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ABSTRACT
We present the nonlinear 2D galaxy power spectrum, P (k, µ), in redshift space, mea-
sured from the Dark Sky simulations, using galaxy catalogs constructed with both
halo occupation distribution and subhalo abundance matching methods, chosen to
represent an intermediate redshift sample of luminous red galaxies. We find that the
information content in individual µ (cosine of the angle to the line of sight) bins is
substantially richer then multipole moments, and show that this can be used to isolate
the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the
µ < 0.2 simulation data, which we show is not impacted by RSD effects, we can suc-
cessfully measure the nonlinear bias to an accuracy of ∼ 5% at k < 0.6hMpc−1. This
use of individual µ bins to extract the nonlinear bias successfully removes a large pa-
rameter degeneracy when constraining the linear growth rate of structure. We carry
out a joint parameter estimation, using the low µ simulation data to constrain the
nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be
constrained to ∼ 26(22)% to a kmax < 0.4(0.6)hMpc−1 from clustering alone using a
simple dispersion model, for a range of galaxy models. Our analysis of individual µ
bins also reveals interesting physical effects which arise simply from different methods
of populating halos with galaxies. We find a prominent turnaround scale, at which
RSD damping effects are greater then the nonlinear growth, which differs not only for
each µ bin but also for each galaxy model. These features may provide unique signa-
tures which could be used to shed light on the galaxy–dark matter connection. The
idea of separating nonlinear growth and RSD effects making use of the full informa-
tion in the 2D galaxy power spectrum yields significant improvements in constraining
cosmological parameters and may be a promising probe of galaxy formation models.

Key words: Methods: N-body simulations - Cosmology: theory - large-scale structure
of the Universe

1 INTRODUCTION

Peculiar velocity flows distort the large-scale mass distri-
bution on Mpc scales in the Universe and are a funda-
mental cosmological observable that allows us to constrain
key parameters of the ΛCDM model and to look for devi-
ations from this standard model. One of the key aims of
future galaxy redshift surveys, e.g. Euclid (Cimatti et al.
2009), WFIRST (Spergel et al. 2013) and the DESI survey
(Levi et al. 2013; Eisenstein & DESI Collaboration 2015))
is to measure the linear perturbation theory relation be-
tween the density and velocity fields, referred to as the linear
growth rate, to roughly 1% precision using the redshift-space

? E-mail: elise@fnal.gov

clustering statistics of different galaxy tracers. It is usual
to study the multipole moments, either the monopole or
quadrupole, of the power spectrum in redshift space, where
peculiar velocities distort the clustering signal along the line
of sight, which involves integrating out the µ dependence. In
this paper we examine the full 2D power spectrum, P (k, µ)
in order to isolate the impact of nonlinear growth and RSD
effects. We use state-of-the-art simulations to generate mock
galaxy samples with a variety of assumptions for how galax-
ies populate halos and compare the redshift-space clustering
signals in each.

Dark matter halos are collapsed virialized structures
which create deep potential wells in which galaxies are ex-
pected to reside. As a result, galaxies are biased tracers
of the underlying dark matter, and their relative cluster-
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2 E. Jennings & R. H. Wechsler

ing signals have a non-trivial scale-dependent relation, often
referred to as the nonlinear bias. A common approach to un-
derstanding this galaxy–halo connection is to use a halo oc-
cupation distribution (HOD) (e.g. Berlind & Weinberg 2002;
Bullock et al. 2002; Zheng et al. 2005), which models the
probability that a halo of fixed virial mass hosts a certain
number of galaxies, and to then constrain the parameters of
this relationship using measurements such as the projected
galaxy two-point clustering signal. Another approach, which
takes into account mergers and the dependence of cluster-
ing on mass accretion histories, is to use abundance match-
ing between galaxies and dark matter halos in simulations
(Kravtsov et al. 2004; Vale & Ostriker 2004; Conroy et al.
2006). Precise models of how galaxies populate halos and
how this connection may evolve with time are important for
constraining galaxy formation scenarios.

Current models for the two-point clustering statistics in
redshift space that include perturbation theory expansions
have been shown to be an improvement over linear theory
in modeling redshift-space clustering statistics. Although all
are limited to very large scales k < 0.15hMpc−1 at low red-
shifts (see e.g Scoccimarro 2004; Jennings et al. 2011; Kwan
et al. 2012) and moreover may only apply to highly biased
tracers (Reid & White 2011); none of the models can recover
the linear growth rate to percent level accuracy on the scales
that will be probed by future galaxy surveys. One of the
key degeneracies in accurately constraining the growth rate
is the nonlinear scale-dependent bias between the galaxies
and dark matter.

To distinguish between competing explanations for the
accelerating expansion of the Universe, we need to measure
the growth of structure to an accuracy of a few percent over a
wide redshift interval. The next generation of galaxy redshift
surveys, such as the Dark Energy Spectroscopic Instrument
(DESI) (Eisenstein & DESI Collaboration 2015), will be able
to achieve this precision. One of the main aims of DESI is
to measure luminous red galaxies (LRGs) up to z = 1.0,
extending the BOSS LRG survey (e.g. Beutler et al. 2014)
in both redshift and survey area. In this paper we present
predictions for the redshift-space power spectrum of several
mock LRG samples at a number density and redshift rele-
vant for DESI. We analyze different µ bins and demonstrate
how these can be used to isolate the impact of nonlinear
growth and RSD. We note that the methods described here
should also be applicable to galaxy samples selected from
other surveys and with other selection techniques.

It is important to understand the sensitivity of these
results to uncertainties in the galaxy–halo connection. How-
ever, to date there have been relatively few studies of the
redshift-space clustering signal using different galaxy mod-
els. Using a HOD to populate dark matter halos, Tinker
et al. (2006) analyzed the redshift-space clustering signal in a
simulation box of 253 h−1Mpc on a side, but did not recover
the linear theory predictions on scales accessible to their sim-
ulations. More recently Yamamoto et al. (2015) presented
redshift-space clustering results using subhalo abundance
matching methods in computational boxes of 300h−1Mpc
on a side with 10243 particles, but do not present linear
theory predictions which would demonstrate convergence of
the RSD signal on large scales. A key criterion for a robust
redshift-space distortion analysis is both high mass resolu-
tion, for accurate velocity statistics, as well as a large com-

putation volume to recover linear theory predictions on large
scales (Jennings et al. 2015). If subhalo abundance matching
is used to populate the simulation with galaxies, this places
even stricter constraints on both the mass and force reso-
lution required to resolve substructure. Here we use a new
1h−1Gpc cosmological box with 102403 particles from the
Dark Sky series (Skillman et al. 2014) to create both HOD
and subhalo abundance matching catalogues. Our aim is to
explore a range of reasonable models for the galaxy–halo
connection, and to understand the sensitivity of the cosmo-
logical signals to these models.

