplitter, to an interval of ⌧ on the real line
from the origin to ±C0. The beamsplitter maps onto the origin.

Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter, by x+
i (⌧+) and x�

i (⌧�),
in the two directions. Here i = 1, 2, 3 still denotes the 3D spatial index, although we assume a planar apparatus for
simplicity. The a�ne parameters ⌧+ and ⌧� represent time elapsed in the proper time of the beamsplitter. The maps
x+

i (⌧+) and x�
i (⌧�) then represent the trajectories of “tracer photons” in the two directions around the circuit; they

define a mapping between the circuit in 3-space and an interval on the real line, (�C0, +C0), where C0 denotes the
circumference of the circuit. The e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the
classical path, defined by x+

i (⌧+) and x�
i (⌧�), with ⌧ = ⌧+ = ⌧�, that is, the positions of a pair of tracer photons,

that begin and end their circuit at the same time. The tangent vector to the path in each direction is dx±
j /d⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. A(⌧) is defined
in the inertial rest frame as the area swept out by lines connecting points at the positions of x+

i (⌧) and x�
i (⌧), that

is, the area swept out by lines from the beamsplitter to the tracers in the two directions. The rate of change in the
area between these lines is the sum of the rate of change of the two swept out areas:

dA±
i /d⌧ = ✏ijk[x+

k (⌧)dx+
j /d⌧ + x�

k (⌧)dx�
j /d⌧ ] (24)

Here, Ai represents an oriented area in 3D (see Fig. 2).
There is also a cross-swept area

dA⇥
i /d⌧ = ✏ijk[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)] (25)

total

dA/d⌧ = dA±
i /d⌧ � dA⇥

i /d⌧ (26)

assuming a planar apparatus, suppress index for Ai

subtract the cross-swept area for consistency with ??
relates to symmetric and antisymmetric parts of torsion/a�ne connection (Appendix)
relation to Pijk

We do not have a complete theory of the emergent 3+1 D system, but Eqs. (23) and (26) can be used to relate 3D
and 1D correlations. The relations between dAi(⌧)/d⌧ , x±

k (⌧) and dx±
j /d⌧ can be combined to a quantity ✏ijkxk`P

that scales like the exotic correlation on each hypersurface.
We therefore posit the following formula for the correlation in a planar interferometer:

⌅(⌧)/`P = 2A0/C0 � |dA(⌧)/cd⌧ | (27)

[look at factor of two here] The correlation integrates to zero for |c⌧ | > C0; thus as required, the average rotation
vanishes in the classical limit of zero frequency. At zero lag, the correlation is

⌅(⌧ = 0) = 2A0`P /C0, (28)

which gives the total mean square phase variation from the exotic correlation in length units.
It is interesting to compare this formula with the classical Sagnac e↵ect. The for an apparatus of any shape, the

phase shift in length units between light going in two directions around a circuit rotating with angular velocity ⌦0,
relative to the local nonrotating intertial frame, is

c�t = 4A0⌦0/c. (29)
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expressed in these units unless otherwise specified:
Side: 20 meters, L = 1.2 ⇥ 1036

Area: 400 square meters, A0 = L2 = 1.5 ⇥ 1072

Circumference: 80 meters, C0 = 5 ⇥ 1036

Fluctuation rms in position: (2A0/C0)
1/2 = 8 ⇥ 1017 = 1.2 ⇥ 10�17 meters, or 12 attometers

Spacing between area states A
1/2
0 = 1036 = 2.6 ⇥ 10�34m2 = 26 square attometers

Angular rotation rate of typical fluctuation h⌦2i1/2 = 2⇡(2A0/C0)
1/2C�2 = 2 ⇥ 10�55 = 3.7 ⇥ 10�12 Hz, or about

one radian per 104 years
Frequency of fluctuation C�1 = 2 ⇥ 10�37 = 3.7 MHz

Model for Holographic Planckian Rotational Signal Correlation in a Sagnac interferometer

It is possible to sharpen these general considerations into an exact spectrum for signal correlations in a given
apparatus. A specific predicted form of the spectrum, with no parameters, can be derived from the antisymmetry
associated with pure rotations, together with a normalization from holographic gravity.

Consider the rest frame and local inertial frame of beamsplitter in a Sagnac interferometer. In this frame, based
on general considerations of holographic scaling and statistical isotropy, we conjecture the following form for the 3D
correlation at a single time in this frame:

⌅ij(xk, ⌧ = 0) = ✏ijkxk`P , (23)

where �xi denotes the deviation from a classical world-line and ✏ijk represents the antisymmetric 3-tensor. This
correlation connects with a simple spin algebra of position commutators, that can be shown to have a holographic
density of position states (see Appendix). The correlation components are orthogonal to each other, and to their
separation xk from an observer, in this case, from the beamsplitter.

We do not have a complete theory of Pijk for the emergent 3+1 D system, but we can guess at relations between the
3D correlations and the 1D correlation in a Sagnac signal, based on the antisymmetric character of rotational motion.
We define geometric quantities in the rest frame of the apparatus that can be combined to a quantity ✏ijkxk`P that
scales like the exotic correlation on each hypersurface.

To make a specific calculation of the correlation in a Sagnac apparatus of arbitrary shape, it is useful to visualize
the e↵ect on interferometer signal correlation with a graphical model. In a Sagnac interferometer, the path of light is
a closed circuit. The light follows the same path in two directions and the signal records their phase di↵erence at the
beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path in the two directions. Each one maps a closed
circuit around the circumference, in two directions starting from the beamsplitter, to an interval of ⌧ on the real line
from the origin to ±C0. The beamsplitter maps onto the origin.

Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter, by x+
i (⌧) and x�

i (⌧),
in the two directions around the circuit. Here i = 1, 2, 3 still denotes the 3D spatial index, although below we will
assume a planar apparatus for simplicity. The a�ne parameter ⌧ represents time elapsed in the proper time of the
beamsplitter. The maps x+

i (⌧) and x�
i (⌧) then represent the trajectories of “tracer photons” in the two directions

around the circuit; they define a mapping between the circuit in 3-space and an interval on the real line, (�C0, +C0),
where C0 denotes the circumference of the circuit. The e↵ects of quantum geometry on the measured correlation ⌅(⌧)
depends only on the classical path, defined by x+

i (⌧) and x�
i (⌧), the positions of a pair of tracer photons that begin

and end their circuit at the same time. The tangent vector to the path in each direction is dx±
j /d⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Ai(⌧) is defined
in the inertial rest frame as an oriented area swept out by lines connecting points at the positions of x+

j (⌧) and x�
j (⌧),

that is, the area swept out by lines between the beamsplitter and the tracers in the two directions (see Fig. 2). The
areas from the beamsplitter to the two tracers change as:

dA+
i /d⌧ = ✏ijk[x+

k (⌧)dx+
j /d⌧ ] (24)

dA�
i /d⌧ = ✏ijk[x�

k (⌧)dx�
j /d⌧ ]. (25)

In general a transverse contribution could come also from from the swept area across the apparatus, between the
two tracers, that includes additional cross terms:

dA⇥
i /d⌧ = ✏ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (26)
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correlation connects with a simple spin algebra of position commutators, that can be shown to have a holographic
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We do not have a complete theory of Pijk for the emergent 3+1 D system, but we can guess at relations between the
3D correlations and the 1D correlation in a Sagnac signal, based on the antisymmetric character of rotational motion.
We define geometric quantities in the rest frame of the apparatus that can be combined to a quantity ✏ijkxk`P that
scales like the exotic correlation on each hypersurface.

To make a specific calculation of the correlation in a Sagnac apparatus of arbitrary shape, it is useful to visualize
the e↵ect on interferometer signal correlation with a graphical model. In a Sagnac interferometer, the path of light is
a closed circuit. The light follows the same path in two directions and the signal records their phase di↵erence at the
beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path in the two directions. Each one maps a closed
circuit around the circumference, in two directions starting from the beamsplitter, to an interval of ⌧ on the real line
from the origin to ±C0. The beamsplitter maps onto the origin.

Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter, by x+
i (⌧) and x�

i (⌧),
in the two directions around the circuit. Here i = 1, 2, 3 still denotes the 3D spatial index, although below we will
assume a planar apparatus for simplicity. The a�ne parameter ⌧ represents time elapsed in the proper time of the
beamsplitter. The maps x+

i (⌧) and x�
i (⌧) then represent the trajectories of “tracer photons” in the two directions

around the circuit; they define a mapping between the circuit in 3-space and an interval on the real line, (�C0, +C0),
where C0 denotes the circumference of the circuit. The e↵ects of quantum geometry on the measured correlation ⌅(⌧)
depends only on the classical path, defined by x+

i (⌧) and x�
i (⌧), the positions of a pair of tracer photons that begin

and end their circuit at the same time. The tangent vector to the path in each direction is dx±
j /d⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Ai(⌧) is defined
in the inertial rest frame as an oriented area swept out by lines connecting points at the positions of x+

j (⌧) and x�
j (⌧),

that is, the area swept out by lines between the beamsplitter and the tracers in the two directions (see Fig. 2). The
areas from the beamsplitter to the two tracers change as:

dA+
i /d⌧ = ✏ijk[x+

k (⌧)dx+
j /d⌧ ] (24)

dA�
i /d⌧ = ✏ijk[x�

k (⌧)dx�
j /d⌧ ]. (25)

In general a transverse contribution could come also from from the swept area across the apparatus, between the
two tracers, that includes additional cross terms:

dA⇥
i /d⌧ = ✏ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (26)
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These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i /d⌧ = ✏ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i (⌧)/d⌧ , x±
k (⌧) and dx±

j /d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏ijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically. The essential assumptions are just the holographic scaling of
transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |xi(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `P R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `P dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

and the total enclosed area is

A0 =
1

2

ˆ C0

⌧=0

d⌧dA/d⌧ (34)

when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`P = ⌅0/`P � |dA(⌧)/cd⌧ |, (35)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P /C0, (36)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
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Here, indices run from 0 to 3, x represents the classical 4D separation vector between points, and ⌅µ⌫(x) denotes
a quantum geometrical correlator in 3+1 D:

⌅µ⌫(x) =

ˆ

dx��x⌫(x�)�xµ(x� + x). (25)

The projection Pµ⌫(⌧), defined for a specific interferometric experiment, determines the mapping of exotic geometrical
correlations onto the 1D signal.

In principle, a quantum theory of geometry should allow calculations of both ⌅µ⌫(x) and Pµ⌫(⌧). In practice,
there is not yet a theory of quantum geometry that allows a fully general phenomenology to be calculated for arbitrary
configurations. Instead possible correlations are constrained by the symmetries of the apparatus and properties of
the emergent space time, such as causal structure. Previous papers[15, 16] show worked examples for the specific
setup of Michelson interferometers, allowing a constraint on strain and shear modes. Here, we study how a Sagnac
interferometer can probe the emergence of pure rotational modes associated with emergence of directions from the
Planck scale.

Exotic Signal Correlation in a Sagnac interferometer

It is possible to sharpen these general considerations into an exact spectrum for signal correlations in a given
apparatus. A specific predicted form of the spectrum, with no parameters, can be derived from the antisymmetry
associated with pure rotations, together with a normalization from holographic gravity.

