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Abstract

In this work we combine information from relic abundance, direct detection, cosmic microwave

background, positron fraction, gamma rays, and colliders to explore the existing constraints on

effective couplings between Dark Matter and Standard Model constituents when no underlying

model or correlation is assumed. Our results show that Dark Matter masses below 20 GeV are

disfavoured at the 3σ level by tension between the relic abundance requirement and upper con-

straints on the Dark Matter couplings. Furthermore, large couplings are typically only allowed in

combinations which avoid effective couplings to the nuclei used in direct detection experiments.
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I. INTRODUCTION

The search for Dark Matter (DM) in the form of thermal relics represents one of the most

active lines of research in astro-particle and particle physics. Indeed, there is an overwhelm-

ing amount of dedicated experimental searches for DM, most of them concentrating on the

so-called Weakly Interacting Massive Particles (WIMPs) paradigm [1]. These are classi-

fied into three different categories: (1) indirect detection searches, where the DM would

annihilate or decay into SM particles which can be detected, (2) direct detection searches,

where the DM would scatter against the protons and neutrons in a detector, producing an

observable recoil, and (3) collider searches, where the DM would be produced in high-energy

collisions, thus leading to events with missing momentum.1

In the light of all these searches it is essential to look at the global picture of where we

stand concerning the WIMP scenario. This is certainly a rather complicated task, given

the enormous zoo of models available in the literature with an associated plethora of free

parameters. Even for a single model, brute-force scans of the corresponding parameter space

represent a significant computational challenge. Consequently, the usual practice is to either

rely on simplified realisations of those models or to fix some of the free parameters, thus

scanning only hyper-surfaces in the model parameter space. 2

On the other hand, Monte Carlo methods constitute an efficient alternative to scan over

a multi-dimensional parameter space. However, for WIMPs, most of the Monte Carlo scans

are performed in the context of supersymmetric models, where the neutralino is usually

selected as the preferred DM candidate (e.g., Refs. [12–14], however see [15] as an example

of non-SUSY search).

The main goal of this work is to explore the present status of our knowledge of DM cou-

plings to the different SM constituents in as much generality as possible. In order to gain in

model independence, it is thus interesting to be more agnostic about the DM interactions

with the SM constituents and parametrize them through an effective field theory (EFT)

approach. In particular, this approach can reveal how constrained the DM interactions with

1 A complementary search strategy is the search for DM self-interactions which would impact structure

formation as well as stellar evolution in particular scenarios (see e.g. [2–5]). Since the focus of this work is

to probe the interactions between DM and visible particles these constraints will not be considered here.
2 The literature in this respect is quite vast. Some examples relevant to our work are [6–11], in the context

of effective field theory (see below).
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the different SM fields are in the light of currently available data, when no further assump-

tions are made. Since allowing all type of Lorentz structures for these effective operators

would provide too much freedom with hundreds of operators that cannot be bounded, we

rather choose to exemplify the different interactions between DM and the SM by operators

of the form

ci,P (χ̄γµχ)
(
f̄iγµPfi

)
, (1)

with independent coefficients ci,P for all SM particle species fi with chiralities P ≡ PL, PR.

This type of interaction is well motivated by scenarios where the DM communicates with

the SM via a vector portal. Even with this restriction, if independent couplings for all SM

constituents are allowed, 15 independent parameters remain to be constrained. Thus, given

the large dimensionality of the parameter space, we make use of a nested sampling Monte

Carlo algorithm to scan it efficiently.

When constraining the DM EFT parameter space, we consider bounds from all types of

experiments where a WIMP signal is being actively sought for, i.e., direct detection (namely,

LUX [16] and EDELWEISS [17]), indirect detection (AMS [18] positron fraction data and

Fermi-LAT data for dwarf galaxies [19]), cosmic microwave background (CMB) and relic

density constraints from Planck [20], and monojet and mono-photon searches in colliders

(from LHC [21] and LEP data [8]). 3 We derive bounds on the coefficients accompanying

each effective operator as a function of the DM mass, as well as bounds on the DM mass

itself. These constitute the most general constraints which can be derived assuming that

DM interacts with the SM as in Eq. (1).

The outline of the work is as follows. In Sec. II we describe the set of effective operators

that will be jointly analyzed, introducing the parameters to be constrained. Sec. III lists the

set of experimental constraints considered, and how these have been implemented. Some

details regarding the numerical tools employed in the fit are explained in Sec. IV. Finally,

Sec. V summarizes our results and we present our conclusions in Sec. VI.

3 Contrary to the cases of direct and indirect detection strategies, for collider searches the use of the EFT

framework -mainly at the LHC- may not be optimal. We take this issue into account when recasting the

limits coming from LHC. See Sec.III.
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II. THE EFFECTIVE FIELD THEORY FRAMEWORK

In order to explore how much freedom the present global data on DM allows for its

couplings to the SM, we will define a series of working models characterized by a set of

independent effective operators, described by the following effective Lagrangian

Leff = (χγµχ)jeff
µ . (2)

where the effective current jeff
µ is given by

jeff
µ =

∑
`=e,µ,τ

cL`

(
ν`,L `L

)
γµ

ν`,L
`L

+
3∑
i=1

cQi

(
ui,L di,L

)
γµ

ui,L
di,L

+
∑
f

cfRfRγµfR, (3)

the index i denotes the quark generations such that u1 = u, u2 = c, u3 = t, d1 = d,

d2 = s, and d3 = b, while the sum over f runs over all right-handed (RH) SM fermions. The

coefficients cX are the couplings of the operators in the effective Lagrangian. As the effective

operators are of dimension six, these coefficients will have a mass dimension of minus two.