The paper is laid out as follows: In Sections 2.1 and 2.2
we describe the N-body simulations and the different galaxy
models used to populate halos. In Sections 3.1 and 3.2 we
outline the theory describing two-point clustering statistics
in redshift space and describe the dispersion model used in
this paper. In Sections 4.1 and 4.2 we present our main re-
sults, showing the redshift-space clustering signal from the
different galaxy models and our approach for isolating non-
linear growth and redshift-space distortions in different µ
bins. In Section 4.3 we demonstrate how the nonlinear bias
can be extracted from the µ < 0.2 simulation data and carry
out a joint parameter estimation to constrain the growth
rate of structure in Section 4.4. We show that the growth
rate can be extracted robustly for all of the galaxy models
considered, to significantly smaller scales than is possible
with current methods.

2 SIMULATIONS & GALAXY POPULATION
MODELS

In Section 2.1 we describe the Dark Sky Gpc simulation used
in this analysis. In Section 2.2 we outline the halo occupa-
tion distribution (HOD) model used as well as the different
subhalo abundance matching methods employed to create
mock galaxy samples.

2.1 Dark Sky Simulations

Accurate RSD clustering measurements require both a large
simulation volume, in order to recover linear theory predic-
tions precisely on large scales, and high mass resolution, in
order to resolve the velocity fields in the quasi-nonlinear
regime. High mass and force resolution are also essential for
accurately forecasting the nonlinear growth in both the ve-
locity and density fields, as well as for resolving the halo
substructure within virialized haloes needed to assign real-
istic galaxy populations.

The Dark Sky simulations1 are an unprecedented series
of cosmological N-body simulations that evolve the large-
scale structure of the Universe with high resolution over very
large volumes (Skillman et al. 2014). The two largest simula-
tion boxes each followed the evolution of more than a trillion
particles, over 1 Gpc h−1and 8 Gpc h−1volumes, and were
run using the 2HOT code (Warren 2013) on the Titan ma-
chine at Oakridge National Laboratory. For this study we
use the Dark Sky Gpc simulation (ds 14b), which follows

1 http://darksky.slac.stanford.edu
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Disentangling redshift-space distortions and nonlinear bias 3

the evolution of the matter distribution within a cubic re-
gion of 1 Gpc h−1on a side with 102403 particles, each with
a particle mass of mp = 7.6× 107h−1M�.

These simulations adopt a ΛCDM cosmology which is
compatible with Planck results (Planck Collaboration et al.
2014). The cosmological parameters of the simulation are
Ωm = 0.295,ΩΛ = 0.705, H0 = 68.8km s−1Mpc−1 and σ8 =
0.83 where σ8 is is the variance of the smoothed density field
on a scale of 8Mpch−1 defined as

σ2
8 =

1

(2π2)

∫ ∞
0

dlnkk3P (k)W 2(k,R = 8) (1)

where W (k,R = 8) is the Fourier transform of a top hat
window function.

Because of the large data volume for each full dark mat-
ter snapshot, each snapshot was downsampled with 1/32 of
the total number of particles used in the calculation. Full
resolution snapshots were saved for a smaller number of
timesteps, but in the present work we use halo catalogs and
merger trees constructed from 100 of these downsampled
snapshots. The halo and subhalo catalogues were made using
the Rockstar halo finder (Behroozi et al. 2013) to locate
gravitationally bound structures. This halo-finding approach
is based on adaptive hierarchical refinement of friends-of-
friends groups in both position and velocity, using this phase
space information to locate substructures and track subha-
los better in the inner regions of halos. Merger trees were
created from these 100 downsampled snapshots, using the
consistent-trees code (Behroozi et al. 2013); these were
used in creating the galaxy catalogs described in the fol-
lowing section. We focus our work on one snapshot of the
simulation, at z = 0.67. Here we can accurately measure the
clustering signal in real and redshift space with nearly 100
million halos.

The power spectrum was computed by assigning the
particles to a mesh using the cloud in cell (CIC) assign-
ment scheme and then performing a fast Fourier trans-
form on the density field. Throughout this paper the frac-
tional error on the power spectrum plotted is given by
σP /P = (2/N)1/2(1 + σ2

n/P ) where N is the number of
modes measured in a spherical shell of width δk and σn is
the shot noise (Feldman et al. 1994). This number depends
upon the survey volume, V , as N = V 4πk2δk/(2π)3.

2.2 Galaxy samples

In this paper we present redshift-space clustering measure-
ments for several mock LRG samples at a redshift z = 0.67
and number density n̄ = 3.9× 10−4 (Mpc/h)−3. This corre-
sponds to the number density of the SDSS-III cmass sample
at this redshift, and is roughly what is expected over 14,000
square degrees for the DESI survey (Levi et al. 2013). How-
ever, we expect that the primary methodology we present
here is also applicable to other sample definitions and to
samples selected from other surveys. We shall explore this
further in future work.

Galaxies are biased tracers of the underlying dark mat-
ter distribution and are thought to reside in the potential
wells (density peaks) of the dark matter field. Theoretical
models for how galaxies occupy these dark matter halos are
an essential step in connecting predictions from N-body sim-
ulations to galaxy surveys. In the absence of full, hydrody-

namic simulations which explicitly include the effects of star
formation and feedback, populating a dark matter simula-
tion with galaxies requires a detailed model to connect the
dark matter with the galaxies. In this paper we consider two
such modeling approaches: the halo occupation distribution
(HOD) model and subhalo abundance matching models. Our
primary goal is to span a reasonable range of galaxy assign-
ment schemes encompassing current theoretical uncertainty,
and to understand the sensitivity of cosmological observ-
ables to these different assumptions.

The HOD model (e.g. Berlind & Weinberg 2002) de-
scribes the galaxy–halo connection by modeling the proba-
bility that a halo of fixed virial mass M , hosts N galaxies,
P (N |M). The parameterization of the HOD we use follows
Zheng et al. (2005), which separately models central and
satellite galaxies, assuming that a central galaxy is required
for a given halo to host a satellite. This model has been
used in a number of studies; here, we use the best-fit pa-
rameters to this model from SDSS-III CMASS sample (Reid
et al. 2014), which is in basic agreement with previous HOD
modeling of SDSS LRG samples (Zheng et al. 2009; Reid &
Spergel 2009).

In this HOD model, the probability for a halo of mass
M to host a central galaxy is

N(M) = 0.5{1 + erf

(
log10M − log10Mmin

σlog10M

)
} . (2)

The number of satellites assigned to the halo, given that
it already hosts a central galaxy, is drawn from a Poisson
distribution with mean

Nsat =

(
M −Mcut

M1

)α
. (3)

In the following we use log10Mmin = 13.031 ± 0.029,
σlog10M = 0.38± 0.06, log10Mcut = 13.27± 0.13, log10M1 =
14.08±0.06 and α = 0.76±0.18 (as given by Reid et al. 2014).
For both central and satellite galaxies, we assign velocities
to each based on the centre-of-mass velocity of the subhalo
found by the Rockstar halo finder. Satellite galaxies are as-
signed directly to subhalos identified by Rockstar, ranked
by their maximum circular velocity to match the number of
satellites specified by the HOD.

