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Abstract
We compute the next-to-leading order QCD corrections to the production of two Z-bosons in

the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections

provide distinct and, potentially, the dominant part of the N3LO QCD contributions to Z-pair

production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives

the dominant contribution from loops of five light quarks, that are included in our computation in

the massless approximation. We find that QCD corrections increase the gg → ZZ production cross

section by O(50%− 100%) depending on the values of the renormalization and factorization scales

used in the leading order computation, and the collider energy. The large corrections to gg → ZZ

channel increase the pp→ ZZ cross section by about six to eight percent, exceeding the estimated

theoretical uncertainty of the recent NNLO QCD calculation.
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I. INTRODUCTION

Production of pairs of vector bosons in proton collisions is one of the most interesting

processes studied by ATLAS and CMS during the LHC Run I [1–3]. Indeed, pp → ZZ,

pp → W+W−, and pp → γγ were instrumental for the discovery of the Higgs boson. As

the focus of Higgs physics shifts from the discovery to precision studies of the Higgs boson

properties, di-boson production processes become essential for constraining anomalous Higgs

boson couplings, for measuring the quantum numbers of the Higgs boson and for studying

the Higgs boson width, see Refs. [4–7]. Additionally, these processes provide important

tests of our understanding of the Standard Model and can be used to constrain anomalous

electroweak gauge boson couplings.

Production of electroweak gauge boson pairs occurs mainly due to quark-antiquark annihila-

tion qq̄ → V1V2. This contribution is known through next-to-next-to-leading order (NNLO)

in perturbative QCD [8–13]. However, as was pointed out in Refs. [14–16], there is a sizable

contribution from the gluon annihilation channel gg → V1V2, whose significance depends

on the selection cuts. For example, aggressive cuts applied to pp → W+W− to separate

the Higgs boson signal from the continuum background can increase the fraction of gluon

fusion events in the background sample [17]. Since gg → V1V2 is a one-loop process and

since production of electroweak boson pairs at leading order (LO) occurs only in the qq̄

channel, the gluon fusion contribution to pp→ V1V2 through NNLO only needs to be known

at leading order, i.e. the one-loop approximation. Thus, all existing numerical estimates

of the significance of the gluon fusion mechanism in weak boson pair production ignore ra-

diative corrections to gg → ZZ that are, potentially, quite large [18]. The need to have an

accurate estimate of QCD corrections to gluon fusion processes for the Higgs width [19, 20]

and generic off-shell measurements [21–23] was strongly emphasized in Ref. [7].

In this paper, we will focus on the calculation of the next-to-leading order (NLO) QCD

corrections to the gluon fusion contribution to pp → ZZ process. The largest contribution

to gg → ZZ comes from quarks of the first two generations; these quarks can be taken to be

massless. The situation is more complicated for quarks of the third generation. Ideally, we

would like to include the (massless) bottom quark contribution and ignore the contribution

of the massive top quark since, at leading order, the top-quark contributions change the
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cross section by only about 1% (cf. Refs. [24, 25]).1 We can separate bottom and top

contributions everywhere except in triangle diagrams that involve anomalous correlators of

vector and axial currents. In these triangle diagrams, when bottom and top contributions are

combined, the residual contributions are suppressed by the top quark mass, provided that we

can assume it to be larger than any other energy scale in the problem. Unfortunately, in these

diagrams top and bottom contributions can not be separated because the resulting theory

is anomalous. To deal with this issue, we adopt the following strategy: we include quarks of

the first two generations and the b-quark in our calculation in the massless approximation

and we neglect all triangle diagrams whose contribution is then naturally associated with

the quark contributions to gg → ZZ process. We note that the evaluation of the NLO QCD

corrections to top quark mediated contribution to gg → ZZ process is not yet possible

because the relevant two-loop amplitudes are not available. However, such contributions

were recently studied in Ref. [26] in the approximation of a very large mass of the top quark.

In that calculation quite large QCD corrections were found.

Computing NLO QCD corrections to gg → ZZ process is challenging because it is loop-

induced. For this reason, the NLO QCD computation requires two-loop virtual matrix

elements for gg → ZZ and one-loop matrix elements for gg → ZZg processes. The recent

progress in calculating two-loop integrals with two massless and two massive external lines

[27–31] made it possible to compute the required two-loop scattering amplitudes. Such

amplitudes were calculated recently for qq̄ → V1V2 [32, 33] and gg → V1V2 [34, 35] processes.