In expr.(2), χ represents a Dirac fermion DM.

This set of operators provide enough freedom so as to parameterize DM interactions with

different strength to the various SM particles while, at the same time, keeping the set of

operators at a viable level. Indeed, allowing extra operators would not only imply a more

challenging numerical analysis, but would also be rather uninformative since mostly any

value could be fitted and particular UV completions tend to have a much more limited set

of free parameters. Furthermore, for simplicity and due to the generally stronger constraints,

we will not consider flavour-changing operators between the SM fermion bilinears [22]. De-

spite these restrictions, 15 different operators fall into this category, parametrizing the DM

interactions with the 3 quark and lepton doublets as well as the 3 singlets of up-type and

down-type quarks and charged leptons. Starting from this general setup, we will also define

more restrictive working models that can exemplify other interesting scenarios such as lep-

tophilic, leptophobic or flavour-blind setups, characterized by different correlations among

the couplings. The models considered in this work are the following:

1. General model: The first model makes no additional assumptions regarding the coef-

ficients cX , which are all allowed and free to vary independently. This represents the

least restrictive choice possible in our given EFT framework, and includes a total of

15 coefficients in addition to the mass of the DM.
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2. Flavour-blind: In this model, all operators involving fermions with the same gauge

quantum numbers, e.g., all left-handed (LH) quarks, have the same coefficients in the

effective Lagrangian. We are then left with five different coupling parameters which

are related to those of the general model as

cLe = cLµ = cLτ ≡ cL, cQ1 = cQ2 = cQ3 ≡ cQ,

cuR = ccR = ctR, cdR = csR = cbR, ceR = cµR = cτR. (4)

For the latter three groups of coefficients, we will generally use the notation for the

coefficient of the first generation to refer to it within this model.

3. Family-oriented: In this model, we make the assumption that the effective couplings

with DM are equal for all particles belonging to the same generation. This can be

considered a quite crude proxy to flavour theories were the successive SM families are

characterized by hierarchical couplings or charges in order to explain the observed mass

hierarchy between them, following the philosophy of the Froggatt-Nielsen mechanism4

[24–28]. This leaves only three independent operator coefficients,

cLe = ceR = cQ1 = cuR = cdR ≡ c1, cLµ = cµR = cQ2 = ccR = csR ≡ c2,

cLτ = cτR = cQ3 = ctR = cbR ≡ c3. (5)

This is the model with the fewest number of free parameters which we will consider and,

as such, the correlations among the couplings will allow to obtain strong constraints,

particularly for the coupling c1.

4. Leptophobic: This model assumes that DM does not have significant interactions with

any of the leptons. As a result, all of the coefficients associated to operators involving

leptons are set to zero, i.e.,

cL` = c`R = 0, (6)

with ` = e, µ, τ . At the same time, no restrictions are imposed on the operators

involving quarks and the model therefore contains nine free parameters.

5. Leptophilic: In direct contrast to the leptophobic model, this model instead considers

the situation where the only relevant DM interactions with the visible sector are those

4 See [23] for a realisation in the context of dark matter.
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involving leptons. In this model, we therefore set all of the coefficients for operators

involving quark fields to zero, i.e.,

cQi = cuiR = cdiR = 0 , (7)

where i indicates the generation. In this situation, we are left with six independent

coupling parameters for the DM interactions with leptons.

We wish to stress that these models are only meant to be phenomenological tools to assess

our present global knowledge of how well constrained the DM couplings to the SM fermions

are when not assumed to be universal or related through any particular UV completion. We

will thus allow all couplings to vary freely when fitting the present data without questioning

the apparent naturalness (or lack thereof) of the preferred regions. In particular, as we will

see in Sec. V, most models prefer 2cQ1 + cuR + cdR ' 0 so as to avoid the very stringent

limits coming from direct detection searches. Thus, even if these cancellations may seem

unnatural, we will not avoid them by adding artificial “naturalness priors” to guide the

Monte Carlo in any way, in the spirit of allowing the Monte Carlo to choose the points in

parameter space which provide the best fit to the data. Symmetry arguments could perhaps

be invoked in a particular UV completion when trying to reproduce the best fit found in the

effective description in a natural way.

Moreover, these working models are not intended to be self-consistent low energy de-

scriptions of any particular UV completion. In fact, due to the limited amount of operators

considered, we are not allowed to take our effective theory description beyond tree level

processes. Indeed, radiative corrections could induce other operators with interesting phe-

nomenology. For example, in the leptophilic model the lepton legs could be closed in a loop

and, through the emission of a virtual photon, induce a coupling to first generation quarks.

