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Abstract: With the Deep Underground Neutrino Experiment (DUNE) as an example, we

show that the presence of even one sterile neutrino of mass ∼1 eV can significantly impact

the measurements of CP violation in long baseline experiments. Using a probability level

analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude

of these effects, and show how they translate into significant event rate deviations at DUNE.

Our results demonstrate that measurements which, when interpreted in the context of the

standard three family paradigm, indicate CP conservation at long baselines, may, in fact

hide large CP violation if there is a sterile state. Similarly, any data indicating the violation

of CP cannot be properly interpreted within the standard paradigm unless the presence

of sterile states of mass O(1 eV) can be conclusively ruled out. Our work underscores

the need for a parallel and linked short baseline oscillation program and a highly capable

near detector for DUNE, in order that its highly anticipated results on CP violation in the

lepton sector may be correctly interpreted.ar
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1 Introduction

A major goal of present and future long-baseline neutrino oscillation experiments is to

establish that leptons violate CP, or else to place a stringent upper limit on any such

violation. (For recent status reviews see [1–12].) Our thinking about these experiments

usually assumes the standard neutrino paradigm, in which there are just three neutrino

mass eigenstates separated by just two independent mass-squared splittings, three mixing

angles θij , and just one CP-violating phase δCP relevant to oscillation. However, a vari-

ety of short-baseline anomalies [13–17] hint at the possible existence of short-wavelength

oscillations, driven by one or more O(1 eV2) mass-squared splittings that are much larger

than the two splittings of the standard paradigm. These short-wavelength oscillations

are purportedly already significant when the (Travel distance L)/(Energy E) of neutrinos

in a beam is only ∼ 1 km/GeV. Of course, they are still present at the far detector of

any long-baseline experiment, where L/E is, say, ∼ 500 km/GeV. In this work, we have

explored the consequences of the short-wavelength oscillations - should they be real - for

measurements at long baselines, especially measurements that probe CP violation. We find

that these consequences could be considerable. For example, it is possible for long-baseline

results, interpreted without taking the short-wavelength oscillations into account, to imply

that CP violation is very small or totally absent, when in reality it is very large. In ad-

dition, long-baseline measurements interpreted as determining the sole oscillation-relevant

CP-violating phase in the standard paradigm could in fact be measuring something else.

The large splittings hinted at by the short-baseline anomalies imply the existence of

additional, largely sterile, neutrino mass eigenstates, beyond the three of the standard

scenario (referred to as 3+0 in what follows). These additional mass eigenstates introduce

not only additional splittings but also additional mixing angles and phases. For simplicity,

we restrict ourselves to the scenario, referred to as 3+1, with only one additional mass
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eigenstate. In this scenario, there are six mixing angles, and three CP-violating phases

that can affect oscillation. Denoting the mass eigenstates of 3+0, as usual, as ν1, ν2, ν3,

and the additional mass eigenstate as ν4, and defining the mass-squared splittings as δm2
ij =

m2
i −m2

j (i, j = 1, 2, 3, 4 & i 6= j), we have, according to present data,

δm2
41 ∼ δm2

42 ∼ δm2
43 >> |δm2

31| ∼ |δm2
32| >> δm2

21. (1.1)

Since the probability of an oscillation driven by a splitting δm2
ij is proportional to

sin2 ∆ij , where ∆ij = 1.27 × δm2
ij [eV2]×L[km]

E[GeV ] , when L/E ∼ 500 km/GeV, the short-

wavelength oscillations driven by the large splittings involving ν4 will be averaged to an

L/E-independent value by the finite energy resolution of any realistic detector. But these

rapid oscillations are still present and can have a major impact.

We perform our calculations for the 3+1 scenario as manifested in the proposed Deep

Underground Neutrino Experiment (DUNE)1. While we do not explore 3+N scenarios with

N>1, we expect that if the consequences of having one extra neutrino for long-baseline

measurements are substantial, those of having more than one must be substantial as well,

since the world with one extra neutrino is in a sense a special case of that with more than

one.