The second ingredient that we need is the gg → ZZg amplitude. Since this is a one-

loop amplitude, it can be calculated in a relatively standard way, at least as a matter of

principle. In fact, such calculations were performed in the past [36, 37] and used to predict

the production cross section for pp → ZZ + j. Automatic tools for one-loop computations

can also deal with this process [38, 39]. Nevertheless, it is a non-trivial computation since,

if we aim at calculating the NLO QCD corrections to gg → ZZ → 4l, we require fast and

stable calculation of helicity amplitudes for gg → ZZg process that includes decays of Z-

bosons to leptons and can be extrapolated to soft and collinear kinematics of the final state

gluon. Because of that, we decided to construct our own implementation of the scattering

1 Contribution of the top quark loop becomes non-negligible in the region of high four-lepton invariant
masses m4l > 2mt.
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amplitude for gg → ZZg using the unitarity methods [40–44].2

The paper is organized as follows. In Section II we present a brief review of the calculation

of the two-loop scattering amplitude for gg → ZZ process. In Section III we discuss the cal-

culation of the one-loop helicity amplitudes for gg → ZZg and present numerical results for

a kinematic point. In Section IV we present numerical results for gg → ZZ contribution to

pp→ ZZ process at 8 and 13 TeV LHC at leading and next-to-leading order in perturbative

QCD. We conclude in Section V.

II. THE TWO-LOOP SCATTERING AMPLITUDES FOR gg → ZZ

We start with a brief discussion of the two-loop scattering amplitudes for gg → ZZ process.

Helicity amplitudes for this process were recently computed in Refs. [34, 35]. In these

references, each of the two independent helicity amplitudes for the process gg → ZZ → 4l

was written as linear combinations of nine form factors that depend on the Mandelstam

invariants of the “prompt” process gg → ZZ and the invariant masses of the two Z bosons.

The form factors are expressed in terms of polylogarithmic functions, including both ordinary

and Goncharov polylogarithms.

In this paper we use the results of Ref. [35] which are implemented in a C++ code that

can produce numerical results with arbitrary precision. In order to detect possible numer-

ical instabilities, the code compares numerical evaluations obtained with different (double,

quadruple and, if required, arbitrary) precision settings. If the results differ beyond a chosen

tolerance, the precision is automatically increased. Of course, switching to arbitrary preci-

sion increases the evaluation time substantially. Fortunately, we found that for phenomeno-

logically relevant situations, the number of points where the code switches to arbitrary

precision is negligible. Such points originate from kinematic regions where the two Z-bosons

have either vanishing kinetic energies or vanishing transverse momenta. The amplitude

squared is integrable in both of these regions, but, in practice, it can become numerically

unstable. Since the contribution of these regions to the gg → ZZ cross section is relatively

small, cutting them away, in principle, leads to an opportunity to perform stable numerical

2 For recent reviews see Refs. [45, 46].
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integration of the two-loop virtual correction over the four-lepton phase-space, resorting to

quadruple precision only. However, we found that the improvement in performance achieved

by cutting away the problematic regions is rather limited, so we used the default arbitrary

precision implementation of the two-loop amplitude in practice.

Since the gg → ZZ amplitude is one of the most complicated amplitudes that are currently

known analytically, it is interesting to point out that the required evaluation times are

acceptable for phenomenological needs. Indeed, calculation of all helicity amplitudes requires

about two seconds per phase-space point in quadruple precision and, since the phase-space

for gg → ZZ is relatively simple, one does not need excessively large number of points to

sample it with good precision.

For further reference we provide numerical results for the finite remainder of the one- and

two-loop scattering amplitudes defined in qt-subtraction scheme, see Ref. [35]. The numerical

results are presented for the choice of the renormalization scale µ =
√
s, where s is the

partonic center-of-mass energy squared. The qt-subtraction scheme [47] is discussed in detail

in Ref. [48]. We consider the kinematical point

g(p1) + g(p2)→ (Z/γ)(p34) + (Z/γ)(p56)→ e−(p3) + e+(p4) + µ−(p5) + µ+(p6)

with (in GeV units)

p1 = (99.5173068698129, 99.5173068698129, 0, 0),

p2 = (99.5173068698129,−99.5173068698129, 0, 0),

p3 = (45.1400347869485, 43.4878610174890,−9.85307698310431, 7.02463939683013),

p4 = (55.6586029753540,−27.4053916434553, 48.1951275617684, 4.90451560725290),

p5 = (36.2015682945089, 34.5902512456859,−8.01242197258994, 7.06180995747356),

p6 = (62.0344076828144,−50.6727206197196,−30.3296286060742,−18.9909649615566),

(1)

and define a normalized amplitude through the following equation

d σgg→(Z/γ)(Z/γ)→4l =
(N2

c − 1)