Therefore, the strong bounds from direct searches would also apply to these models and

put a constraint on the lepton couplings (see Ref. [29]). In a similar fashion, other signals

at the LHC such as dijet or dileptons could be generated from loop-induced 4-SM-fermion

operators. Furthermore, when moving from the flavour basis to the mass basis, the DM

couplings to the SM doublets will induce flavour-changing operators that, when the DM legs

are closed in a loop, could contribute to the oscillations of neutral kaons or other FCNC

processes, for which stringent experimental constraints would apply. In full consistency,

these operators should have been included from the start, since they are compatible with
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the particle content and symmetries of the theory and they are required to renormalize the

divergences stemming from the loop contributions. However, when doing so, new unbounded

coefficients are introduced and, in order to avoid these stringent limits, the fit will prefer the

points in the parameter space where these new coefficients exactly cancel the loop-induced

contributions. Thus we will simply not consider these loop-induced constraints in our list

of observables, since in our approach they would not imply additional constraints on our

parameter space unless particular relations between the couplings are invoked.

III. CONSIDERED CONSTRAINTS ON DM

In our numerical analysis, the DM contributions to the different DM observables are

computed with micrOmegas [30]. These are then compared to the current experimental

bounds. A chi-square function is then computed for each observable independently. The

total χ2 is obtained as the sum of all separate contributions

χ2(c,mχ) =
∑
i

χ2
i (c,mχ), (8)

where i is an index which runs over the observables and c is a vector containing the coupling

coefficients of the model being tested.

In the following, we describe the full set of observables sensitive to interactions between

the DM and the SM fermions which have been included in our simulations.

Relic abundance

The abundance of DM in the Universe is well-known from the PLANCK measure-

ments [20]. At present, its central value is

Ωexp
χ h2 = 0.1187, (9)

with an error of σΩ = 0.0012 at 1σ. We will assume that our DM fermion χ constitutes all

of the observed relic density and that it is produced in the early Universe through thermal

freeze-out. The predicted relic density Ωth
χ (c,mχ) is computed for each set of values for the

model parameters, and the corresponding contribution to the chi-square function is given

7



by

χ2
Ω(c,mχ) =

(
Ωth
χ (c,mχ)h2 − Ωexp

χ h2

σΩ

)2

. (10)

In general, within the thermal freeze-out scenario, the relic abundance of DM is mainly

governed by the thermally averaged total DM annihilation cross section

〈σv〉 =
∑
i

wi〈σv〉i ∝ m2
χΣ2

C , where ΣC =

√∑
i

wic2
i . (11)

Here, i runs over all fermion fields contributing to the annihilation cross section, and wi is

a weight associated to the dimension of the SM gauge group representation of the corre-

sponding fermion field. As we will show in the results section, this combination is subject

to very strong constraints and dictates the possible ranges in which the coefficients may lie.

In particular, due to the finite and non-zero relic abundance and the assumption of thermal

freeze-out, this implies that at least one of the coefficients must be non-zero and that none

of them can be too large.

Direct detection

In order to compare the predictions of our effective models with available data on di-

rect detection measurements, we obtain the expected recoil spectrum for each set of model

parameters using micrOmegas and integrate it to find the total number of expected events

N th
DD(c,mχ). In order to avoid making assumptions on the response of the different detec-

tors (energy resolutions, efficiencies and backgrounds), we approximate the results published

by the experimental collaborations by taking the quoted experimental limits on the DM–

nucleon cross sections. Interpreting this experimental input as the allowed upper bound at

the quoted confidence level, we can then obtain the number of events N exp
DD to which the

experimental bound on the cross section would correspond. Since this is a number gaug-

ing the current experimental upper bound on the number of events in the direct detection

experiment, we construct the chi-square function for each direct detection experiment as

χ2
DD(c,mχ) =

(
N th
DD

N exp
DD

)2

, (12)

where we have expressed the limits at the 68% CL. Note that, for N th
DD = N exp

DD, the appro-

priate value of the chi-square function and the experimental limit are recovered.
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We implement direct detection constraints from LUX [16] and, so as to have an indepen-

dent target material, EDELWEISS-II [17]. Our setup generally leads to a spin-independent

contribution (except when cQ1 = −cuR = −cdR) which will be constrained by the LUX

and EDELWEISS-II results. However, it should be noted that the spin-independent dark-

matter–nucleus coupling cN will relate to the couplings c as

cN =
1

2A
[3AcQ1 + (A+ Z)cuR + (2A− Z)cdR], (13)

where A is the mass number and Z the atomic number of the target nucleus. With this

dependence on the couplings, there is a possible degeneracy in the DM–quark couplings for

which the cross-section vanishes. For Z ' A/2, this degeneracy occurs for 2cQ1 +cuR+cdR '

0. Thus, direct detection experiments will only allow large couplings to the first generation

quarks if this particular relation is fulfilled. As we will show in Sec. V, this is clearly seen

from the numerical results of our simulations.

Cosmic Microwave Background (CMB)

DM annihilations result in an injection of power into the Intergalactic Medium (IGM)

per unit volume equal to [31, 32](
dE

dtdV

)
inj

= (1 + z)6(Ωχ,0ρc,0)2ζ
〈σv〉
mχ

, (14)

where z is the redshift, Ωχ,0(ρc,0) is the DM abundance (critical density) today, 〈σv〉 is the

thermally averaged annihilation cross section, and the statistical factor ζ = 1/2 corresponds

to DM being a Dirac particle. On the other hand, CMB probes such as the WMAP and

Planck satellites can set limits on the deposited power into the IGM around the CMB epoch

(z ∼ 1000), which is related to the injection power as [33–35].(
dE

dtdV

)
dep

= fj(z,mχ)

(
dE

dtdV

)
inj

, (15)

where the efficiency function fj depends on the DM annihilation channel, χχ̄ → pjpj. For

this reason, experiments usually quote their limits through the quantity

pann =
∑
j

fj
〈σv〉j
2mχ

, (16)
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where 〈σv〉j is the thermally averaged partial annihilation cross section into particles pj.