We describe the apparatus in the rest frame and local inertial frame of the beamsplitter in a Sagnac interferometer,
the world line in an apparatus where the wave function of geometry is entangled with that of measured radiation,
prior to its “collapse” in the square-law detector. In this frame, based on general considerations of holographic scaling
and statistical isotropy, we conjecture the following form for the 3D projection of the exotic correlation (Eq. 25), at
a single time in this frame:

⌅ij(xk, ⌧ = 0) = ✏ijkxk`P , (26)

where �xi denotes the deviation from a classical world-line and ✏ijk represents the antisymmetric 3-tensor. This form
of exotic correlation includes quantum properties of emergent directions. It corresponds to a consistent noncommuta-
tive quantum algebra of position operators with a holographic density of degrees of freedom (see Appendix): a “toy
model” of quantum geometry. The correlation components are orthogonal to each other, and to their separation xk

from an observer, or specifically in this case, from the beamsplitter.
We do not have a complete theory of the apparatus projection Pijk for the emergent 3+1 D system, but we can

guess at relations between the 3D correlations and the 1D correlation in a Sagnac signal, based on the antisymmetric
character of rotational motion. The approach is to define geometric quantities in the rest frame of the apparatus
that can be combined into a quantity that scales like ✏ijkxk`P , in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i (⌧) and x�
i (⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,

although below we will assume a planar apparatus for simplicity. The functions x+
i (⌧) and x�

i (⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference of the circuit, the origin
maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The e↵ects of
quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i (⌧) and x�
i (⌧),

the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent vector to the
path in each direction is @x±

j /@⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define Ai(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i /d⌧ = ✏ijk[x+

k (⌧)dx+
j /d⌧ ] (27)

dA�
i /d⌧ = ✏ijk[x�

k (⌧)dx�
j /d⌧ ]. (28)
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that can be combined into a quantity that scales like ✏ijkxk`P , in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i (⌧) and x�
i (⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,

although below we will assume a planar apparatus for simplicity. The functions x+
i (⌧) and x�

i (⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i (⌧)
and x�

i (⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j /@⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define Ai(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i /d⌧ = ✏ijk[x+

k (⌧)dx+
j /d⌧ ] (27)

dA�
i /d⌧ = ✏ijk[x�

k (⌧)dx�
j /d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i /d⌧ = ✏ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i (⌧)/d⌧ , x±
k (⌧) and dx±

j /d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏ijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |xi(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `P R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `P dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)
constant R,t 

slice

FIG. 4. Definitions of geometrical quantities used to project exotic 4D correlations onto the affine time parameter τ of the light
path in a planar Sagnac circuit in the rest frame of the beamsplitter (Eqs. 31, 32, 33, 37). In this illustration, the circuit is
shown as a solid circle, but the formula for the exact signal correlation function (Eq. 39) applies for an apparatus of arbitrary
shape. The cross term A× is not included in the formula for Sagnac correlation from pure rotational/directional modes.

The general formula (Eq. 39) respects the symmetries expected for an emergent geometry, and for a Sagnac
apparatus. It appears to have the correct spatial scaling and transformation properties to describe the 1D time
domain correlation for a planar interferometer of any shape. It also makes physical sense; for example, in sections
of the circuit where light is not interacting with matter, the path is straight, so that |dA�(τ)/cdτ | is constant for
corresponding intervals of τ . Thus as expected, the correlation is constant over those intervals; the phase of radiation
is not affected by trajectories of emergent world lines it does not interact with. At reflections, the light path changes
directions and the correlation changes value discontinuously, as expected if the matter fields associated with the
positions of the mirrors are directionally entangled with emergent geometry.

The area quantization from Loop Quantum Gravity described above (Eq. 19) has an exact normalization derived
from the entropy of black hole states that can be used to set an absolute normalization for the correlation function.

For definiteness, consider a square arrangment with sides L. For a square, Eq. (18) gives n ≈
√
An/AQ ≈ LA

−1/2
Q ,

hence a natural unit of length `Q = A
1/2
Q . This fixes an absolute normalization for the signal correlation function,

`Q = A
1/2
Q =

√
2 ln 2~Gc−3/

√
3 = 0.895`P (42)

It could be that the appropriate fundamental unit to use in Eq. (39) is not `P , but the loop- normalized Planck length
`Q (Eq. 42). They are almost the same, but in any case experiments should be designed to reach this value, and
eventually to have calibration good enough to measure the difference. An experiment measures the absolute value of
a fundamental length or time, and its exact value has information about its relation to G.



17

L

2L

FERMILAB-PUB-

Signal Correlations in a Sagnac Holometer from Loop Quantum Gravity

⌅(⌧) ⌘ h�x(t)�x(t + ⌧)it (1)

⌅(⌧) = 2A0`P /C0 � (`P /c)(dA/d⌧) (2)

⌅(⌧) = `P (2A0/C0 � dA(⌧)/cd⌧) (3)

⌅(⌧)/`P = 2A0/C0 � dA(⌧)/cd⌧ (4)

A(⌧) is defined in the inertial rest frame as the area swept out by a line connecting the two points a path length c⌧
from the beamsplitter along the circuit, in opposite directions

I. NORMALIZATION FROM LOOP QUANTUM GRAVITY

Discrete spectrum of area states in LQG:

Aj = 8⇡�~Gc�3
X

i

p
ji(ji + 1) (5)

where ji are half-integers i/2 for integers i. The Immirizi parameter � is estimated from black hole entropy to be

� = ln 2/⇡
p

3. For large areas (i >> 1) we can write the eigenvalues [of the “main sequence” states] as

An ⇡ AQn2 (6)

for integers n, where

AQ ⌘ 2⇡�~Gc�3 (7)

is a fundamental Planck area unit. The di↵erence between adjacent area states is

An+1 � An ⇡ 2AQn. (8)

Notice that the spacing grows with n. Thus for larger areas, each area eigenstate is bigger than the last by much more
than a single Planck area pixel. This property reflects the same blurring or loss of relative positional information
on large scales that appears in wave equation solutions, holographic information constraints, and other proposed
“infrared” departures from field theory. It explicitly captures an essential nonlocal Planckian feature not compatible
with a metric-based field approach: the positional relationships of the geometry itself depend on separation, and
degrade over large areas.