512s
× 10−6 ×

∑
λ1,λ2,λe,λµ

∣∣∣A(1λ1g , 2
λ2
g ; 3λee− , 4

−λe
e+ , 5

λµ
µ− , 6

−λµ
µ+ )

∣∣∣2 dLIPS4.

(2)

Note that in Eq.(2) all the color factors have been factored out and dLIPS4 is the standard

Lorentz-invariant phase-space of the four final leptons. The color-stripped amplitude admits

5



Helicity amplitude 1-loop 2-loop

A(1−, 2−; 3−, 4+, 5−, 6+) −3.6020208− 0.80680028 i −87.785548 + 35.086257 i

A(1−, 2+; 3−, 4+, 5−, 6+) +0.2507409 + 0.38426042 i +18.585086 + 7.5961902 i

Table I: Results (in GeV−2) for normalized qt remainder of one- and two-loop amplitudes for different

choices of gluon and lepton helicities, evaluated at the scale µ =
√
s. See text for details.

an expansion in the strong coupling constant

A(1λ1g , 2
λ2
g ;3λee− , 4

−λe
e+ , 5

λµ
µ− , 6

−λµ
µ+ ) =

(
αs(µ)

2π

)[
A1l(1

λ1
g , 2

λ2
g ; 3λee− , 4

−λe
e+ , 5

λµ
µ− , 6

−λµ
µ+ )

+

(
αs(µ)

2π

)
A2l(1

λ1
g , 2

λ2
g ; 3λee− , 4

−λe
e+ , 5

λµ
µ− , 6

−λµ
µ+ ) +O

(
α2
s

)]
. (3)

Numerical results for the two independent helicity amplitudes at one- and two-loops are

given in Table I. We emphasize that the results in Table I are given in the qt-subtraction

scheme, c.f. Ref. [35].

III. THE ONE-LOOP SCATTERING AMPLITUDE 0→ gggZZ

In this Section, we discuss the computation of the one-loop scattering amplitude required for

the calculation of the inelastic process gg → ZZ + g.3 To this end, we consider the process

0 → g(p1)g(p2)g(p3)Z(p45)Z(p67). Decays of the Z-bosons are allowed but, since we are

interested in the on-shell production of the two Z-bosons, we do not include single resonant

diagrams where one of the Z-bosons is emitted from the decay products of the other one,

see Fig. 1. We will refer to the decay products of the Z-boson with momentum p45 as the

electron and the positron with momenta p4 and p5 and to the decay products of the Z boson

with momentum p67 as the muon and the anti-muon with momenta p6 and p7, respectively.

All leptons are taken to be massless. Since helicities of massless leptons are conserved, we

only need to specify helicities of the final state leptons e− and µ−; the allowed helicities of

the positron and the anti-muon in the final state are then automatically fixed.

3 To simplify the notation, in this section we do not consider photon-mediated four-lepton amplitudes. For
phenomenological results discussed in Sec. IV, we consider the full gg → (Z/γ)(Z/γ) + g amplitude.
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a) b)

Figure 1: Representative Feynman diagrams for the 0 → gggZ(→ e−e+)Z(→ µ−µ+) amplitude.

Double resonant diagrams (a) are relevant for both the on-shell and the off-shell production. Single

resonant diagrams (b) are only relevant for the off-shell production and are not included in our

computation. See text for details.

We write the interaction vertex of the Z-boson and a fermion pair as

Zf̄γµf ∈ gL,f
γµ(1 + γ5)

2
+ gR,f

γµ(1− γ5)

2
, f ∈ (l, q). (4)

The left and right couplings for leptons and quarks are given by an identical formula

gL(R),f =
Vf ± Af
cos θW

, (5)

where we use i) Vl = −1/2 + 2 sin2 θW , Al = −1/2 for charged leptons; ii) Vu = 1/2 −
4/3 sin2 θW , Au = 1/2 for up-type quarks; and iii) Vd = −1/2 + 2/3 sin2 θW , Ad = 1/2 for

down-type quarks.