This quantity has been constrained by Planck+lensing data at the 95% CL [20], here we

rescale that bound to the 68% CL obtaining: pexp
ann < 1.7 × 10−28 cm3s−1GeV−1 so as to

build our χ2 function . In order to implement these bounds we use the tabulated values of

fj from Ref. [33], to compute pth
ann, and compare it with the experimental constraints. The

contribution added to the total χ2 is given by

χ2
CMB(c,mχ) =

(
pth

ann

pexp
ann

)2

. (17)

Positron fraction

The measurements from AMS02 on the positron fraction [18] are used to derive upper

bounds on DM annihilation cross sections. The contribution to electron and positron fluxes

Φe±,DM from DM annihilation are computed using micrOmegas. The contributions coming

from astrophysical sources, on the other hand, are parameterized by

Φe−,bg(E) = C1E
−γ1 + C2E

−γ2 , Φe+,bg(E) = Ce+E
−γe+ + CsE

−γse−E/Es (18)

as in Ref. [36], where the last term in the positron flux represents a point source with a

hard spectrum cut Es, while the other terms model the diffuse background. Both DM

and background fluxes are affected by the solar modulation, which can be explicitly taken

into account by computing the flux at the top of the atmosphere (⊕) under the force field

approximation:

Φ⊕e±(E) =
E2

(E + φ±)2
Φe±(E + φ±) (19)

where φ± refer to the parameters accounting for the modulation. The differential positron

fraction on top of the atmosphere is then given by

F =
Φ⊕e+,bg + Φ⊕e+,DM

Φ⊕e+,bg + Φ⊕e+,DM + Φ⊕e−,bg + Φ⊕e−,DM

. (20)

The χ2 function is built by binning the predicted positron fraction and comparing to the

experimentally measured values,

χ2
AMS(c,mχ) =

bins∑
j

(
Fj −Fexp,j

σF ,j

)2

, (21)
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where the uncertainties in each bin σF ,j are taken directly from Ref. [18] by adding the

statistical and systematic errors in quadrature.

We have checked that allowing the electron flux to vary does not affect the fit in any

substantial way and have therefore fixed the parameters for this flux to the values which

provide the best-fit to Fermi electron flux data [37]. In particular, the value of the solar

modulation parameter for the electron flux which gives a best-fit to the Fermi data is found

to be equal to zero. Moreover, the solar modulation parameter for positrons φ+ was found to

have a negligible impact on the fit, while creating some numerical degeneracies. Therefore,

we choose to fix this parameter to zero as well during the fit, as described in detail in App. A.

However, it should be noted that the solar modulation only affects the low energy part of the

spectrum and therefore our analysis of AMS02 is expected to be accurate for mχ & 10 GeV.

In order to take into account the lack of knowledge on the astrophysical backgrounds,

we marginalize over the positron flux parameters in Eq. (18) in our simulations,5 without

imposing any priors on them. This is done for each set of parameters {c} independently, as

explained in detail in App. A.

Gamma rays from dwarfs

Dwarf spheroidal satellite galaxies (dSphs), being DM-dominated objects, constitute very

clean laboratories to test DM interactions. A search for γ-rays coming from Milky Way

dSphs has been performed by the Fermi-LAT collaboration [19]. We make use of the present

90% CL bounds (rescaled to the 68% CL) on the thermally averaged cross section for DM

annihilation 〈σv〉exp
j from Ref. [19], which are derived under the assumption of 100% DM

annihilation into some specific channel χχ̄→ pjpj. However, in our EFT approach, DM may

annihilate to all fermionic channels with different branching fractions Bj, which will depend

on the set of couplings for a given model {c}, and each particular channel j will contribute

to γ-ray emission with a different weight, given its different subsequent decay chains. This

weight is inversely proportional to the final experimental bound that can be derived for that

particular channel 〈σv〉exp
j . We may therefore recast the experimental bound on the total

5 The minimisation procedure was performed with the GSL libraries [38].
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cross section as

〈σv〉exp(c,mχ) =

(∑
j

Bj

〈σv〉exp
j (mχ)

)−1

. (22)

Consequently, the contribution to the χ2 is given by

χ2
dSphs(c,mχ) =

(
〈σv〉th

〈σv〉exp

)2

, (23)

where 〈σv〉th is the total annihilation cross section today as predicted by the model being

tested with couplings c and DM mass mχ.

Monojets at LHC

Here we take the most recent 95% CL LHC results (rescaled to the 68% CL) from

monojet+ET
miss analyses [21], applied to the effective vector interaction operator q̄γµqχ̄γµχ,

where a universal coupling to up and down-type quarks of both chiralities was assumed.6

Since a full collider simulation is beyond of the scope of this work, we recast the existing

limits on the coefficient Cexp
LHC of the effective operator as a function of the DM mass. We

do so by assuming that only the first generation quarks contribute to this constraint. Thus,

the contribution to the χ2 function will be given by

χ2
LHC(c,mχ) =

(
(Cth

LHC)2

6(Cexp
LHC)2

)2

, (24)

where (Cth
LHC)2 = 3c2

Q1 + 2c2
uR + c2

dR.