Arguments give above suggest that the correlation function for phase variations around a planar circuit scales with
the area divided by the circumference. Not surprisingly, the correlations are related to the shape of the circuit.

Consider an area defined by a planar surface between several world lines, say, the centers of mass of mirrors in
a Sagnac interferometer, all at rest. In classical language, we propagate this surface forward in time by extending
along their world lines in the rest frame. In Quantum General Relativity, there is no independent clock ticking; the
equivalent of a Planckian clock tick is defined relationally by a transition between quantum states of the spacetime
geometry.

Consider the light propagating between the mirrors around this area in two directions from the beam splitter.

For definiteness, consider a square arrangment with sides L. For a square we have n ⇡ LA
�1/2
Q , hence a natural

unit of length `P = `Q = A
1/2
Q . This fixes an absolute normalization for the signal correlation function. In a

2A0/P0= L/2
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Theoretical estimates are reviewed of bounds on quantum geometrical information, and of the
magnitude and character of associated exotic Planckian correlations of position. General principles
are sketched that relate observed correlations in interferometer signals with exotic correlations in
3+1 dimensions, depending on quantum geometry theory and interferometer spatial architecture.
A specific hypothesis is formulated in algebraic and graphical form for the quantum geometrical
correlation in a Sagnac interferometer signal associated with emergence of local, nonrotating inertial
frames. A specific prediction is made for the spectrum of observable Planckian signal correlations
in a Sagnac interferometer, with a normalization suggested from the area quantization spectrum in
Loop Quantum Gravity.

I. INTRODUCTION

The content of any quantum theory can be expressed as correlations between observable quantities. The magnitude
of quantum correlations has an inverse relation to the information in a system: they vanish in the limit of a classical
system, which has an infinite amount of information. In standard physics, matter is quantum-mechanical, and
geometrical relationships are classical. However, it is generally thought that a quantum system underlies space and
time. If so, it should also produce correlations among observable quantities, beyond those of quantum matter.

There is no current standard theory of correlations from quantum-geometrical degrees of freedom. Theoretical
extrapolations from standard theory suggest that quantum gravity limits the amount of information available to a
system of matter and geometry, and therefore, new forms of correlation not predicted in standard theory. It is not
known what form those correlations take.

In this paper we consider the hypothesis that quantum-geometrical correlations take the form of exotic correlations
in the spatial positions of world lines, as traced by trajectories of massive bodies, and that these can be distinguished
from standard quantum correlations by precise measurements of positions of bodies in space. We argue that such
measurements carry significant, specific and quantitative information about the structure of new physics at the Planck
scale.

We have previously considered one class of such measurements, those possible with Michelson interferometers[1–5].
Here, we consider a wider class of possible correlations. In particular, it is argued that measurements sensitive to the
phase of radiation that travels in a closed circuit, as in a Sagnac interferometer, may detect correlations due to the
imperfect emergence, in a laboratory-scale system, of a local nonrotating frame from quantum relationships of Planck
scale elements.

In an interferometer, a quantum-geometrical correlation is ultimately measured as the time domain correlation (or
its frequency domain transform) of an observable x(t), with dimension of length:

⌅(⌧) ⌘ hx(t)x(t + ⌧)it. (1)

A variety of estimates reviewed below suggest that quantum geometry in a system of size c⌧ produces exotic correlations
in position with magnitude roughly

⌅(⌧)/c⌧ ⇡ `P (2)

where `P =
p
~G/c3 denotes the Planck length. They represent a measure of the (inverse of the) information density

in the geometry. We refer to correlations of this magnitude as “exotic” Planck correlations because they are not
produced in standard theory.

Experiments with interferometers— in particular, the Fermilab Holometer[6]— have shown that it is possible to
measure position correlations with Planck sensitivity. A signal is produced by light emerging from a system of mirrors
in some spatial arrangment. Their multidimensional correlation a↵ects the observable data stream, as in Eq. (1).
Such experiments can probe Planck scale quantum degrees of freedom. The signal depends on the detailed spatial
layout of the apparatus, and the detailed character of the exotic 3+1 D position correlations. Thus, an experimental
program can literally map the Planck scale correlations[1–5].

In order to estimate the projection operators for a given apparatus, we need a phenomenology for a still-incomplete
theory of quantum geometry. It is possible to constrain the forms of correlation from the symmetries of the emergent
system, that is, the arrangment of mirrors in the emergent geometry, and make quantitative tests of specific hypotheses.

0

L

FIG. 5. Spatial layout and exotic signal correlation function for a square Sagnac interferometer. The general formula (Eq. 39)
gives the signal correlation for a planar interferometer of any shape.

V. ROTATIONAL FLUCTUATIONS AND COSMIC ACCELERATION

The properties of the Planck scale rotational correlations are scale-free power laws, apart from the Planck scale
itself. Of course systems in the real world are not scale free; systems including stars and their remnant black holes
have scales determined by the physics of matter fields. While we have discussed the effect of geometrical entanglement
on field degrees of freedom, including the small phase displacements in interferometers, we have not yet estimated the
effect of the matter vacuum on emergent quasi-classical geometry. It could be that scales of the matter vacuum break
the scale-free symmetry of pure classical relativity, via directional entanglement. In particular, we suggest here that
it might set the scale of the scalar cosmological constant in the classical field equations.

The Cosmological Constant and Cosmic Acceleration

The Einstein field equations of general relativity can be contracted with the metric tensor gµν to yield a scalar
relation,

Λ =
2πG

c4
(T + 2R), (43)

where Λ denotes the cosmological constant, R ≡ R(c4/16πG) denotes the Ricci curvature scalar R ≡ gµνRµν in units
of 16πG/c4, Rµν denotes the Ricci curvature tensor, and T denotes the trace of the classical energy momentum tensor
of matter, Tµν . Within general relativity, there is no mathematical difference between Λ and a component of the
matter vacuum with Tµν proportional to gµν . In standard theory, Λ is a new constant of nature, unconnected to other
properties of gravity or matter[56]. Its value is also mysterious and arbitrary in holographic theories of gravity[42].