The semi-empirical approach of subhalo abundance
matching (Kravtsov et al. 2004; Vale & Ostriker 2004) is
based on the assumption that some halo property is mono-
tonically related to some galaxy property, typically galaxy
luminosity or stellar mass. A natural first assumption is that
galaxy properties are strongly correlated with the depth of
their potential wells and in this case the maximum circular
velocity of a halo (or subhalo) at the present time, vmax ,
would be the relevant property. Given that dark matter ha-
los can be significantly stripped, either before or after they
enter the virial radius, in a way that galaxies are not, sev-
eral authors have shown that models that instead associate
galaxy properties with subhalos before they start getting
stripped (for example at accretion onto the main halo, or
at the maximum mass they had in their accretion history)
provide a better match to data (e.g. Conroy et al. 2006)

Reddick et al. (2013) carried out a detailed study of the
underlying assumptions of the subhalo abundance matching
technique including which halo property is most closely asso-
ciated with galaxy stellar masses and luminosities, and how

c© 0000 RAS, MNRAS 000, 000–000



4 E. Jennings & R. H. Wechsler

much scatter is in this relationship. These authors find that
an abundance matching model that associates galaxies with
maximum value of the halo maximum circular velocity vmax

that a halo had over its accretion history (vpeak ), is in good
agreement with the data, when scatter of 0.20 ±0.03 dex
in stellar mass at a given vpeak is included. Subsequently,
Behroozi et al. (2014) pointed out that this peak circular
velocity over a halo’s history is generally determined by the
time of the last major mergers, which may make it less phys-
ically motivated as the most appropriate abundance match-
ing proxy. Lehmann et al (in preparation) suggest instead to
consider the maximum circular velocity at the peak value of
the mass over its history, vmpeak , which is less impacted by
mergers (a similar motivation was used by Chaves-Montero
et al. 2015 to suggest the proxy they refer to as vrelax). This
work further discusses a set of possible models that vary
the impact of assembly bias (Wechsler et al. 2006), ranging
from the maximum mass that the halo (or subhalo) has ever
had in its merger history, mpeak and the maximum veloc-
ity at the time when the halo (or subhalo) has achieved the
maximum mass in its merger history, vmpeak .

In the present work our goal is to span a reasonable
range of galaxy assignment schemes encompassing current
theoretical uncertainty. Thus in addition to the HOD mod-
els, we consider three representative subhalo abundance
matching models, using the proxies mpeak , vmpeak , and
vmax to rank order halos. All three models predict different
satellite fractions and clustering amplitudes in real space,
and have differing impact of assembly bias, in contrast to
the HOD model. In this work we present, for the first time,
predictions for the clustering signal in redshift space for all
three models. This allows us to investigate the sensitivity of
the redshift-space clustering to these differences. For ease of
comparison the number density for each is matched to that
from the HOD. For the vmpeak catalog this corresponds to
a magnitude cut of Mr < −21.36.

In modeling the bias of these samples, we choose the
simple Q-model for nonlinear bias (Cole et al. 2005)

bnl = blin

√
1 +Qk2

1 +Ak
, (4)

where the variables blin and Q are allowed to vary while A
is kept fixed at a value 1.7 (see Cole et al. 2005).

3 REDSHIFT-SPACE DISTORTIONS

In Section 3.1 we discuss the linear perturbation theory pre-
dictions for two-point clustering statistics in redshift space.
In Section 3.2 we outline the simple dispersion model we
shall use in this paper.

3.1 Linear perturbation theory

Inhomogeneous structure in the Universe induces peculiar
motions which distort the clustering pattern measured in
redshift space on all scales. This effect must be taken into
account when analyzing three-dimensional datasets that use
redshift to estimate the radial coordinate. Redshift-space ef-
fects alter the appearance of the clustering of matter, and
together with nonlinear evolution and bias, lead the mea-
sured power spectrum to depart from the simple predictions

of linear perturbation theory. The comoving distance to a
galaxy, ~s, differs from its true distance, ~x, due to its pecu-
liar velocity, ~v(~x) (i.e. an additional velocity to the Hubble
flow). The mapping from redshift space to real space is given
by

~s = ~x+ uz ẑ, (5)

where uz = ~v · ẑ/(aH) and H(a) is the Hubble parameter.
This assumes that the distortions take place along the line
of sight, denoted by ẑ, and is commonly referred to as the
plane–parallel approximation.

On small scales, randomized velocities associated with
the motion of galaxies inside virialised structures reduce the
power. The dense central regions of galaxy clusters appear
elongated along the line of sight in redshift space, which
produces the ‘fingers of God’ effect in redshift survey plots.
For growing perturbations on large scales, the overall ef-
fect of redshift-space distortions is to enhance the clustering
amplitude. Any difference in the velocity field due to mass
flowing from underdense regions to high density regions will
alter the volume element, causing an enhancement of the
apparent density contrast in redshift space, δs(~k), compared

to that in real space, δr(~k) (see Hamilton 1998, for a review
of redshift-space distortions).

Assuming the line of sight component of the peculiar
velocity is along the z-axis, the power spectrum in redshift
space is given by (see e.g. Scoccimarro 2004)

δD(~k) + Ps(~k) =

∫
d3r

(2π)3
e−i

~k·~r〈eikzV [1 + δg(~x)][1 + δg(~x
′)]〉

(6)

where δg = bδ is the galaxy overdensity which is usu-
ally related by a linear bias, b to the matter overdensity,
V = uz(~x) − uz(~x′) and ~r = ~x − ~x′. We are also assuming
that there is no velocity bias between the dark matter and
galaxies for simplicity, although this assumption may not be
true in detail (e.g. Biagetti et al. 2014; Zheng et al. 2014;
Jennings et al. 2015)

Decomposing the vector field into curl- and divergence-
free parts, and assuming an irrotational velocity field, we
can re-write kzuz = −(k2

z/k
2)θ(k) = −µ2θ(k) where θ(k) is

the Fourier transform of the velocity divergence. Expanding
the exponential term and only keeping terms up to second
order in the variables δ and θ, the power spectrum in redshift
space Ps becomes

δD(~k − ~k′)Ps(~k) = b2〈δ(~k)δ∗(~k′)〉 − 2µ2b〈θ(~k)δ∗(~k′)〉

+ µ4〈θ(~k)θ∗(~k′)〉. (7)

If we assume the linear continuity equation holds we can
re-write this as

δD(~k − ~k′)Ps(~k) = 〈δ(~k)δ∗(~k′)〉[b2 − 2bfµ2 + f2µ4]

= δD(~k − ~k′)P (k)[b2 − 2bfµ2 + f2µ4]

(8)

which is the Kaiser (1987) formula for the power spectrum
in redshift space in terms of the linear bias b, the power
spectrum P (k) and the linear growth rate f , given by

f =
dlnD

dlna
, (9)

where D is the linear growth factor.