Previous work examining the effects of sterile neutrinos at long baselines includes

several studies of neutrino factories feeding baselines of about 3000 km - 7500 km, with

muon energies in the range 20 GeV - 50 GeV, focussing on effects at both near and far

detectors [21–25]. More recent work [26] includes a study of effects relevant to T2K [27]

and a combined study [28] for T2K, MINOS [29] and reactor experiments. Additionally,

issues having some overlap with those addressed here for DUNE have been discussed in

[30], and, very recently, in [31].

In Sec. 2 we examine, in the 3+1 scenario, the probability P 4ν
µe of νe appearance at the

far end of a long-baseline beam of neutrinos born as νµ . We derive an analytical expression

for P 4ν
µe valid in vacuum, and discuss how its qualitative features change when matter

effects, which will be large in the case of DUNE, are taken into account. Sec. 3 focuses

on the neutrino-antineutrino asymmetries that are possible at long baselines in the 3+0

and 3+1 scenarios, and on how the possible asymmetries in these two scenarios compare.

Sec. 4 presents long-baseline far detector event rates, obtained by performing realistic rate

calculations for the two scenarios. Sec. 5 briefly discusses two important implications of

the results presented here. In Sec. 6, we summarize and discuss what conclusions could

possibly be drawn, and what ones could not be drawn, especially concerning CP violation,

from a given set of long-baseline oscillation results, and conclude.

1 The inputs we use, and the corresponding references, pertain to the erstwhile Long Baseline Neutrino

Experiment (LBNE), which has undergone a new phase of internationalisation and expansion. This has led

to a change in the name of the experiment, to DUNE. Nonetheless, it is expected that the configuration we

assume here vis a vis fluxes, baseline and energies will remain largely intact[18–20].
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2 The 3 + 1 electron appearance probability in vacuum and matter

For CPV discovery in long baseline super-beam experiments, the electron neutrino appear-

ance probability Pµe is crucial. We discuss its analytic form in vacuum for the 3+1 scenario

prior to discussing the matter case. While it is the latter that is relevant for DUNE in

particular, and other long baseline (LBL) experiments at baselines of O(1000) km in gen-

eral, the form of the vacuum expression provides a useful template for the identification of

terms the importance of which will be accentuated by the presence of matter.

We adopt the following parameterisation2 for the PMNS matrix in the presence of a

sterile neutrino,

U3+1
PMNS = O(θ34, δ34)O(θ24, δ24)O(θ14)O(θ23)O(θ13, δ13)O(θ12). (2.1)

Here, in general, O(θij , δij) is a rotation matrix in the ij sector with associated phase δij .

For example,

O(θ24, δ24) =


1 0 0 0

0 cos θ24 0 e−iδ24 sin θ24

0 0 1 0

0 −eiδ24 sin θ24 0 cos θ24

 ;O(θ14) =


cos θ14 0 0 sin θ14

0 1 0 0

0 0 1 0

− sin θ14 0 0 cos θ14

 etc.

Using the standard formula for a flavour transition oscillation probability, we have, for the

3+1 case:

P 4ν
µe = 4|Uµ4Ue4|2 × 0.5

− 4Re(Uµ1U
∗
e1U

∗
µ2Ue2) sin2 ∆21 + 2Im(Uµ1U

∗
e1U

∗
µ2Ue2) sin 2∆21

− 4Re(Uµ1U
∗
e1U

∗
µ3Ue3) sin2 ∆31 + 2Im(Uµ1U

∗
e1U

∗
µ3Ue3) sin 2∆31

− 4Re(Uµ2U
∗
e2U

∗
µ3Ue3) sin2 ∆32 + 2Im(Uµ2U

∗
e2U

∗
µ3Ue3) sin 2∆32. (2.2)

In arriving at the above expression, we have only assumed (based on Eq. 1.1 above)

that sin2 ∆4i averages out to be 0.5 at long baselines, and similarly sin 2∆4i averages out

to be 0, when i = 1, 2, 3.