Cosmic data suggest that the expansion of the universe is accelerating[57–60]. This phenomenon can be interpreted
in classical General Relativity as an effect of the cosmological constant Λ. In addition to the standard attractive
gravity of normal forms of matter expressed in T , the cosmological term produces an additional repulsive acceleration
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between two bodies at separation r,

r̈ = H2
Λr, (44)

proportional to their separation r in Newtonian coordinates, where H2
Λ ≡ Λ/3. In cosmological models where matter

has T > 0, HΛ is the asymptotic value of the Hubble expansion rate in the far future, after other forms of matter have
thinned out due to the expansion. In other models, cosmic acceleration is caused by exotic new forms of “dark energy”
with T < 0, whose gravity creates acceleration even with Λ = 0. Those models also introduce new fundamental scales
of mass, generally unconnected with known physics [59–61].

Cosmological Constant from Entanglement of Planckian Fluctuations with the Strong Vacuum

Cosmic Centrifugal Acceleration

This description of global dynamics is at the classical level. If matter and geometry are subsystems of a single
quantum system, the standard distinction between matter (T ) and geometry (R) becomes ambiguous on scales where
they are significantly entangled. As shown above, that happens in an energy dependent way for matter fields, at the
Chandrasekhar radius for a given particle energy. It is natural in this context to suggest that the scale of Λ is set by
a scale where the matter vacuum becomes entangled with geometry.

Here, we interpret cosmic acceleration as an emergent property of space, associated with rotational fluctuations
in the inertial frame and their entanglement with known matter fields. In this interpretation, the scale of cosmic
acceleration is determined by known length scales already built into physics, the Planck scale and the strong interaction
scale. On cosmological scales, the behavior of cosmic acceleration is the same as a classical constant Λ. The direct
evidence for this mechanism would come from interferometric measurement of Planck rotational fluctuations on
laboratory scales.

The starting point is simple: in a classical system rotating at a rate ω, a body at separation R from the axis of
rotation experiences a centrifugal acceleration,

r̈ = ω2r. (45)

Like cosmic acceleration, it is independent of mass, always directed outwards, and is proportional to r. Because of
the noninertial relationship between radial and tangential components of position, a body that moves at a velocity
that maintains a constant direction in a rotating frame accelerates outwards in the inertial frame.

Of course in classical physics, this acceleration entails a force. But in an emergent geometry, the definition of
an emergent acceleration is bound up with the definition of emergent position. Rather than interpreting cosmic
acceleration as a new force, it could be interpreted as an apparent effect of transverse exotic quantum correlations on
systematic emergent radial motion.

It is well known that cosmic acceleration cannot simply be due to a classical centrifugal acceleration from rotation
on a cosmic scale. Classical rotation is not isotropic, and the centrifugal effect from rotation at a rate ω = HΛ would
cause large amplitude, large scale anisotropy of cosmic radiation and expansion that is not observed.

Cosmic acceleration could however be associated with statistically isotropic rotational fluctuations in the relationship
between the local and cosmic inertial frames. These average out in a large scale time or space average, so they
do not conflict with cosmic isotropy data. Even if rotation has zero mean and fluctuates in random directions,
its fluctuations always push outwards, so the non zero, mean square fluctuating component creates a net, secular
centrifugal acceleration. Colloquially, we can say that the universe shakes apart.

Clearly, quantum-geometrical fluctuations in rotation do not have such an effect on all scales. If they did, everything
would fly apart at the Planck rate. But there is a scale where the Planckian rotational acceleration matches the
observed cosmic acceleration. As shown here, that scale coincides with the geometrical entanglement scale for Λ−1

QCD,
the structural scale of the strong interaction vacuum. This heuristic model suggests an explanation for the value of
the cosmological constant, and predicts new effects connected with fluctuations in radial acceleration.

Absolute Value of Λ

As a rough estimate, start with the root-mean-square rate of rotational fluctuations at separation R given by Eq.
(24) in Planck units, ωR = R−3/2. Centrifugal acceleration thus matches cosmic acceleration— that is, ωR = HΛ—
for fluctuations of spatial extent

RΛ ≈ H−2/3
Λ . (46)



19

This is the Chandrasekhar-Planck entanglement scale (Eq. 8) for particle mass

m(RC = RΛ) = R
−1/2
Λ ≈ H1/3

Λ . (47)

It has long been noticed that in Planck units, H
1/3
0 approximately coincides with a proton or pion mass. A direct

physical relationship between cosmological Λ and a strong interaction scale— m ≈ H
1/3
Λ — was posited long ago by

Zeldovich[62], and more recently by Bjorken and others[63–67]. In the picture here, the connection is established, and
the scale is set, via entanglement of the matter vacuum with geometrical rotational states. We conjecture that on
small scales, rotational fluctuations are “virtual” in the sense that a net outward acceleration is not generated in the
emergent space, but that above a scale RΛ connected with strong interactions, entanglement with the matter vacuum
produces a universal secular radial acceleration. At a spatial scale of RΛ, rotational fluctuations on a light crossing
time, with transverse width about equal to the strong interaction length, gives an rms angular rotation rate about
equal to the Hubble constant.

The entanglement conjecture suggests a more precise way to relate the value of Λ to the matter vacuum. The
effective constant Λ in the classical field equation comes about from entanglement of the subsystems represented by
matter T and curvature R. In the classical view the total information in the system is expressed in holographic terms,
the area of the event horizon as determined by Λ. The number of degrees of freedom of the cosmic system can be
estimated in standard physics from the matter side or from the geometry side. They agree when the 3D information
density for the field vacuum equals the mean 3D density of holographic information within the cosmic horizon[24] .