The 0→ gggZZ scattering amplitude can be written as a sum of two terms

AZZ = g3
sg

4
W

(
Tr [ta1ta2ta3 ]AZZ123 + Tr [ta1ta3ta2 ]AZZ132

)
, (6)

with Tr(ta tb) = δab/2. The two color-ordered amplitudes, stripped of their couplings to

leptons and quarks, are defined as

AZZijk = Cλe,eCλµ,µ
(
gZZLLALLijk(λi, λj, λk;λe, λµ) + gZZRRARRijk (λi, λj, λk;λe, λµ)

)
. (7)

In Eq.(7) we introduced

Cλ,l = DZ(m2
ll) (gL,lδλ,− + gR,lδλ,+) , (8)

where DZ(s) is the function related to the Breit-Wigner propagator DZ(s) = s/(s−M2
Z +

iMZΓZ). The couplings gZZLL and gZZRR are expressed through Z-boson couplings to quarks
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propagating in the loops

gZZLL =
∑
q

g2
L,q, gZZRR =

∑
q

g2
R,q. (9)

Given these definitions, it is easy to see that the helicity amplitudes ALL,RRijk (λi, λj, λk;λe, λµ)

can be calculated for vector couplings of Z-bosons to leptons and quarks, provided that one

keeps left-handed (right-handed) quarks propagating clockwise in the fermion loop. This is

a natural separation if the scattering amplitudes are computed using the unitarity methods

[40–44]. There is a useful relation between left- and right-handed helicity amplitudes for two

orderings of external gluons

ALL132(λ1, λ3, λ2;λe, λµ) = −ARR123(λ1, λ2, λ3;λe, λµ),

ARR132(λ1, λ3, λ2;λe, λµ) = −ALL123(λ1, λ2, λ3;λe, λµ).
(10)

These equations suggest that it is sufficient to compute LL and RR amplitudes for a single

ordering; once this is done, all relevant amplitudes for the second ordering can be con-

structed. Finally, we emphasize that we exclude the Breit-Wigner factor4 for the Z-bosons

from the definition of the color-ordered helicity amplitudes but we include the 1/s factor in

its place; this can be clearly seen from the definition of the DZ(s) function in Eq.(8).

It is well-known that any one-loop amplitude can be written as a linear combination of

one-loop scalar integrals that include four-, three- and two-point functions and a rational

part

ALL,RRijk (λi, λj, λk;λe, λµ) =
∑

cLL,RRi Ii +RLL,RR, (11)

The coefficients ci in the above equation, as well as the rational part, can be calculated using

unitarity methods.

The idea of the unitarity method is that one can calculate the different discontinuities of the

left- and right-hand sides of Eq.(11) and then combine them in such a way that coefficients ci

are extracted algebraically. Calculation of the reduction coefficients and the rational part can

be performed either analytically or numerically. In this paper, we use a mixed approach.

We compute the coefficients ci using numerical four-dimensional unitarity introduced in

4 As we mentioned earlier, we are interested in the on-shell production of the two Z-bosons in this paper.
However, we construct the relevant piece of gg → ZZ amplitude in full generality, including Breit-Wigner
propagators for the Z-bosons, to enable its later use to study QCD corrections to gg → ZZ∗ process.
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Helicity LL RR

Ã123(+,+,+;−,−) −42.714233 + 117.60020 i −138.32358 + 139.68765 i

Ã123(+,+,−;−,−) +134.26016 + 161.13392 i +138.09750 + 188.27580 i

Ã123(−,−,+;−,+) −32.287418 + 2.1139258 i −31.55258 + 32.433444 i

Table II: Results (in GeV−3) for normalized color-ordered amplitudes for 0→ gggZ(e+e−)Z(µ+µ−)

process, for different choices of gluon and lepton helicities. See text for details.

Ref. [43]. The rational part, on the other hand, is computed analytically using the method

described in Refs. [49, 50]. Technical details about the unitarity methods used for one-loop

computations in QCD can be found in Ref. [45].