c© 0000 RAS, MNRAS 000, 000–000



Disentangling redshift-space distortions and nonlinear bias 5

Rather than use the full 2D power spectrum, P (k, µ),
it is common to decompose the matter power spectrum in
redshift space into multipole moments using Legendre poly-
nomials, Ll(µ), (see e.g. Hamilton 1998)

P (k, µ) =
∑
l

Pl(k)Ll(µ) , (10)

where the summation is over the order, l, of the multipole.
The anisotropy in P (~k) is symmetric in µ, as P (k, µ) =
P (k,−µ), so only even values of l are summed over. Each
multipole moment is given by

P sl (k) =
2l + 1

2

∫ 1

−1

P (k, µ)Ll(µ)dµ , (11)

where the first two non-zero moments have Legendre poly-
nomials, L0(µ) = 1 and L2(µ) = (3µ2 − 1)/2. Using the
linear model in Eq. 8, the first two multipole moments are
given by(

P0(k)
P2(k)

)
= Pdm(k)

(
1 + 2

3
β + 1

5
β2

4
3
β + 4

7
β2

)
, (12)

where Pdm(k) denotes the real space matter power spec-
trum. Note we have omitted the superscript s here for clar-
ity. The variable β = f/b is the ratio of the linear growth
rate to the bias.

3.2 Modeling P (k, µ) in the nonlinear regime

The equations in Section 3.1 describe the boost in the clus-
tering signal in redshift space on large scales where linear
perturbation theory is valid. To go beyond linear theory and
deal with small-scale velocities requires a model for the ve-
locity field and all the density velocity correlations.

Commonly used models for the redshift-space power
spectrum extend the Kaiser formula by assuming that the
velocity and density fields are uncorrelated and that the joint
probability distribution factorizes as P(δ, θ) = P(θ)P(δ).
Examples include multiplying Eq. (8) by a factor which at-
tempts to take into account small-scale effects, invoking ei-
ther a Gaussian or exponential distribution of peculiar veloc-
ities. A popular phenomenological example of this which in-
corporates the damping effect of velocity dispersion on small
scales is the so-called ‘dispersion model’ (Peacock & Dodds
1994),

P s(k, µ) = Pg(k)(1 + βµ2)2 1

(1 + k2µ2σ2
p/2)

, (13)

where Pg is the galaxy power spectrum, σp is the pairwise
velocity dispersion along the line of sight, which is treated
as a parameter to be fitted to the data. In this paper we
model the damping effect using an exponential term as

P s(k, µ) = Pg(k)(1 + βµ2)2e−(kµσv)2 . (14)

This model has been used to fit to results from both simula-
tions and observations (see, for example Scoccimarro 2004;
Percival & White 2009; Jennings et al. 2011; Guzzo et al.
2008; Blake et al. 2011; Beutler et al. 2012). The disper-
sion model is a simplification in which not only are density–
velocity correlations neglected, the velocity fields are as-
sumed to be linear and the velocity dispersion is scale in-
dependent. Each of these assumptions could impact the ac-

curacy of the linear growth rate extracted from two-point
clustering statistics (see e.g. Jennings & Jennings 2015).

Recently, many models have been presented that im-
prove on this description of redshift-space distortions in the
nonlinear regime (e.g. Scoccimarro 2004; Matsubara 2008;
Taruya et al. 2010; Reid & White 2011; Seljak & McDonald
2011). Many of these models still require a free parame-
ter to fully describe the velocity dispersion effects and can
only accurately recover the linear growth rate on surpris-
ingly large scales, e.g. k < 0.2h/Mpc−1 (Jennings et al.
2011; Kwan et al. 2012; White et al. 2015). In all models
for the power spectrum in redshift space, there is a degener-
acy between the galaxy bias, the linear growth rate, and the
amplitude of fluctuations σ8 (Percival & White 2009). In-
troducing a free parameter to describe the scale-dependent
damping due to velocity distortions on small scales adds to
this degeneracy, and inevitably weakens constraints on the
growth rate. In this paper we examine the full 2D power
spectrum P (k, µ), rather then using the multipoles as in
previous studies. This allows us to examine the impact of
RSD and nonlinear growth separately and use appropriate
models to extract the maximum information on both the
linear growth rate and the bias along different angles with
respect to the line of sight.

4 RESULTS

In Section 4.1 we present the measured power spectrum in
redshift space at z = 0.67 using different models for pop-
ulating the dark matter halos with galaxies. In Section 4.2
we demonstrate how it is possible to distinguish between
the effects of nonlinear growth and redshift-space distortions
along different angles with respect to the line of sight by ex-
amining the full 2D P (k, µ) in redshift space. In Section 4.3
we examine the µ < 0.2 simulation data in detail in order to
measure the nonlinear bias as a function of wavenumber. We
carry out a joint likelihood parameter estimation in Section
4.4, in order to constrain both the linear growth rate, σ8,
and the linear bias.

4.1 Populating halos with galaxies and the effects
on the RSD signal

In Fig. 1 we plot the full 2D anisotropic power spectra in red-
shift space, P (k, µ), at z = 0.67 as a function of wavenum-
ber, k, for our simulated LRG sample. We have binned the
measured simulation data into five bins, plotted in the left
panel as µ = 0.1 (orange), µ = 0.3 (grey), µ = 0.5 (green),
µ = 0.7 (blue), and µ = 0.9 (red) for four different meth-
ods of populating halos with galaxies. Note that the bins
in the power spectra have been offset from each other for
clarity. In Fig. 1 the HOD model is plotted as circles and
the SHAM models: vmpeak , mpeak , and vmax , are plotted
as crosses, squares, and diamonds respectively. We plot the
Kaiser model prediction using a nonlinear dark matter power
spectrum and the best-fit linear bias for each µ bin as a
dashed line.

From the left panel in Fig. 1 it is clear that the dif-
ferent models for populating halos have differing redshift-
space clustering on quasi-linear to nonlinear scales, k >
0.1hMpc−1, and that the measured clustering amplitudes

c© 0000 RAS, MNRAS 000, 000–000



6 E. Jennings & R. H. Wechsler

Figure 1. Left: The halo z = 0.67 anisotropic power spectra P (k, µ) in redshift space for the HOD (circles), vmax (diamonds) and
vmpeak (crosses) models. The binned power spectra are shown as 0 6 µ < 0.2 (orange), 0.2 6 µ < 0.4 (grey), 0.4 6 µ < 0.6 (green),

0.6 6 µ < 0.8 (blue) and 0.8 6 µ < 1 (red). The Kaiser model prediction using a nonlinear dark matter power spectrum and the best-fit

linear bias for each has been plotted as a dashed line. Each µ = 0.3 (0.1) and µ = 0.7 (0.9) power spectrum has been separated by a
factor or 2 (2.5) from the µ = 0.5 data for clarity. Right: The nonlinear bias b =

√
PH(k)/PDM as a function of scale. The inset panel

shows the ratio of the bias for vmpeak (crosses), mpeak (squares) and HOD (circles) to the nonlinear bias for vmax as a function of scale.
The shaded band shows ±5% difference in the ratio.

differ from the Kaiser model, which includes nonlinear
growth in the dark matter field. Only the µ = 0.1 bin (orange
points) seems to agree with the Kaiser model plotted, how-
ever there are still significant differences between all SHAM
models and the HOD on scales k > 0.4hMpc−1.