2This choice, which, at first, appears not to be the most general one which could be made, is motivated

by the fact that in any parameterisation, the electron neutrino 3+1 appearance probability in vacuum

turns out to be dependent on only two specific linear combinations of the three independent phases. For

simplicity, we have thus incorporated this at the outset using the fact that the first and second row elements

(Uei and Uµi) in U3+1
PMNS will not have θ34 or δ34 in them.
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After substituting the values of the Uαi in terms of the mixing angles, we obtain :

P 4ν
µe =

1

2
sin2 2θ4ν

µe

+ (a2 sin2 2θ3ν
µe −

1

4
sin2 2θ13 sin2 2θ4ν

µe)
[

cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32

]
+ cos(δ13)ba2 sin 2θ3ν

µe

[
cos 2θ12 sin2 ∆21 + sin2 ∆31 − sin2 ∆32

]
+ cos(δ24)ba sin 2θ4ν

µe

[
cos 2θ12 cos2 θ13 sin2 ∆21 − sin2 θ13(sin2 ∆31 − sin2 ∆32)

]
+ cos(δ13 + δ24)a sin 2θ3ν

µe sin 2θ4ν
µe

[
− 1

2
sin2 2θ12 cos2 θ13 sin2 ∆21

+ cos 2θ13(cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32)
]

− 1

2
sin(δ13)ba2 sin 2θ3ν

µe

[
sin 2∆21 − sin 2∆31 + sin 2∆32

]
+

1

2
sin(δ24)ba sin 2θ4ν

µe

[
cos2 θ13 sin 2∆21 + sin2 θ13(sin 2∆31 − sin 2∆32)

]
+

1

2
sin(δ13 + δ24)a sin 2θ3ν

µe sin 2θ4ν
µe

[
cos2 θ12 sin 2∆31 + sin2 θ12 sin 2∆32

]
+ (b2a2 − 1

4
a2 sin2 2θ12 sin2 2θ3ν

µe −
1

4
cos4 θ13 sin2 2θ12 sin2 2θ4ν

µe) sin2 ∆21,

(2.3)

where,

sin 2θ3ν
µe = sin 2θ13 sin θ23 (2.4)

b = cos θ13 cos θ23 sin 2θ12 (2.5)

sin 2θ4ν
µe = sin 2θ14 sin θ24 (2.6)

a = cos θ14 cos θ24. (2.7)

Prior to proceeding, we briefly discuss the allowed ranges for the 3 + 1 mixing angles

that we have used in our calculations. These have been obtained using the results of [32],

which takes all available data on short-baseline (SBL) oscillations and performs a global

fit to constrain active-sterile mixing. |Ue4|2 is constrained by νe and ν̄e disappearance

searches, and is equal to sin2 θ14. From [32], the 99% C.L. limit can be taken to be (with

some extrapolation, as the result is given for 95%),

|Ue4|2 ∈ [0, 0.1],

which gives

θ14 ∈ [0, 20o].

Similarly, using νµ, ν̄µ and neutral current disappearance searches, one can constrain Uµ4

and Uτ4, which are given by,

|Uµ4| = cos θ14 sin θ24, |Uτ4| = cos θ14 cos θ24 sin θ34.

The constraints on these elements are found to be,

|Uµ4|2 ∈ [0, 0.03], |Uτ4|2 ∈ [0, 0.3].
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These translate to,

θ24 ∈ [0, 11o], θ34 ∈ [0, 31o].

Apropos Eq. 2.3, we note that, as expected, the vacuum appearance probability is

independent of the 3-4 mixing angle and the associated CP phase. This important simpli-

fication, however, does not carry over to the matter case, as we show below. Secondly, Eq.

2.3 contains terms proportional to the sines and cosines of a) the 3 + 1 CP phase δ24, and

b) the sum (δ13 + δ24). These are interference terms, involving mixing angles from both

the 3+0 and the 3+1 sector. In particular, as can be determined by inspection, the terms

involving the sine and cosine of the sum of δ13 and δ24 can be significantly large and lead

to appreciable changes in both the amplitude of the overall probability and the extent of

CP violation. These contributions become all the more significant once matter effects are

large. We discuss this in more detail below, both in this section and the next.

The matter eigenstates bring about a dependence on all mixing angles and phases.