Mono-photons at LEP

Similarly to the monojet case, the 95% CL constraint (rescaled to the 68% CL) on

the coefficient of the ēγµeχ̄γµχ operator, Cth
LEP, by LEP mono-photon+ET

miss searches is

considered [8]. The contribution to the χ2 is thus:

χ2
LEP(c,mχ) =

(
(Cth

LEP)2

2(Cexp
LEP)2

)2

, (25)

where (Cth
LEP)2 = c2

Le + c2
eR.

6 In view of the possible issues regarding the validity of the EFT approach in collider searches [39], we

consider the limits from [21] which respect the validity criteria of EFT. In the next LHC run, the issues

with the validity of the EFT will be even more relevant, and therefore an analysis in terms of Simplified

Models [40–43] might be preferable.
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IV. NUMERICAL DETAILS

All the phenomenological models described in Sec. II have been implemented in

CalcHEP [44] using FeynRules [45]. The result is then fed into micrOmegas [30] for the

computation of the DM observables.

With the chi-square function implemented as described above, the parameter spaces of

the different models need to be efficiently explored in order to derive constraints. While a

simple grid scan may be viable in the case of the family-oriented model (with only three

parameters), it quickly becomes prohibitively expensive for models with a larger number

of free parameters. In particular, the general model with 15 free parameters would be

unfeasible to scan in this fashion. Moreover, we expect the parameter space to be affected

by several degeneracies. These further decrease the effectiveness of a grid scan and require

the grid spacing to be very small in order to find the global minimum. For these reasons,

we have opted to perform our scans using the nested sampling [46] Monte Carlo algorithm

implemented in the MultiNest software [47]. This method is particularly designed for

handling parameter space degeneracies as well as for preferentially scanning the regions of

parameter space where the likelihood function L = exp(−χ2/2) is large. Although the

MultiNest software was initially designed for computing Bayesian evidence, it produces a

sample of the parameter space with the corresponding likelihood values as a by-product. In

this paper, we take a purely frequentist approach and only consider the χ2 values obtained

from the likelihood. Thus, MultiNest is used only for its capability of efficiently sampling

the regions with relatively low χ2 values.

V. RESULTS

This section describes the results obtained from a global fit using the models described

in Sec. II. All constraints considered in Sec. III have been included in our simulations.

Note that the dimensionful couplings cj will depend on the effective theory mass scale Λ

as Λ−2. In this section, we will use units of TeV−2 for the couplings cj and the rough limit

Λ2 . 1/cj may be used to assess the range of validity of the EFT assumption.

Using the χ2 function built as described in Sec. III, we have derived two main types of

constraints on the parameters of the model:
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i) For a fixed DM mass mχ, we scan the parameter space for all couplings in each

model. This results in a sample of points in the parameter space, which is generally

concentrated in the regions corresponding to the lowest values of the χ2 function. We

use these to perform parameter estimation and determine the allowed regions for the

different couplings within a given model, for given values of mχ.

ii) The calculation described in (i) can be repeated for several values of the DM mass.

By minimizing the global χ2 over all couplings c in the model, the resulting ∆χ2,

∆χ2(mχ) = min
c
χ2(c,mχ)−min

mχ,c
χ2(c,mχ), (26)

allows parameter estimation of the DM mass mχ. This will indicate whether there are

any values of the DM mass which are disfavoured or even ruled out by current data.

Since the simulations are computationally rather expensive, they have been performed

for a handful values of the DM mass, namely mχ = 10, 50, 100, 200, 500 and 1000 GeV.

Our minimization in the mχ variable is therefore performed in a discrete fashion, using

only this set of values. However, from mχ ≥ 200 GeV on, we find essentially no change

in the χ2 value.

Our main results are summarized in Figs. 1 and 2. Figure 1 shows the minimum value of

the ∆χ2 obtained for the different models under consideration, as indicated in the legend,

see item (ii) above. The dashed horizontal line shows the value of the ∆χ2 corresponding

to 3σ exclusion for 1 d.o.f.. As can be seen from this figure, DM masses of 50 GeV are

excluded at 3σ for most of models under consideration. The only exceptions are the general

and leptophilic models, whose 3σ exclusion occurs for masses below 20 GeV.

The exclusion of very light DM masses can be understood from the complementarity

between different data sets. As can be seen from Eq. (11), the annihilation cross section is

proportional to m2
χ, while the energy density scales as mχ. Thus, models with very light DM

masses will require large couplings to the SM in order to satisfy relic density constraints.

However, since there is no positive signal from DM in collider, direct or indirect detection

data, a significant tension between the different data sets occurs, which eventually increases

the minimum value of the χ2. The tension is stronger in models where DM either does

not couple to leptons (leptophobic), or in models where the lepton couplings are related to

others (i.e., flavour-blind or family-oriented). For the general and leptophilic models, the
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FIG. 1: Minimum value of the total χ2 obtained for the different models under consideration (indicated in

the legend) as a function of the DM mass in GeV. For reference, the value of the ∆χ2 corresponding to 3σ

exclusion (for 1 d.o.f.) is also shown by the dashed horizontal line.

tension is relaxed since the bounds which mainly constrain the couplings to leptons (LEP,

CMB and AMS data) are not as strong as those constraining the quark couplings (direct

detection, LHC and FermiLAT bounds).