In linear perturbation theory P (k, µ) = (b+fµ2)2Pr(k)
and so we would expect the µ = 0.1 bin (orange) to be least
affected by redshift-space distortions while the µ = 0.9 bin
(red) should be most impacted. By comparing each to a
linear theory Kaiser model with a nonlinear dark matter
power spectrum, as in Fig. 1, we can get an approximate
sense of the relative impact of nonlinear RSD effects, as
distinct from the usual nonlinear growth in real space and
the boost in clustering on large scales due to coherent flows,
on each µ bin. We find that the impact of nonlinear RSD
also scales with µ, as expected from the nonlinear damping
model in Eqn. 14. From this figure we can see there is little
damping of the µ = 0.1 bin due to nonlinear RSD while the
µ = 0.9 bin is most impacted.

In the right panel of Fig. 1 we plot the nonlinear bias
b =

√
PH(k)/PDM as a function of scale for each model,

where PH(k) is the real space halo power spectrum and PDM

is the linear matter power spectrum. Here the HOD, vmpeak ,
mpeak and vmax models are plotted as circles, crosses, squares
and diamonds respectively. Only the HOD and vmax models
have similar large scale bias. The inset panel shows the ratio
of the bias for each model to the bias for the vmax model as
a function of scale. The shaded band shows ±5% difference
in the ratio and it is clear that on scales k > 0.4hMpc−1 the
difference between the models is about 10%.

These differences in the nonlinear bias arise from dif-
ferences in both the central and satellite populations for the

different models. In Fig. 2 we show the HOD used in this
paper as a solid red line (the contribution from centrals only
is shown as an orange dashed line). The shaded grey region
represents 1500 random samples from the 1 − σ parameter
range of the HOD. The measured HOD from the vmpeak ,
mpeak and vmax catalogues are shown as blue circles, dot-
ted and dot-dashed lines respectively. The light blue crosses
represent 〈N〉 for vmpeak centrals only. The fact that these
models are selecting different central and satellite popula-
tions gives rise to differences in both RSD and nonlinear
growth of matter. With a fixed number density for each
model the central fraction is highest for vmax and is smaller
for the HOD, mpeak and vmpeak (in decreasing order) as
shown in Fig. 2.

In the standard halo model (see e.g. Scherrer &
Bertschinger 1991; Ma & Fry 2000; Berlind & Weinberg
2002; Cooray & Sheth 2002), which is a convenient formal-
ism for predicting and interpreting the clustering statistics
of dark matter halos and galaxies, the clustering signal can
be written as a sum of one and two halo terms. The one-
halo term, due to distinct mass elements that lie within the
same dark matter halo, dominates the clustering signal on
scales smaller than the virial radii of halos and the two-
halo term, which is due to mass elements in distinct pairs
of halos, dominates on scales much larger than the virial
radii of the largest halos. In this context larger satellite
fractions increase the two-halo term, boosting the nonlin-
ear clustering signal and increasing velocity dispersions on
small scales. If we can attribute differences in the µ = 0.1
bin only to nonlinear growth in the matter field without
RSD and consider differences in the µ = 0.9 bin as due to a
mix of RSD and nonlinear growth then, from the left panel
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Disentangling redshift-space distortions and nonlinear bias 7

Figure 2. The HOD model (solid red line) at z = 0.67. The

contribution from centrals only is shown as an orange dashed
line. The measured number density from the vmpeak , mpeak ,

and vmax catalogues are shown as blue circles, dotted and dot-

dashed lines respectively. The vmpeak centrals only are shown as
light blue crosses. The shaded grey region represents 1500 random

samples from the 1− σ parameter range of the HOD.

in Fig. 1, we would anticipate that the vmpeak sample has
the largest satellite fraction, followed by the HOD and then
vmax . Increased small-scale velocity dispersion is manifested
as increased RSD damping in the clustering on small scales,
clearly seen in the µ = 0.9 (red) bin. This interpretation
seems valid as we find that fsat = 0.151, 0.087 and 0.061 for
vmpeak , the HOD and vmax models respectively. Note mpeak

is not plotted in the left panel for clarity (fsat = 0.117 for
mpeak ).

In Fig. 3 we show the ratio of the quadrupole to
monopole moment of the power spectra in redshift space
for the HOD (dashed lines), vmax (dot dashed lines), mpeak

(green squares) and vmpeak (dotted lines) models. The dif-
ferent linear bias between the models gives rise to linear
theory predictions which are slightly different (thin and
thick solid black lines). We find that differences between the
HOD, vmax , mpeak , and vmpeak models are largest for the
quadrupole P2 moment on quasi-linear to nonlinear scales
k > 0.1hMpc−1. This result agrees with previous findings
that the quadrupole is most sensitive to differences in veloc-
ity dispersion and hence differences in the satellite fractions
(Reid et al. 2014). Many previous analyses of RSD have fo-
cused on these multipole moments which integrate over the
µ dependence. From Fig. 3 we would correctly predict that
the vmpeak sample has the largest satellite fraction, followed
by the HOD and then vmax based on the degree of damping
on scales k > 0.2hMpc−1. However the information content
in individual µ bins seems richer, thus motivated by Fig. 1,
in the next section we shall investigate the idea of separat-
ing the nonlinear growth and RSD effects further. Although
RSD effects on small scales are also the result of nonlinear
growth, the distinction we make in this paper is between
nonlinear growth in real space and the distortions along the
line-of-sight due to peculiar velocities. We shall analyse the

Figure 3. The quadrupole to monopole ratio as a function of
wavenumber at z = 0.67 for the HOD (green dashed line), vmax

(blue dot dashed line), mpeak (green squares) and vmpeak (red

dotted) models. The solid horizontal lines represent the linear
theory predictions. Note there are two linear theory lines plotted

due to different linear bias factors for the models.

differences in the nonlinear bias on small scales further in
Section 4.3.

4.2 Separating RSD and NL growth

In the upper left (right) panel of Fig. 4 we plot the ratio of
the nonlinear redshift-space power spectra, P (k, µ), to the
nonlinear real-space power spectrum measured from the sim-
ulations using the HOD (vmpeak ) model. The dashed lines

correspond to the linear theory prediction (1 + f/blinµ
2)2

for each µ bin using the best-fit linear bias for each model.
By dividing by the nonlinear matter power spectrum we
are isolating the RSD effects. The ratio for each µ bin is
not unity on large scales, due to the boost in the cluster-
ing signal caused by coherent bulk flows, and agrees with
linear theory predictions on different scales depending on
the bin. E.g. the µ = 0.5 data agrees with linear theory at
k < 0.15hMpc−1 whereas the µ = 0.9 data agrees with linear
theory on scales k < 0.06hMpc−1. In the lower left (right)
panel of Fig. 4, we show similar ratios for the mpeak and
vmax models respectively. What is striking from all panels
in Fig. 4 is that the ratio for the orange µ = 0.1 bin is unity
on scales k < 0.4hMpc−1. This means that on these scales
there are negligible redshift-space distortion effects for the
µ = 0.1 bin.