From the point of view of the unitarity methods, the peculiarity of 0 → gggZZ process is

that it involves two colorless particles, making full color ordering for scattering amplitudes

impossible. This has the following implications. Any unitarity computation starts with

the list of independent “parent diagrams” that are subsequently cut into on-shell scattering

amplitudes. Although parent diagrams are independent by construction, not all their cuts

are, if permutations of external particles are allowed. The challenge, therefore, is to start

with the “parent diagrams”, write down all the cuts that they might have and then exclude

all the cuts that are not independent. This issue was successfully dealt with in the context

of many recent calculations of one-loop scattering amplitudes for quarks, gluons and vector

bosons, see e.g. Refs. [51–54]. In this paper, we construct the independent set of unitarity

cuts following the methodology explained in those references.

After identifying independent cuts, we find 39 quadruple, 45 triple and 18 double cuts.

There are no single-line cuts since internal fermions in our calculation are massless. Each

of these cuts is described by a product of tree-level color-ordered amplitudes. The required

helicity amplitudes include q̄gq, q̄Zq, q̄ggq, q̄gZq, q̄ZZq, q̄gggq, q̄ggZq, q̄gZZq and q̄gggZq.

Here, we use a generic notion of a Z-boson for an external vector particle but what we really

mean are amplitudes with the vector current sandwiched between lepton and anti-lepton

spinors. The relevant tree-level amplitudes can be extracted from different publications; we

have mostly benefited from a comprehensive description of helicity amplitudes that involve

quarks, gluons and vector bosons in Ref. [55].
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The calculation of the rational part of the 0→ gggZZ amplitude is performed analytically,

using techniques suggested in Ref. [49, 50]. Similar to the cut-constructable part the rational

amplitude receives contributions from quadruple, triple and double cuts. However, for the

case of gg → ZZg amplitudes, the double cut contribution vanishes; the rational part

therefore can be reconstructed from the calculation of boxes and triangles. Unfortunately,

even in this case, the analytic results for the rational part are unwieldy and we choose not

to present them here.

For further reference, we give numerical results for the scattering amplitudes below. We

consider a kinematic point (momenta are given in GeV)

p1 = (−238.714576090637,−238.714576090637, 0, 0),

p2 = (−1021.22119318758, 1021.22119318758, 0, 0),

p3 = (250.736037681104,−207.896850811885,−124.613643938661, 64.1786550096635),

p4 = (553.889863453468,−495.644737899924,−245.099246845329, 32.5059044554765),

p5 = (91.0664644166627, 49.0057636944973, 76.1125676676337,−9.92033815503652),

p6 = (197.326337775966,−3.11006048502754, 183.877222508616,−71.5344542606618),

p7 = (166.917065951017,−124.860731594604, 109.723100607740,−15.2297670494417),

(12)

and define a normalized primitive amplitude through the following equation

ALL,RRijk (λi, λj, λk;λe, λµ) =
i

(4π)2
× 10−9 × ÃLL,RRijk (λi, λj, λk;λe, λµ). (13)

The results for certain helicity combinations of gluons and leptons are given in Table II.

We emphasize that diagrams where one Z-boson is emitted by decay products of another

Z-boson, see Fig. 1(b), are not included in our calculation. The result for the amplitude

squared and summed over colors and helicities of gluons and leptons was checked against

the results of the OpenLoops program [38] for a large number of kinematic points.5 Finally,

we note that the evaluation of the amplitude squared, summed over color and helicities,

takes about 0.1 seconds per phase-space point, making our implementation adequate for

phenomenological needs.

In the context of NLO QCD computations, the process gg → ZZ + g represents an inelastic

contribution. This inelastic contribution should be integrated over all energies and angles of

5 We are indebted to J. Lindert for making this comparison possible.

10



NNPDF3.0, 8 TeV

σ
(m

4
l
>
m

cu
t)

[f
b
]

LO
NLO

0

0.5

1

1.5

2

mcut [GeV]

1

2

180 210 240 270 300 330 360

NNPDF3.0, 8 TeV

d
σ
/d
m

4
l
[f
b
/1
0
G
eV

]

LO
NLO

5 · 10−4

0.001

0.01

m4l [GeV]

1

2

180 210 240 270 300 330 360

NNPDF3.0, 13 TeV

σ
(m

4
l
>
m

cu
t)

[f
b
]

LO
NLO

0

1

2

3

4

5

mcut [GeV]

1

2

180 210 240 270 300 330 360

NNPDF3.0, 13 TeV

d
σ
/d
m

4
l
[f
b
/1
0
G
eV

]

LO
NLO

0.001

0.01

m4l [GeV]

1

2

180 210 240 270 300 330 360

Figure 2: Up, left: cumulative cross section for gg → (Z/γ)(Z/γ) → e+e−µ+µ− at the 8 TeV