The second main result of this paper is shown in Fig. 2, where the allowed regions at 1, 2

and 3σ (for 1 d.o.f.) are shown for all couplings associated to the effective operators and for

the five models under consideration, see Sec. II. For each coupling, our results are shown for

three different values of the DM mass, 50 GeV (upper/blue bands), 100 GeV (middle/green

bands) and 500 GeV (lower/red bands). Each panel also shows the constraint imposed by

relic density on the weighted sum of the squares of all couplings, i.e., ΣC as defined in

Eq. (11).

The tension between different data sets can be understood from the results found in Fig. 2.

As already explained, the constraint from relic density tends to bring the couplings to larger

values as the DM mass is decreased. This is observed when comparing the upper/blue and

lower/red bands, for all models under consideration, and in particular for the allowed values

of ΣC . One can clearly see how the tension between different data sets can lead to having only

one coupling as the major contributor to the relic density for a given model. For instance,

for the general and leptophilic models with mχ = 50 GeV, the relic density constraint is

satisfied with a sizable coupling to the second family lepton doublet, and the preferred region
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FIG. 2: Allowed values for the couplings associated to the different operators present in each of the models

considered in this work. Dark, medium and light shaded areas correspond to the allowed regions at 1, 2

and 3σ, respectively, for 1 d.o.f.. For each coupling, the results shown by the upper/blue, middle/green and

lower/red bands correspond to DM masses of 50, 100 and 500 GeV, respectively. The gray bands indicate

that the coupling is unconstrained since the process χχ̄→ tt̄ is not kinematically allowed for the considered

value of the DM mass.

for this coupling at 1σ does not include zero. This can be understood as follows. First, the

bounds on couplings to quarks of all generations are very strongly constrained by direct

detection and Fermi-LAT experiments. Moreover, on the leptonic side, the bounds on RH

leptons from both AMS (electrons) and Fermi-LAT (taus) are very strong. In addition, LH

couplings would also imply DM annihilations through muon neutrinos, so that the indirect
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searches are relaxed while the relic abundance constraint is more easily fulfilled. As such,

the weakest global bound appears for the second lepton generation, which can accommodate

the required relic abundance without being completely excluded by AMS or Fermi-LAT.

Nevertheless, a significant tension persists, as seen in Fig. 1. This is particularly the case

for light DM masses, see, e.g., the bands corresponding to 50 GeV in Fig. 2. However, for

100 GeV mass (and heavier) the situation is different. For such large values, the indirect

detection constraints are already weaker than the relic abundance one. Thus, since a coupling

to LH fermions implies two annihilation channels, both contributing to decrease the DM

density, we see that the LH couplings are more constrained than the corresponding RH

couplings. Similarly, due to color multiplicity factors, couplings to quarks are more strongly

constrained than those to leptons (in particular the LH ones).

Another interesting example is found in the panel for the flavour-blind model. Since

the coupling to the muon is equal to that of the electron and tau (which are very strongly

constrained) the relic abundance cannot be obtained out of annihilation to the second lepton

doublet, as for the previous cases. For mχ = 50 GeV, we see from the figure that the DM

would prefer to annihilate to up-type RH quarks instead (the 1σ region for this coupling is

around the value of 1). However, Fermi-LAT strongly disfavours this possibility and this

mass is therefore excluded at ∼ 3σ (see Fig.1).

Finally, as was already mentioned in Sec. III, we have found two interesting degeneracies

among different parameters in the models considered in this work. The first one is due to

the constraints coming from direct detection experiments, which allows for a degeneracy

between the couplings to quarks. This is shown in the left panel in Fig. 3, where the allowed

confidence regions for the cQ1, cuR and cdR couplings are depicted, showing the degeneracy

explicitly. For mχ = 100 GeV, the most stringent bound on the effective operators involving

the first generation of quarks comes from direct detection experiments. Nevertheless, as can

be seen from this figure, the allowed regions extend to rather large values of the couplings,

as long as the relation 2.12cQ1 ' −cuR − 1.12cdR is satisfied, given the values of Z and

A of the Xenon material used by LUX (see Sec. III for details). While the inclusion of

EDEILWEISS-II, with a different target material, could in principle lift this degeneracy,

the final limits found in Fig. 3 for the degeneracy line are rather stemming from the relic

abundance constraint.

The second degeneracy stems from the strong constraints from relic abundance on ΣC ,
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FIG. 3: Left: Allowed regions in the parameter space corresponding to the couplings to the first family

of quarks for the general model. The degeneracy between cQ1, cuR and cdR is explicitly shown, see text

for details. Right: Allowed regions for the couplings to the second and third family in the family oriented

scenario. The point c2 = c3 = 0 is clearly excluded due to the efficient combination of relic abundance and

direct detection constraints, see text for details. In both panels, the different colors correspond to different

confidence levels, indicated in the legend, and the DM mass is mχ = 100 GeV.

which generally imply that all couplings must lie on the surface of a hyperellipsoid. In

particular, for the family oriented scenario, this reduces to the ellipse displayed in the right

panel in Fig. 3, where the allowed regions at 1, 2 and 3σ are shown in the c2 − c3 plane for

2 d.o.f.. Given that the strongest constraints from colliders and direct detection experiments

apply to the first generation, and in this model all particles in the first generation have the

same coupling, the constraints on c1 are very strong since the direct detection degeneracy

relation cannot be fulfilled. This is shown in Fig. 2, where it can be seen that the coupling

to the first family is restricted to c1 < 0.001/TeV2 at 2σ for this model. This model only has

two additional couplings, c2 and c3. Therefore, in order to satisfy relic density constraints,

either the coupling to the second or the third family (or both) have to be different from

zero. As a consequence, the allowed region is shaped as an ellipse in the c2 − c3 plane.