In order to highlight the differences between the four
models we plot the µ = 0.9 data only in Fig. 5 for the HOD
(circles), mpeak (squares), vmpeak (crosses) and vmax (di-
amonds) model. The linear theory prediction for the HOD
model is shown as a dashed red line. This plot highlights the
differences in RSD effects between the models and agrees
with our findings in the previous section, that models with
higher satellite fractions like vmpeak have higher FOG damp-
ing signal on quasi-linear to nonlinear scales compared to
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8 E. Jennings & R. H. Wechsler

Figure 4. The ratio of the nonlinear power spectra in redshift space to real space, P (k, µ)/Pr(k), for 4 different galaxy occupation
models. The colors of each line represent the µ bin plotted as given in the legend. The dashed lines correspond to the linear theory

prediction (1 + f/blinµ
2)2 for each µ bin using the best-fit linear bias to each bin. Panels correspond to the LRG HOD model (top left),

the vmpeak sample (top right), the mpeak sample (bottom left), and the vmax sample (bottom right).

models with a lower satellite fraction like vmax . At a scale
of k = 0.3hMpc−1 there is approximately a 25% difference
between the vmax and vmpeak model in the damping signal
in the µ = 0.9 bin.

Although RSD effects on small scales are the result of
nonlinear growth, the distinction we make in this paper
is between nonlinear growth in real space and the distor-
tions along the line of sight due to peculiar velocities. In
Fig. 4 we removed the contribution of nonlinear growth in
real space to the clustering signal in order to analyse all
RSD effects as a function of scale. We can further isolate
the effect of both nonlinear growth and nonlinear RSD ef-
fects by showing the ratios of P (k, µ) to the linear theory
Kaiser prediction, P (k, µ) = (bL + fµ2)2PL, using the lin-
ear bias bL =

√
PH/PDM |k<0.05 measured on large scales

k < 0.05hMpc−1. This is plotted in the upper left (right)
panel in Fig. 6 for the HOD (vmpeak ) model.

In Fig. 6 a ratio of unity indicates that the Kaiser linear

theory prediction is accurate on very large scales, in agree-
ment with previous work (Scoccimarro 2004; Taruya et al.
2010; Jennings et al. 2011; Jennings 2012; Kwan et al. 2012;
Bianchi et al. 2015). This figure also shows the impact of
nonlinear growth, increasing the ratio above unity for some
µ bins, followed by a turn around/damping due to virial ve-
locities. In all panels of Fig. 6 the µ = 0.1 bin (orange) is
dominated by nonlinear growth and the clustering signal is
not appreciably affected by RSD effects. The µ = 0.5 and
µ = 0.3 data for the vmpeak model shows greater nonlin-
ear growth (factor of 2 and 1.4 increase in clustering signal
above the Kaiser prediction) compared to the HOD model
which shows a factor of 1.7 and 1.2 for the same bins.

The lower left (right) panel of Fig. 6 shows similar
ratios for the mpeak (vmax ) models. These figures reveal
an interesting feature in the µ = 0.9 bin, as the ratio of
the anisotropic power spectrum P (k, µ) to the linear theory
Kaiser prediction is close to unity on scales k < 0.4hMpc−1
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Disentangling redshift-space distortions and nonlinear bias 9

Figure 5. The ratio of the nonlinear power spectra in redshift
space to real space, P (k, µ)/Pr(k) for all models, HOD (circles),

mpeak (squares), vmpeak (crosses) and vmax (diamonds) in the

µ = 0.9 bin. We do not plot error bars for mpeak or vmpeak for
clarity. The linear theory prediction for the HOD model is shown

as a dashed red line.

for the HOD, vmpeak and mpeak models. This implies that
on these scales the µ = 0.9 data is dominated by linear
RSD effects which we can correctly model once we know the
linear bias. When comparing the different models in Fig.
6 it can be seen that the turnaround scale, at which RSD
damping effects are greater then the nonlinear growth, is
different not only for each µ bin but also for each model.
These features may provide unique signatures in real galaxy
data which could be used to distinguish between different
models for populating halos with galaxies. We shall explore
this in more detail in future work.

4.3 Extracting the nonlinear bias from
P (k, µ < 0.2)

Motivated by Fig. 4, which shows that the lowest µ =
0.1 bin is not significantly impacted by RSD effects on
large scales, in this section we test the accuracy of ex-
tracting the nonlinear bias from this µ bin and consider
how this measurement might improve the RSD models for
other µ > 0.2 bins. In Fig. 7 we show the measured non-
linear bias bNL =

√
PH/PDM, lin for the HOD (circles),

vmax (diamonds), mpeak (squares) and vmpeak (crosses) mod-
els and compare this in each case with the nonlinear bias ex-
tracted from the µ = 0.1 bin

√
P (k, µ = 0.1)/PDM, lin. Note

PH is the mock galaxy power spectrum in real space for each
model. The extracted nonlinear bias is shown as a dotted
black, cyan solid, and grey dashed line for the HOD, vmax ,
and vmpeak models. We do not plot

√
P (k, µ = 0.1)/PDM, lin

for mpeak for clarity. The inset panel shows the ratio of the
nonlinear bias bNL measured from the auto power spectra
in real space to the one measured using the µ = 0.1 power
spectrum bin. The ratio for the mpeak model is shown as a
dot-dashed line. The shaded band shows ±5% difference in
the ratio.

From this plot it is clear that the nonlinear bias inferred
using the µ = 0.1 power spectrum bin in redshift space is
accurate to better than 5% over the range k < 0.6hMpc−1.
Importantly, this is less then the difference in the predicted
nonlinear bias between the models ( c.f. Fig. 1), which is
about 10%. If we have an accurate forecast for the nonlinear
bias in different galaxy population models and we can sub-
sequently extract the nonlinear bias from the µ = 0.1 galaxy
clustering data, this could potentially be used to distinguish
between different methods for populating halos.

There is another advantage to using this µ = 0.1 data
in order to measure the nonlinear bias. In the standard ap-
proach to measuring the linear growth rate from redshift-
space clustering statistics, there is a degeneracy between the
growth rate, f , and the bias. If we are able to constrain the
linear bias accurately from low µ < 0.2 bins and use this
to jointly constrain f from the µ > 0.2 data, this might
give rise to improved constraints on f . The results from this
fitting procedure are shown in the next section.