LHC as a function of the lower cut on four-lepton invariant mass. Up, right: distribution of the

invariant mass of the four leptons in the reaction gg → (Z/γ)(Z/γ) → e+e−µ+µ− at the 8 TeV

LHC. Lower panes show ratios of the LO (yellow) and NLO (blue) distributions evaluated at three

different scales to the LO distribution evaluated at µ = 2mZ . Low: same as above for the 13 TeV

LHC.

the emitted gluons, including the vanishingly small ones. Calculation of one-loop amplitudes

for gg → ZZg process becomes unstable if the gluon in the final state becomes soft or

collinear to the collision axis. We deal with these instabilities by switching to quadruple

precision where appropriate. To obtain the gg → ZZ cross section through NLO QCD,

we combine elastic and inelastic contributions using the qt-subtraction [47] and, as a cross-

check, the FKS subtraction [56] methods. The results that we present in the next Section

are obtained by combining computations performed using the two subtraction schemes.
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IV. NUMERICAL RESULTS

In this Section we present the results of the calculation. We consider the process gg →
(Z/γ)(Z/γ) → e+e−µ+µ− at the LHC.6 We generate invariant masses of Z bosons around

mZ , using Breit-Wigner distributions. We require the e+e− and µ+µ− pair to have invariant

masses mll̄ ∈ (60, 120) GeV. We use leading (next-to-leading) order parton distribution

functions and the strong coupling constant for one- and two-loop calculations, respectively.

We employ the NNPDF3.0 set of parton distribution functions and obtain the relevant values

of the strong coupling constant from NNPDF routines [58].

We begin with presenting the results for the total cross sections at the 8 TeV LHC. We find

σgg→ZZLO = 0.97+0.3
−0.2 fb, σgg→ZZNLO = 1.8+0.2

−0.2 fb, (14)

where the central values refer to the renormalization and factorization scales set to µ = 2mZ

and the upper (lower) values to µ = mZ (µ = 4mZ). It follows from Eq.(14) that QCD

corrections to gg → ZZ are large – the NLO cross section increases the LO cross section by

O(60% − 110%), depending on the renormalization scale. For µ = 2mZ , the cross section

increases by 85%.

A similar situation occurs at the 13 TeV LHC. We find

σgg→ZZLO = 2.8+0.7
−0.6 fb, σgg→ZZNLO = 4.7+0.4

−0.4 fb. (15)

The NLO QCD corrections to gg → ZZ at 13 TeV LHC are again significant but somewhat

smaller than corrections at 8 TeV. Indeed, for the central value of the renormalization and

factorization scales µ = 2mZ , the cross section increases by 67%. For other values of the

renormalization and factorization scales, the cross section increases by O(40%− 90%).

The large size of the QCD corrections is reminiscent of the large QCD corrections to Higgs

production in gluon fusion gg → H [59]. In addition, similar to the Higgs production

case, the scale variation of the leading order cross section provides a poor estimate of the

magnitude of next-to-leading order corrections [59]. We note that if we take proximity of

6 We remind the reader that we only include double resonant diagrams, see Fig.1(a). Single resonant
diagrams Fig.1(b) are only relevant for far off-shell production. They can be obtained by appropriate
modifications of the gg → Zg amplitudes, see e.g. [57].
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radiative effects in gg → ZZ and gg → H seriously, we should probably take µ = (2mZ)/2 =

mZ as the scale for which higher-order radiative corrections to gg → ZZ will most likely be

small. Thus, our best estimates of gg → ZZ contributions to pp → ZZ production cross

section at 8 TeV and 13 TeV LHC are

σggpp→ZZ(8 TeV) = 2.0(2)fb, σggpp→ZZ(13 TeV) = 5.1(4)fb. (16)

Our results have important implications for the recently computed NNLO QCD corrections

to pp→ ZZ [10, 12] at the 8 TeV LHC. In that case, the NNLO QCD corrections computed

at the scale µ = mZ turned out to be close to 15%. However, a significant fraction – 60%

of the total NNLO QCD correction – is due to the leading order contribution gg → ZZ.

Our current computation shows that gg → ZZ receives large radiative corrections and the

natural question is how these findings affect the central value of pp → ZZ cross section

obtained in Refs. [10, 12] and the theory uncertainty assigned to it.