The number of gravitational degrees of freedom is one quarter of the area of the cosmic event horizon in Planck
units, given by πH−2

Λ . Dividing by the 3-volume gives the holographic information density

IΛ = 3HΛ/4. (48)

The density of field modes per 3D volume with a UV cutoff at kmax is

If (kmax) = k3
max4π/3(2π)3. (49)

A scalar field therefore matches cosmic information (that is, IΛ = If (kmax)) for a field cutoff at

kmax = kΛ ≡ (HΛ9π2/2)1/3. (50)

One estimate of HΛ from current cosmological data[60, 68] yields

HΛ = Ω
1/2
Λ H0 = 0.99± 0.018× 10−61 (51)

in Planck units, where H0 denotes the current value of the Hubble constant and ΩΛ denotes the density parameter
of the cosmological constant. (The value and errors here are not meant to be definitive, but are taken for illustration
from current measurements near the state of the art[24].) The value of the field cutoff scale that matches the observed
cosmological information density is thus

kΛ = 1.65± 0.01 × 10−20mP = 201± 1.2 MeV. (52)

This value is close to the characteristic scale ΛQCD of the strong vacuum. Estimates of that scale, from theoretical
extrapolation of measurements at higher energies[69], have a fractional systematic uncertainty comparable those of
the cosmological measurements. Within current systematic errors, the cosmic and matter information densities agree.
The corresponding spatial coherence scale of the rotational entanglement is about

RΛ = k−2
Λ = 3.7× 1039 = 60km. (53)

The scale invariance of gravity is thus broken by the strong interactions, as shown in Figure (6). The effect of the
matter vacuum is imprinted here not by a coupling, but by a process related to ongoing collapse of wave function of
directionally entangled fields and geometry. The scale of cosmic acceleration is set by the imperfect emergence of the
inertial frame— the scale where the directional information content of the field vacuum runs up against the Planck
limit. In the cosmic system, the strong interaction length in 3D maps holographically onto the Planck length in 2D.

The nature of the entanglement can be viewed from either the matter or the geometry side. On the matter side, it
comes from the distance where the directional alignment of a field mode of mass m = ΛQCD, an angle (RΛQCD)−1,

equals the Planck diffraction angle (Eq. 13), R−1/2. On the geometry side, it has to do with localization and
information loss on the cosmic scale. In standard quantum mechanics, the matter wave function has an uncertainty
given by Eq. (15) for a particle of mass m over duration τ ; this is the spatial width of the wave function of a
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particle world line, for a causal diamond extending over τ . For the matter vacuum with m = ΛQCD, that equals the

Chandrasekhar radius at cosmic duration, H−1
Λ . Virtual rotation affects secular radial acceleration when localization

in space matches the size of a field state over a Hubble time, the timescale for information from infinity to be refreshed,
and the natural scale for the cosmic expansion to “notice” the mismatch of local and cosmic inertial frames. At the
radius RΛ, incoming rotational cosmic information aligns the long term average with the cosmic inertial frame, leaving
a residual centrifugal acceleration at larger radii.

Although the detailed underlying mechanism of entanglement has not been rigorously modeled, these heuristic
arguments suggest a relation of the Standard Model to cosmic acceleration via basic physical principles, without
additional parameters, scales, or fields (see Figure 6). It is clearly too simplistic to picture cosmic acceleration as
simply due to the universe “shaking apart”, but there appears to be a plausible connection between two indepen-
dently measurable phenomena that have no relationship in standard theory: the cosmological constant, and exotic
correlations in interferometers. Since the rotational correlations could be confirmed in an experiment, the Sagnac
experimental program described here could provide a concrete clue to the link between Standard Model physics and
cosmic acceleration.

If this link is real, the absolute value of the cosmological constant becomes a more important physical quantity to
measure than before: it is no longer an arbitrary number, but has a value that can be compared precisely, using a
yet-to-be-discovered fundamental theory, with locally measured properties of standard model interactions. In terms
of conventional cosmological parameters, the important quantity is the product ΩΛH

2
0 . A complementary remark

applies to the absolute value of ΛQCD; its exact absolute value may lead to a test of fundamental theory, through
comparison with Λ. Ultimately, the value of the cosmological constant may be set by the value and running of the
strong interaction coupling constant [70].

Coherent Fluctuations of Cosmic Acceleration

A new and unique feature of this scenario is that cosmic acceleration is not constant, but fluctuates holographically.
The systematic acceleration that we measure in cosmic data is a sum of fluctuating contributions from many small
scale rotational fluctuations.

In principle, there must be a locally measurable, radial component to exotic Planck motion that was not included
in the scale-free analysis used for the Sagnac interferometer. It corresponds to a monopole expansion mode of spatial
motion, unlike the pure tensor modes associated with gravitational waves, or pure rotational modes associated with
exotic Planck fluctuations, without the entanglement of the matter vacuum. Unlike a standard cosmological constant,
the radial component is not constant but fluctuates. The fluctuations are not scale free, but have a characteristic
temporal frequency at about c/RΛ ≈ 5000 Hz, and a spatial coherence scale of about RΛ ≈ 60 km. In principle, these
distinctive features could enable a direct experimental test of this scenario for emergent cosmic acceleration. The
temporal variation and spatial coherence distinguish it from classical backgrounds.

The effect could be measured using correlated signals between spatially separate, ground-based interferometers.
Normally in gravitational wave observatories, the important signal is the dark port of the Michelson interferometer,
which records the arm-length difference or strain mode associated with gravitational waves. For cosmic gravitational
wave sources, this signal is correlated over large interferometer separations. Here, we are interested in another signal,
the common-mode or bright port signal associated with a breathing mode, which measures the sum of the arms. It
should have significant power only at low frequencies (below about 5000 Hz), and should be correlated spatially only
for interferometers within about 60 km of each other. This unusual combination of correlation features— a signature
of emergent, quantum cosmic acceleration— is unlike any well known classical source of signal correlation.