The left (right) panel in Fig. 8 shows the ratio
of P (k, µ) for the HOD (vmpeak ) model to the Kaiser

prediction,P (k, µ) = (bNL + fµ2)2PL, where the nonlinear
bias has been extracted from the µ = 0.1 data. Including the
nonlinear bias in this simple way removes the nonlinear en-
hancements seen in Fig. 6 and reveals a damped signal which
is different for each µ bin. It is clear from this figure that
now only nonlinear RSD damping effects are present and
modeling these with an exponential damping term seems
reasonable.

As outlined in Section 3.2, the dispersion model is an
extension of Kaiser linear theory where the damping ef-
fects on small scales are taken into account, P (k, µ) =

(bNL + fµ2)2PLe
−(fµσv)2 . Here σv is the pairwise velocity

dispersion; it is common to treat this as a free parameter in
the fit for f . Note in Fig. 8 σv = 0. In the left (right) panel
of Fig. 9 we show the ratio of the µ = 0.3, 0.5 (µ = 0.7, 0.9)
data for the HOD model to the dispersion model where the
nonlinear bias has been extracted from the µ = 0.1 data
and we have fixed σv = 2.9 (σv = 2.0) for demonstration
purposes. Previous work in fitting to either the quadrupole
to monopole ratio or to the full P (k, µ) assumes a fixed
σv for all bins although it is clear that allowing a different
free parameter for each µ bin gives a better fit to the data.
Given the complex shape and relative importance of nonlin-
ear growth and linear and nonlinear RSD effects to the 2D
power spectrum as seen in Fig. 6, adding a damping term
with a µ-dependent free parameter extends the number of
useful modes with which we can reliably constrain cosmol-
ogy. We present results of this fitting procedure in the next
section.

4.4 Parameter estimation

In this section we present simple examples of parameter fit-
ting to different bins in µ from the 2D redshift space P (k, µ)
taking into account the effect of nonlinear growth and RSD
on each. We present the results from a joint analysis of the
µ = 0.1 simulation data fitting for the nonlinear bias and the
µ = 0.3 and µ = 0.5 data for the linear growth rate and σ8.
We shall also show results of fitting to the µ = 0.9 bin using
a joint fit to µ = 0.1 to extract the nonlinear bias. Note we
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10 E. Jennings & R. H. Wechsler

Figure 6. The ratio of the anisotropic redshift space power spectrum P (k, µ) for several models, compared to the linear theory Kaiser

prediction, P (k, µ) = (bL + fµ2)2PL, using the linear bias bL =
√
PH/PDM |k<0.05. Panels correspond to the LRG HOD model (top

left), the vmpeak sample (top right), the mpeak sample (bottom left), and the vmax sample (bottom right).

fit to µ = 0.3 and µ = 0.5 using a single free parameter σv
and fit a separate free parameter to the µ = 0.9 simulation
data. This approach is motivated by Fig. 9 where it appears
that different damping factors are required for each.

In order to constrain the linear growth rate from simu-
lated clustering measurements in redshift space we use the
emcee ensemble sampler (Foreman-Mackey et al. 2013) as
part of the publicly available parameter estimation code
CosmoSIS (Zuntz et al. 2015). We use 400 walkers for 400
steps which, after thinning by a factor of 2 and discarding
burn-in, yields 59,000 independent samples from the pos-
terior. We jointly fit the µ = 0.1 simulation data for the
nonlinear bias and the µ = 0.3 and 0.5 data allowing the
following set of parameters to vary: { Ωm, σ8, f , σv, blin,
Q}, where blin and Q are parameters in the nonlinear bias
model in Eq. 4. Our pipeline consists of first running CAMB

(Lewis & Bridle 2002) to output the linear matter power
spectrum at z = 0.67, then evaluating the log likelihood for
the nonlinear bias using the µ = 0.1 simulation data, and
finally evaluating the log likelihood for the µ = 0.3 and 0.5
power spectra in redshift space using the model in Eq. 14
at each point in parameter space. This pipeline is repeated
using the µ = 0.9 simulation data.

In the left (right) panel of Fig. 10 we show the results of
fitting simultaneously to the µ = 0.1 bin for the nonlinear
bias and the µ = 0.3, 0.5 (0.9) data for the linear growth
rate f at redshift z = 0.67 using the HOD sample and vary-
ing the maximum wavenumber used in the fit, kmax. Note
the same fixed σv parameter was assumed for both µ = 0.3
and 0.5. We have also assumed that the error on different
k−bins are uncorrelated over the scales used in the fit. This
plot shows that up to a kmax = 0.6 we are able to recover a
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Disentangling redshift-space distortions and nonlinear bias 11

Figure 7. The nonlinear bias, bNL =
√
PH/PDM, lin, from the mpeak (squares), vmpeak (crosses), vmax (diamonds) and the HOD (circles)

models. The nonlinear bias measured from the µ = 0.1 bin
√
P (k, µ = 0.1)/PDM, lin is shown as a grey dashed, cyan solid and black dot

dashed line for the vmpeak , vmax , and HOD samples respectively. We do not plot
√
P (k, µ = 0.1)/PDM, lin for mpeak for clarity. The

inset panel shows the ratio of the nonlinear bias bNL measured from the auto power spectra in real space to the one measured using the
µ = 0.1 power spectrum bin. The ratio for the mpeak model is shown as a dot-dashed line. The shaded band shows ±5% difference in

the ratio.

Figure 8. Left: The ratio of the anisotropic redshift space power spectrum for the HOD model to the Kaiser prediction, P (k, µ) =

(bNL + fµ2)2PL using the nonlinear bias measured from the µ = 0.1 simulation data. Right: Same ratio as in the left panel for the
vmpeak model.

correct estimate of the linear growth rate. As the maximum
wavenumber used in the fit is increased, it is clear that the
overall errors on f decrease and still recover the correct esti-
mate of the growth rate without any bias. We do not extend
the fit beyond kmax = 0.6, as from Fig. 7 this is the scale at
which we expect the estimate of the nonlinear bias from the
µ = 0.1 bin to no longer be accurate. We find that the con-
straints on f using µ = 0.9 are not as accurate down to small

scales (right panel of Fig. 10) as we recover a mean growth
rate of f = 0.94±0.25 which is slightly high. However, this is
still consistent with the actual value of f(z = 0.67) = 0.79.

The median values with 1σ errors for Ωm, blin, σ8

and f are shown in Fig. 11 for the HOD (circles) model
at kmax = 0.2, 0.3, 0.4, 0.5 and 0.6. Similar results for the
vmpeak (crosses), mpeak (squares) and vmax (diamonds) mod-
els are shown at kmax = 0.2, 0.4, and 0.6. These results give
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12 E. Jennings & R. H. Wechsler

Figure 9. Left: The ratio of the anisotropic redshift space power spectrum at µ = 0.3 and µ = 0.5 for the LRG HOD sample to the

dispersion model prediction using the nonlinear bias extracted from the µ = 0.1 data. A fixed damping factor of σv = 2.9 has been used
for each. Right: The same ratio as in the left panel for µ = 0.7 and µ = 0.9 with a fixed damping factor σv = 2 for each.