Specifically, unlike the vacuum case, the 3-4 mixing angle and its associated phase are no

longer quiescent, and the 3+1 electron neutrino appearance probability exhibits a signifi-

cant dependence on them. This is illustrated by Fig. 1, where we have used the General

Long Baseline Experiment Simulator (GLoBES) [33, 34] to generate the plots. The left

panel shows the variation of P 4ν
µe with energy for no CP violation (all three Dirac CP phases

set to zero) and four different values of the 3-4 mixing angle. While the variation due to

θ34, shown in the left panel, is not very large, the effect of varying δ34 (while keeping θ34

fixed, right panel) within its allowed range is quite significant. It is also striking that these

large effects on the probability in the presence of matter are brought about by parameters

which are completely absent in the vacuum expression (Eq. 2.3) and which (in our chosen

parametrization) play no role in SBL situations. They illustrate the important role matter

plays in invoking and enhancing the effects of sterile states at long baselines. In these plots,

all other parameters are fixed as described in the caption.

Fig. 2 emphasizes the dependencies discussed above from a slightly more general per-

spective. In the right (3+1) panel, the significant differences between the solid and dashed

lines of a given colour emphasize the role played by matter, while the equally significant

differences between the blue and red dashed (solid) lines demonstrate the important role

played by CP violating phases at long baselines in matter (vacuum) if they are non-zero.

Turning to the left (3+0) panel, we note the relatively large differences between these

curves and their counterparts in the right panel, underlining the significant effects of ster-

ile neutrinos at the operational baseline for DUNE.

In summary, Figs 1 and 2 demonstrate that additional CP phases related to a eV2

sterile sector play an important role at long baselines. Their effects are heightened by the

presence of matter. In addition, parameters related to the sterile sector which are dormant

at short baselines and in vacuum-like conditions are no longer inert once baselines are long

and matter effects are important.
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Figure 1: Pµe vs Eν in earth matter for 1300 km. Averaging has been done for ∆m2
4i induced oscillations.

In the left panel, the effect of varying θ34 within its allowed range is shown with all the CP phases kept

equal to 0. In the right panel, we show the effect of varying CP violating phase δ34 when θ34 = 30◦, and

the other phases are 0. For both panels, we set θ14 = 20◦ and θ24 = 10◦, and the parameters related to the

3+0 sector at the best-fit values specified in Sec. 4.
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Figure 2: Pµe (both for vacuum and matter) for 3+0 (left panel) and 3+1 (right panel) vs. energy. The

red curves represent the CP conserving case, while the blue ones depict the case with phases set to non-zero

fixed values (see the plot label). For the blue curve in the left panel, the sole 3+0 phase δCP was taken

as 30o. Normal hierarchy is taken to be the true hierarchy here, and parameters related to the 3+0 sector

have been set at the best-fit values specified in Sec. 4.

3 A discussion of Neutrino-Antineutrino asymmetries in matter

The consideration of CP violation in terms of an asymmetry defined at the probability level

provides additional insight into the conclusions which can be reliably drawn from data if we
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do not know whether 3+0 or 3+1 is the choice nature has made. Consider the asymmetry

defined as,

Aαβνν̄ =
P (να → νβ)− P (ν̄α → ν̄β)

P (να → νβ) + P (ν̄α → ν̄β)
≡

∆Pαβ
P (να → νβ) + P (ν̄α → ν̄β)

. (3.1)

We begin by noting an important difference between the 3+0 and 3+1 scenarios with

respect to the numerator ∆Pαβ of Aαβνν̄ . In vacuum, CPT invariance implies that P (νβ →
να) = P (ν̄α → ν̄β), which in turn implies that ∆Pβα = −∆Pαβ, and in particular that

∆Pαβ = 0 when β = α. Thus, when there are only three neutrino flavors, there are only

three independent potentially non-zero CP-violating differences ∆Pαβ to be measured:

∆Peµ, ∆Pµτ and ∆Pτe. Now, conservation of probability implies that for any number of

flavors, ∑
β

P (να → νβ) = 1 and
∑
β

P (ν̄α → ν̄β) = 1,

where the sums are over all β, including β = α. It follows that
∑

β ∆Pαβ = 0. Then, since

∆Pαβ = 0 when β = α, we conclude that in vacuum,∑
β 6=α

∆Pαβ = 0. (3.2)