To answer this question, we note that in Refs. [10, 12] the central scale was chosen to be

µ = mZ and that NNLO parton distribution functions were used for the calculation of

gg → ZZ cross section. Relative to our choices, the lower renormalization and factorization

scale increases the cross section while the choice of NNLO parton distribution functions

makes the cross section smaller. We re-computed the LO gg → ZZ cross section using the

setup of Ref. [10] and compared it with our best value given in Eq.(16). We find that, to

match our best prediction, the 8 TeV gg → ZZ cross section of Ref. [10] should be increased

by about 80%. In turn, this will lead to an increase in the total NNLO QCD correction to

pp→ ZZ at 8 TeV from the current 12%, as calculated in Ref. [10], to 18%. This increase is

beyond the O(3%) scale variation of the NNLO QCD result for pp→ ZZ used in Ref. [10]

to estimate the current uncertainty in the theoretical prediction for pp→ ZZ cross section.

Similar arguments also apply at the 13 TeV LHC. In this case the 16% corrections quoted

in Ref. [10] would increase to approximately 23%.

Next, we consider kinematic distributions. We begin with the invariant mass distribution

of the four leptons produced in gg → ZZ shown in Fig. 2. While radiative corrections are

significant for all values of m4l, they become smaller at higher values of four-lepton invariant

masses. This is clearly seen in Fig. 2 for both differential and cumulative7 cross sections

7 For different cuts on m4l.
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Figure 3: Left: transverse momentum distribution of an e+e− pair at the 13 TeV LHC. Right: the

hardest lepton transverse momentum distribution at the 8 TeV LHC. Lower panes show ratios of the

LO (yellow) and NLO (blue) distributions evaluated at three different scales to the LO distribution

evaluated at µ = 2mZ .

and for both the 8 TeV and the 13 TeV LHC. This result is important for studies of the

Higgs off-shell production where good understanding of the shape of four-lepton invariant

mass distribution is an important pre-requisite for constraining the Higgs width. Note that

for m4l > 2mt top-quark contributions, neglected in our computation, become relevant.

In Fig. 3 we show the transverse momentum distributions of the e+e− pair and of the hardest

lepton in the event. The QCD corrections to the transverse momentum distribution of the

e+e− pair decrease for large values of p⊥,e+e− , similar to what is seen in the four-lepton

invariant mass distribution. On the other hand, the QCD corrections for the transverse

momentum distribution of the hardest lepton are independent of the lepton p⊥.

V. CONCLUSIONS

In this paper we computed QCD corrections to the production of a pair of Z-bosons in

gluon fusion through loops of massless quarks. We found that QCD corrections are large;

they change the production cross section by almost a factor of two. These large QCD

corrections are in line with expectations that transition of two gluons to a colorless final

state is strongly affected by QCD radiative effects; QCD corrections of similar magnitude

were observed earlier in theoretical calculations of gg → H [59] and gg → γγ [60] cross

sections.
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Large QCD corrections to gg → ZZ are important for a number of reasons. First, since

the gg → ZZ process provides a significant fraction of the NNLO QCD contribution to

pp → ZZ, our result suggests that existing theoretical predictions for pp → ZZ should

be increased by six to eight percent, depending on collider energy. Since such an increase

in the central value is outside the existing estimates of the residual theory uncertainty of

pp → ZZ cross section, it will have important consequences for ongoing comparisons of

experimental and theoretical results for pp→ ZZ at the LHC. Second, good understanding

of gg → ZZ at high four-lepton invariant masses is crucial for the so-called off-shell studies

of the Higgs boson and, in particular, for the indirect determination of its width. The

NLO QCD calculation of gg → ZZ process allows us to predict the gg → ZZ contribution

to pp → ZZ cross section and kinematic distribution with the precision of about 10%;

this implies a residual theoretical uncertainty on pp → ZZ cross section of just about two

percent. Such a small uncertainty in the four-lepton production cross section is an essential

prerequisite for the success of forthcoming off-shell studies of the Higgs boson, see a related

discussion in Ref. [7].

As a final comment, we note that our calculation opens up a number of future research

directions. Indeed, it is interesting to extend our calculation by combining massless and

massive loop contributions to gg → ZZ and by including single resonant contributions and

the interference of prompt gg → ZZ and gg → H∗ → ZZ amplitudes. This will allow

us to explore the region of four-lepton invariant masses both below the threshold of ZZ

production and at very high invariant masses. We plan to do this in the near future.
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