Figure 10. Left:The 1D marginalized likelihood for the growth rate f(z = 0.67) as a function of the maximum wavenumber used in the

fit, kmax, fitting to P (k, µ) for the HOD sample using the µ = 0.3 and µ = 0.5 simulation data. Right: The 1D marginalized likelihood
for f as a function of kmax using the µ = 0.9 bins. The µ = 0.1 data was used to simultaneously fit for the nonlinear bias in both panels.

The actual value for the growth rate is shown as a vertical dashed line in each panel.

an approximate error on f of 26 (22)% to kmax = 0.4(0.6)
for the HOD model from clustering data only. Reassuringly
we find that the constraints on these cosmological parame-
ters are not very dependent on our choice of galaxy model;
we are able to recover unbiased cosmological parameters for
each of the models despite the fact that these models have
different redshift-space clustering signals.

This result greatly outperforms the application of the
dispersion model to the multipole moments in previous stud-
ies both in the range of scales used and in the accuracy

with which the growth rate is recovered. White et al. (2015)
recently showed that several so called “streaming” models
of redshift-space distortions fail to recover a correct value
for the growth rate and are significantly biased on scales
r < 25h−1Mpc (kmax > 0.25hMpc−1) when fitting to the
monopole-to-quadrupole ratio. Previous galaxy surveys have
also been limited to very large scales kmax < 0.2hMpc−1,
due to a breakdown of our theoretical models for bias and
redshift-space distortions(Guzzo et al. 2008; Blake et al.
2011; Beutler et al. 2012). In addition, forecasts for future

c© 0000 RAS, MNRAS 000, 000–000



Disentangling redshift-space distortions and nonlinear bias 13

Figure 11. The median and 1− σ errors for the growth rate f(z = 0.67), σ8, blin and Ωm as a function of the maximum wavenumber

used in the fit, kmax for the HOD model (black circles). Similar results are plotted for the vmpeak (crosses), vmax (diamonds) and

mpeak (squares) models only at kmax = 0.2, 0.4 and 0.6 hMpc−1 for clarity.

surveys generally include CMB (Planck (Planck Collabo-
ration et al. 2014)) and weak gravitational lensing (DES,
Becker & The DES Collaboration 2015 and LSST, LSST Sci-
ence Collaboration et al. 2009) constraints in order to reduce
the uncertainty on the linear growth rate (e.g. Font-Ribera
et al. 2014), whereas in this work we present constraints us-
ing clustering data only. In this paper we have considered a
very simple RSD model to illustrate the concept of disentan-
gling redshift space effects from nonlinear bias using the µ
dependence in the 2D power spectrum. We shall investigate
how these parameter constraints might improve using the
same method but with more robust, physically motivated
models for both the bias and redshift-space distortions in a
future study.

5 SUMMARY & CONCLUSIONS

In this paper we analyze the 2D power spectrum in red-
shift space using a 1 Gpc h−1cubed volume simulated with
1 trillion particles, from the Dark Sky simulation series.
Using several different models for populating halos with
galaxies we generate mock LRG samples at a redshift of
z = 0.67, with number densities relevant for future spectro-
scopic galaxy surveys. We consider a halo occupation dis-
tribution as well as subhalo abundance matching models,
which assign galaxies to halos based on halo/subhalo prop-
erties of vmax (the maximum circular velocity at the present
time), mpeak (the maximum mass the halo or subhalo has
ever had throughout its merger history) and vmpeak (the

maximum circular velocity when the halo or subhalo has
achieved its mpeak ). In this work we present the redshift-
space clustering signal of these models for the first time. The
high mass and force resolution of the Dark Sky Gpc simula-
tions is essential for resolving substructure within virialized
haloes needed for subhalo abundance matching, as well as
accurately measuring the nonlinear growth in both the ve-
locity and density fields.

All of the galaxy models predict different satellite frac-
tions and clustering amplitudes in real space. As a result we
find differences in the linear bias on large scales (∼ 10%)
which increase on small scales due to different satellite frac-
tions (we also consider models with different levels of as-
sembly bias). We find a clear trend of increased velocity
dispersion and damping of the redshift-space clustering sig-
nal on quasi-linear to nonlinear scales which follows from
the satellite fraction in each model. We find the model with
the largest satellite fraction, vmpeak , has larger RSD effects
then the HOD, mpeak and vmax models when we examine
both the quadrupole to monopole ratio and power spec-
tra along certain angles with respect to the line of sight
µ = cos(kz/|k|) > 0.2.

One of the key findings in this paper is that different
bins in µ can be used to isolate the impact of nonlinear
growth and RSD effects. One interesting outcome is that the
lowest µ < 0.2 bins are unaffected by RSD effects and so it
is possible to extract a good estimate of the non-linear bias
at k < 0.6hMpc−1. Our analysis of individual µ bins also
reveals some interesting physical effects; we find a prominent
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turnaround scale, at which RSD damping effects are greater
then the nonlinear growth, which is different not only for
each µ bin but also differs for each galaxy model. These
features may provide unique signatures which could be used
to distinguish between the different models for the galaxy–
halo connection.

Using a simple dispersion model we present results from
a joint analysis of the µ = 0.1 simulation data fitting for the
nonlinear bias and the µ = 0.3 and µ = 0.5 data for the
linear growth rate, the linear bias, and σ8. We can recover
f to an accuracy of ∼ 26(22)% to kmax < 0.4(0.6)hMpc−1

from the HOD model. This result greatly outperforms the
application of the dispersion model in previous studies both
in the range of scales used and the accuracy with which the
growth rate is recovered. To put these results in context,
White et al. (2015) recently showed that several commonly
used models of redshift-space distortions fail to recover a
correct value for the growth rate and are significantly biased
on scales kmax > 0.25hMpc−1. Previous galaxy surveys have
also been limited to very large scales kmax < 0.2hMpc−1

due to a breakdown of our theoretical models for bias and
redshift-space distortions (Guzzo et al. 2008; Blake et al.
2011; Beutler et al. 2012). In this work we present con-
straints using clustering data only whereas forecasts for fu-
ture surveys generally include CMB and weak gravitational
lensing constraints in order to reduce the uncertainty on
cosmological parameters (e.g. Font-Ribera et al. 2014). In a
future study we shall investigate how these parameter con-
straints might improve using more robust, physically mo-
tivated models for redshift-space clustering and combining
datasets.

We find that the constraints on these cosmological pa-
rameters are not particularly sensitive to the galaxy for-
mation model used. This result is reassuring if we are inter-
ested in unbiased cosmological constraints as there are many
variations in the way we can model the connection between
galaxies and dark matter. The results presented here show
the wealth of information that is available in the full 2-D
redshift-space power spectrum. In a follow-up analysis we
shall explore in detail how several features in P (k, µ), for
example the transition from nonlinear growth to RSD damp-
ing, may also be used to distinguish galaxy models and shed
light on the galaxy–halo connection.
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