The heuristic picture above allows a quantitative estimate of the magnitude of the effect. For an apparatus of size
RΛ, the radial velocity increases in time RΛ/c by an amount ∆v ≈ H2

ΛR
2
Λ/c, which is also the typical fluctuation.

This leads to a positional displacement difference by about ∆x ≈ H2
ΛR

3
Λ/c

2, which according to Eq. (46) is only
about one Planck length. The sensitivity required to detect this effect is of course far beyond that of gravitational
wave observatories[71].

This result also suggests that the exotic Sagnac correlation derived above (Eq. 39) is little affected by matter
entanglement, and should apply also for interferometers much larger than RΛ. It could also be that measurable
modifications occur, for example, the cross term (Eq. 33) may no longer vanish. It could be tested in this regime by
a long baseline interferometer in space, similar to earlier designs for the Laser Interferometer Space Antenna. In a
triangle configuration of satellites, combinations of signals can be combined to yield estimates of all modes of motion—
strain, shear, expansion, and rotation, including Sagnac modes[72, 73]. A more advanced design (e.g. ref. [74]) may
be needed to isolate the exotic noise from actual sources of gravitational waves.

In this context it is useful to provide estimates of the exotic fluctuations in the units of broad band noise intensity
most familiar in these studies, the broad band density in a stochastic background of gravitational waves, ΩGW =
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FIG. 6. Value of the cosmological constant expansion rate HΛ (Eq. 51) determined by entanglement of quantum geometry with
the matter vacuum. The value can be derived from the QCD scale ΛQCD and the Planck scale in various ways, for example by
matching information density in the vacuum to the holographic information of the universe (Eqs. 50, 52), or from matching
the wave function width of a particle over a Hubble time via standard quantum mechanics (Eq. 15) to the Chandrasekhar scale
of the vacuum. Cosmic acceleration is viewed heuristically in this scenario as the mean centrifugal acceleration from Planck
rotational fluctuations of the Standard Model vacuum.

ρGW /ρcrit. In Planck units, the cosmic critical density is ρcrit ≈ H2
Λ. The exotic correlations create an equivalent

metric strain h ≈ R−1/2 at separation R, so their equivalent apparent density at frequency f = R−1 is ρΞGW ≈ h2f2 ≈
R−3, that is, one Planck mass per volume R3. In cosmic units, using RΛ ≈ H

−2/3
Λ we have ΩΞGW = ρΞGW /ρcrit ≈

(R/RΛ)−3. Thus on the scale RΛ the apparent density of holographic noise in a Sagnac interferometer is about the
same as a critical density of gravitational waves, while at higher frequencies (that is, above about 5000 Hz), it mimics
a much higher density.

The heuristic model suggests an even more exotic correlation, in cosmic acceleration of distant sources. That is,
there is a small part of acceleration in common to all cosmic sources. The contribution from the local rotational
fluctuation is highly correlated for sources at all redshifts across large angles of the sky, with a pattern that is almost
the same for measurements at the same time at observatories within 60 km of each other. This unusual form of
quantum correlation is also a unique and distinctive signature of the proposed scenario, but again is not practical to
implement in a real experiment. The acceleration of cosmic sources with time fluctuates at ≈ 5000 Hz; the fluctuation
amplitude in distance on this timescale is about a Planck length.
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Appendix A: A Toy Model of Quantum Geometry: Spin Algebra of Quantum Position Operators

We summarize here a simple, antisymmetric spin algebra commutator of 3-dimensional position operators that
serves as a toy model for a quantum-geometrical correlation of positions (Eq. 30). We show that the system has a
holographic density of position states, and derive the transverse variance of the position wave function used above to
estimate the Sagnac correlation function (Eqs. 36, 39) and rotational fluctuations (Eq. 24). Apart from the Planckian
coefficients, most of the algebra here is standard in the literature on quantum angular momentum, and is quoted here
for convenience, similar to a summary of the same system in ref. [23].

This system includes no model of dynamics, and also has no direct relation to the standard literature on noncommu-
tative geometry or fields[13, 75–77]. , However, it provides a consistent holographic quantum model for macroscopic
geometrical relationships of Planck scale elements in three dimensions. The main point is to display explicitly a
quantum system where the three dimensions of space map onto two dimensions, one radial/longitudinal and one
directional. The mapping is the same as that for spins: the radial position dimension corresponds to the total angular
momentum, and the directional position dimension corresponds to its projection onto any axis.

Consider position operators x̂i that obey the standard spin algebra with Planck scale commutator:

[x̂i, x̂j ] = x̂kεijki`P . (A1)

These represent quantum-geometrical objects in three spatial dimensions. Their wave functions live on a single
spacelike hypersurface. They represent projections of world line wave functions; that is, the 3-D correlation is

Ξij(xk, τ = 0) = εijkxk`P , (A2)

which is the basis of the correlation analysis above (Eq. 30). This system can be analyzed in exactly the same way
as standard angular momenta, albeit with a completely different physical application.
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In analogy with the total angular momentum in a spin system, define a “separation operator”, that has dimensions
of area:

|x̂|2 ≡ x̂ix̂i, (A3)

It commutes with x̂i operators, so it behaves classically:

[|x̂|2, x̂i] = 0, (A4)

This operator takes discrete eigenvalues:

|x̂|2|l〉 = l(l + 1)`2P |l〉. (A5)

The discrete eigenvalues correspond to classical values of separation R according to:

R2 ≡ l(l + 1)`2P ≈ l2`2P (A6)

where l are positive integers, quantum numbers of eigenstates of |x̂|2.
Let li denote eigenvalues of position components projected in direction i. In a state |l〉 of separation number l, the

projected position operator x̂i can have eigenvalues in units of `P ,

li = l, l − 1, . . . ,−l, (A7)

giving 2l + 1 possible values. In an eigenstate with a definite value of position in direction i,

x̂i|l, li〉 = li`P |l, li〉. (A8)

The total number of position eigenstates in a 3-sphere is

NQ3S(R) =

lR∑

l=1

(2l + 1) = lR(lR + 2) = (R/`P )2, (A9)

where the last equality applies in the large l limit. Thus, the number of quantum-geometrical position eigenstates
in a volume scales holographically, as the surface area in Planck units. This simple model of quantization closely
resembles (but is not exactly the same as) the spectrum of area states more rigorously derived within the framework
of loop quantum gravity (Eq. 17).