A final remark regarding the validity of the EFT is in order. As can be seen from

eq. (11) and from Fig. 2, the weighted sum of the coefficients required to obtain the correct

thermal relic abundance goes like Σc ∝ 1/mχ. On the other hand, for DM annihilation,
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the EFT validity condition reads Λ & 2mχ. Since Σc is a combination of couplings, we can

generically write it as Σc ∼ 1/Λ2. Therefore, by combining the validity condition with the

relic abundance requirement, a maximum DM mass is obtained for which the EFT ceases

to be valid about O(2− 5 TeV) . Notice however that we do not expect the data to strongly

constrain thermal DM in this regime.

VI. CONCLUSIONS

In this work we have explored how strongly the combination of present data from very

different experimental probes can constrain the different couplings between Dark Matter

(DM) and the Standard Model (SM) particle content. The focus of the work was a bottom-

up approach to understand what data itself is able to tell us regarding DM interactions,

minimizing when possible any theoretical input or bias. To this end, we make use of an

Effective Field Theory (EFT) approach to attain the desired model-independence at the

expense of assuming that DM–SM interactions are mediated by heavy particles that can be

integrated out of the theory. Furthermore, we have allowed independent couplings of DM to

all SM fields so as to minimize any theoretical bias, but we have limited these interactions to

flavour-conserving ones in the SM sector, since generally stronger constraints apply to them.

Finally, if all possible Lorentz structures were simultaneously allowed, the parameter space

would become too large to explore and constrain with present data. Thus, we restrict our

analysis to Dirac DM fermions which interact with the SM constituents through independent

operators of the form

ci,P (χ̄γµχ)
(
f̄iγµPfi

)
, (27)

with independent coefficients ci,P for all SM fermions fi and chiralities P ≡ PL, PR.

This working model, which is not intended to reproduce any particular ultraviolet comple-

tion, provides the necessary parametrization to assess through a joint analysis the constraints

on the individual interaction strengths from present data. We constrain 15 independent co-

efficients through a combination of 8 experimental probes comprising relic abundance, direct

and indirect DM searches as well as collider limits. In addition to this general setup, we

also explore how these constraints are affected when correlations between the different coef-

ficients are allowed, or when some of the operators are forbidden. In particular, we studied

the completely leptophilic, leptophobic and flavour-blind cases, as well a family-oriented
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scenario in which all members of the same generation share the same coupling to the DM

particle.

From our global fits we find that for DM masses mχ < 20 GeV the tension between the

couplings necessary to reproduce the observed DM relic abundance and the upper bounds

from null results exceeds the 3σ level, for the general and leptophilic scenarios considered,

while the same happens for mχ < 50 GeV for the leptophobic, flavour blind and family

oriented cases. For these three cases, the χ2 rise very steeply as the DM mass decreases such

that for mχ < O(20−30) GeV this tension reaches the 5σ level, within our EFT framework.

Furthermore we find that, due to the slightly weaker present constraints, couplings to

the second-generation lepton doublet are preferred, whenever they are available within the

model under study. If this coupling is not available or is instead further constrained by an

assumed correlation, as is the case of the flavour-blind scenario, a more sizable coupling

to the right-handed, up-type quark singlet is instead preferred for similar reasons. Thus,

it would be interesting to improve our present constraints on these couplings. Finally, we

also find that, since all couplings are assumed to be independent and free to vary in the fit,

the very stringent constraints stemming from direct search experiments such as LUX imply

that either the first generation quark couplings to DM are extremely small or that they are

related to each other such that the different contributions to these processes cancel against

each other, i.e., 2cQ1 + cuR + cdR ' 0.

DM searches worldwide are now probing and constraining essentially all possible interac-

tion channels between DM and the known matter constituents through extremely different

and complementary and search techniques. In this context, and given our lack of a unique

theoretical DM paradigm, it is important to test different DM models against present data

with bottom-up approaches where theoretical biases are not imposed. Unfortunately, true

and complete model independence cannot be achieved. Indeed, while EFT offers an ideal

frame for this sort of studies, its adoption already enforces some assumptions, such as the de-

coupling nature of the mediating particle or the uniqueness of the DM candidate. Moreover,

true model independence would imply the inclusion of hundreds of independent operators

with different flavour and chiral structures, rendering the analysis too general to actually

provide any useful information. In this work we have reduced the number of theoretical as-

sumptions taking a first step which implies some unavoidable restrictions to the number and

types of effective operators included. It would be very interesting to supplement our results
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with additional complementary analyses, including different Lorentz structures, different

DM fields (Majorana fermions, or scalars), or with extensions beyond the EFT approach by

allowing one (or several) generic light mediator(s).
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Appendix A: Fitting procedure for the AMS02 positron flux data

As already explained in Sec. III, the measurements from AMS on the positron fraction

are also used to derive upper bounds on DM annihilation cross sections. The main issue that

has to be dealt with when doing so, however, are the large uncertainties on the positron and

electron fluxes from astrophysical sources (see, e.g., Refs [36, 48, 49]). It is common to use

a linear combination of two power laws to parametrize them, where typically the positron

flux includes an exponential cut-off at high energies. Our parametrization for the electron
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and positron fluxes is shown in Eq. (18).

In principle, both DM and the astrophysical contribution to the electron and positron

fluxes are affected by the solar modulation. This can be explicitly taken into account by

computing the flux at the top of the atmosphere (⊕) under the force field approximation,

see Eq. (19). Therefore, under these assumptions our background already depends on 9

parameters

{Ce, γe, Cs, γs, Es, φ+} for positrons, and

{C1, γ1, C2, γ2, φ
−} for electrons.

(A1)

To get the total positron fraction, one would add to the background the additional contribu-

tion from DM annihilation, which in principle depends on the solar modulation parameter

φ+ as well, see Eq. (20).

In principle, the best thing would be to perform a fit to the AMS02 data where, for

each value of the DM mass, the minimum of the χ2 is searched for after marginalizing

over the 9 parameters listed above. However, this is computationally rather expensive.

Furthermore, we found that severe degeneracies take place among the different parameters,

which complicates the problem even further.

However, the problem can be considerably simplified by considering the following. In

principle, the positron flux will be the most sensitive to the DM annihilation signal, while

the electron flux will be mainly dominated by astrophysical backgrounds instead. This allows

to reduce the number of parameters in the fit significantly: since the electron flux will be

independent from the signal, it can be fitted independently and leave the parameters fixed

during the fit. This is done using the parametrization in Eq. (18) for the electron flux, and

the publicly available data7 on the electron flux from the Fermi LAT collaboration [37].

When fitting the Fermi LAT data, a χ2 fit is performed considering both the low-energy

and high-energy data sets, between 7 GeV and 1 TeV. The resulting curve is shown in the left

panel in Fig. 4, together with the data points as extracted from Ref. [37]. The uncertainties

in each bin are computed by adding in quadrature their statistical and systematic errors.8

7 The AMS02 data in Ref. [18] contains only the positron fraction and fluxes, but not the electron data.

Therefore, we use the Fermi LAT data in this case, which is publicly available [37].
8 In the case of asymmetric systematic errors, we (conservatively) take the largest value.
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We find that the parameters which give a best-fit to the Fermi LAT electron flux data are

C1(2) = 213.7 (140.1) s−1 sr−1 m−2 GeV−1

γ1(2) = 3.7 (3.0) ; φ− = 0.0.
(A2)

For these values of the parameters, we find a minimum χ2/d.o.f. = 4.7/38.
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FIG. 4: (Left) Our best-fit for the electron flux compared to Fermi LAT data. (Right) Our best-fit to the

positron fraction in the absence of any contribution from DM annihilation, compared to the AMS data. See

text for details.

Finally, when deriving the constraint from AMS data, the total positron flux is obtained

as the addition of the astrophysical background (which depends on Ce, Cs, γe, γs, Es and

φ+) and the contribution from DM annihilation. In the absence of an extra contribution

from DM annihilation, we find that the following parameters give a best-fit to the positron

fraction data from AMS

Ce(s) = 30.4 (2.0) s−1 sr−1 m−2 GeV−1;

γe(s) = 3.9 (2.5) ; Es = 1086.8GeV; φ+ = 0.0,
(A3)

with χ2/d.o.f. = 26.2/53. The positron fraction obtained with these parameters can be seen

in the right panel in Fig. 4 together with the AMS data. Again in this case, the errors are

taken as the sum in quadrature of the statistical and systematic errors in each bin.

In our simulations, however, we include the DM annihilation to the positron flux and

we let the parameters in Eq. (A1) vary during the fit. When doing so, we find that the

solar modulation parameter does not have a major impact in the fit while it generates some

numerical degeneracies with other parameters, which are difficult to deal with. Therefore,
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we also fix this parameter to the value which gives a best-fit to the AMS02 data using the

background contribution alone. The rest of the parameters in Eq. (A1) are left free during

the fit, and will be fitted for each value of the DM mass and the couplings in an independent

way.
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FIG. 5: Limits to the DM interaction cross section as a function of the DM mass for several primary

annihilation channels to leptons, as indicated in the legend, when only one coupling is allowed at a time.

The regions above each line are excluded at 90% CL (1 dof). The horizontal line indicates the cross section

needed to satisfy relic abundance constraints.
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FIG. 6: Same as Fig. 5 but for primary DM annihilation into quarks, as indicated in the legend.

Finally, even though in our simulations we consider several couplings between the DM

and SM particles at once, it is useful to look at the limits obtained when only one coupling

to a SM fermion is allowed at a time. This allows to illustrate the interplay between different

data sets and where the tension in the fit for low values of the DM mass may come from.

The limits on the DM-SM interaction cross section are shown in Fig. 5 for leptons and in

Fig. 6 for quarks, as a function of the DM mass. Since in our fit we are combining AMS
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with relic abundance constraints, a significant tension will only take place when the limit on

the interaction cross section gets below the value needed for relic abundance. Therefore, one

can already see from this figure that the AMS data will be most effective in constraining the

couplings of the DM to electrons (for mχ . 10 GeV) and muons (for mχ . 60 GeV), but

will be less efficient for other DM fermions (for instance, for taus it will only significantly

affect the fit for mχ . 20 GeV).
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