Direct calculation (e.g., ref.[78]) also leads to the following product of amplitudes for measurements of either of the
transverse components x̂j , with j 6= i:

〈li|x̂j |li − 1〉〈li − 1|x̂j |li〉 = (l + li)(l − li + 1)`2P /2, (A10)

again for any i. The left side of equation (A10) can be interpreted as the expected value for the operator

x̂j |li − 1〉〈li − 1|x̂j (A11)

for components with j 6= i, in a state |li〉 of definite x̂i. For l >> 1 and li ≈ l, this corresponds to the expected
variance in components of position transverse to separation:

〈x̂j |li − 1〉〈li − 1|x̂j〉 → 〈x̂2
j 〉. (A12)

We can rewrite this as a formula for the variance of the wave function x̂⊥ in any direction transverse to separation,
given by the right hand side of Eq. (A10) in the limit of l >> 1, for l±li = 1 (or indeed for any value of |l−li| << l1/2):

〈x̂2
⊥〉 = R`P . (A13)

This simple result is used above to set the scale of transverse position variance in phenomenological estimates, for
example in Eqs. (36) and (24).

The same algebra can be applied to actual angular momentum. With j and ~ in place of x and `P , the width of the
wave function for measured transverse components of standard angular momentum, in the limit of large |j|, is given
by:

〈ĵ2
⊥〉 = |j|~. (A14)

This simple formula does not explicitly appear in standard treatments of angular momentum.
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Appendix B: Experiment Concept: Superluminally Cross-Correlated, Co-located, Power-Recycled Sagnac
Interferometers

The exotic correlation (Eq. 39) may be detectable using an apparatus similar to the Fermilab Holometer, re-
configured to measure pure rotational modes. The Holometer achieves the sensitivity needed to measure exotic
quantum-geometrical correlations by sampling and cross-correlating signals, from two separate but spatially adjacent
power-recycled Michelson interferometers, at superluminal rates— that is, many times per light-crossing.

A measurement of the exotic rotational correlation (Eq. 39) could be achieved with a similar experiment, configured
as two Sagnac interferometers that enclose overlapping areas. To achieve shot-noise-limited sensitivity, such a device
would require superluminally correlated power-recycled Sagnac interferometer cavities. This concept requires more
development. The most advanced Sagnac interferometers operating today are active ring laser systems optimized for
much lower frequencies, and used in ultra high precision applications such as geodesy [26, 79].

Sagnac interferometers are sometimes made with circuits of optical fibers[80]. Although in some ways that option is
much simpler than the power-recycled cavity, it is not considered here, partly because shot noise limited performance
at high power has not been demonstrated as it has for cavities. The exotic correlations would add a new source
of noise to Sagnac-configured gravitational wave interferometers, such as some designs for the Laser Interferometer
Space Antenna[72].

The size of the experimental apparatus is determined by a trade between competing effects: a larger device probes
lower frequencies, where photon shot noise is smaller compared to the signal, but technical and environmental noises
are larger. The size of the system chosen for illustration here is based on the successful demonstration[28] of shot-
noise-limited performance in the Holometer at the same frequency, which yields sufficient sensitivity to measure the
predicted correlation.

In the following, unless explicitly stated, units of length and time are Planck values `P =
√
~G/c3 = 1.616× 10−35

meters, tP =
√

~G/c5 = 5.4× 10−44 seconds.

• Two square Sagnac interferometers, each 20 meters on a side, L = 1.2× 1036, are placed so their areas substan-
tially overlap. Signals are cross correlated to separate the in-common exotic correlations from standard forms
of uncorrelated quantum and technical noise.

• Each is a resonant power-recycled cavity to reduce shot noise.

• The area is 400 square meters, A0 = L2 = 1.5× 1072.

• The perimeter is 80 meters, P0 = 5× 1036.

• With normalization the standard Planck length, the rms fluctuation in phase at the beamsplitter (Eq. 40) is

Ξ
1/2
0 = (2A0/P0)1/2 = 8 × 1017 = 1.2 × 10−17 meters, or 12 attometers, a level measurable with Holometer

technology. With the Loop Quantum Gravity normalization (Eq. 42), it is smaller by a factor of
√
`Q/`P =

0.946. The absolute value of the correlation carries information about details of new Planck scale physics, which
motivates absolute calibration at better than a few percent precision.

• The spacing (Eq. 21) between loop area states for the 400 square meter total area eigenstate is ∆A = 2L`Q =
2× 1036 = 5× 10−34m2 = 23 square attometers.

• The equivalent angular rotation rate corresponding to the correlation amplitude is about

〈ω2〉1/2 = 2π(2A0/P0)1/2P−2
0 = 2× 10−55 = 3.7× 10−12 Hz, (B1)

or about one radian per 104 years.

• The peak frequency of the signal fluctuation spectrum (the Fourier transform of Eq. 39) occurs at about
f ≈ P−1

0 = 2 × 10−37 = 3.7 MHz. As in the Holometer, a high bandwidth sampling and correlation system is
necessary to measure broad band spectra well below photon shot noise in this band.

• The classical phase shift between the two directions around the circuit, from the earth’s rotation, first measured
in ref. [81], is

δφ/2π = c∆t/λ = 4A0ωearth sin(θlat)/c = 3.9× 10−4, (B2)

using Eq. (41), laser wavelength λ = 10−6 m, and the latitude of Fermilab, θlat = 42 degrees.