When there are only three flavors, this constraint implies that ∆Peµ + ∆Peτ = 0 and that

∆Pµe + ∆Pµτ = 0. Since ∆Pβα = −∆Pαβ, it follows that,

∆Peµ = ∆Pµτ = ∆Pτe. (3.3)

That is, the three “independent” CP-violating differences are equal. In particular, if there

are only three flavors, it is not possible for CP invariance to hold in one oscillation channel,

such as
(−)
νµ →

(−)
νe , and yet be violated in another channel, such as

(−)
νµ →

(−)
ντ .

This situation changes when there are more than three flavors. For e.g., when there

are four flavors, as in the 3+1 scenario, there are six independent potentially non-zero

differences ∆Pαβ: ∆Peµ, ∆Pµτ , ∆Pτe, ∆Pes, ∆Pµs and ∆Pτs, where s refers to the sterile

flavor. Now the constraint of Eq. 3.2 gives rise only to relations like

∆Peµ = ∆Pµτ + ∆Pµs. (3.4)

It is now perfectly possible for ∆Pµe(= −∆Peµ), the CP-violating difference that will be

the first to be probed experimentally, to be zero, while the differences ∆Pµτ and ∆Pµs in

other oscillation channels that are challenging to study, are large3.

In Fig. 3, we show the spread of Aνν̄
4 at L = 1300 km for cases chosen to illustrate

some of the important features that arise due to the presence of a fourth, sterile state. The

3We note that any long baseline experiment involves earth-matter effects, which break CPT (in addition

to CP). Such breaking is extrinsic, and due to the asymmetry of the earth matter through which the

neutrinos propagate. While this may appear to destroy the conclusions reached above, which depend on

CPT invariance, this is not the case as long as an experiment seeks to measure intrinsic (i.e.driven by

phases in the mixing matrix) CP violation and devises appropriate means to do so.
4Henceforth we drop the superscripts α and β and take Aνν̄ to denote the asymmetry for α = µ and

β = e.
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left-hand panels were created with all CP-violating phases set to zero, so the asymmetries

shown in these panels are from matter effects only. The right-hand panels were created

allowing the sole 3+0 CP phase δCP to vary over its entire physical range in the case of

3+0, and the three CP phases δ13, δ24 and δ34 to vary over their entire ranges in the case

of 3+1. Thus, these panels show the impact of intrinsic CP violation. In all panels, the

red curve(s) are for the 3+0 case, and the blue ones for the 3+1 case. The top two panels

assume a normal hierarchy, and the bottom two an inverted hierarchy. In creating all

panels, the mass splittings and mixing angles of the 3+0 sector were set to the best-fit

values specified in Sec. 4, the splitting ∆m2
41 of the 3+1 sector was set to 1 eV2, and the

3+1 mixing angles θ14, θ24 and θ34 were varied over their allowed ranges.

With one exception (see below), to create the curves in each panel of Fig. 3 for each of

the two scenarios, 3+0 and 3+1, we varied the corresponding parameters until we found the

parameter set that maximizes (minimizes) the energy-integrated asymmetry Aνν̄ for that

scenario. The energy-dependent asymmetry was then plotted vs. energy for this parameter

set as a solid (dashed) curve. (Note that since it is the energy-integrated asymmetry that

is being extremized, it is possible for the 3+0 energy-dependent asymmetry to be more

extreme than that for 3+1 for a limited range of energy, despite the fact that the 3+0

scenario is in a sense, a special case of 3+1.) The one exception to our procedure is that,

since the 3+0 sector parameters other than δCP were held fixed throughout, in creating the

left-hand panels, no 3+0 parameters were varied, so there is only a single curve, shown as

solid, for 3+0.

From the left-hand panels of Fig. 3, we see that when CP is conserved, the neutrino-

antineutrino asymmetry vs. energy is quite similar in the 3+0 and 3+1 scenarios. In the

3+1 scenario, this asymmetry is confined to a rather narrow band as the 3+1 mixing angles

are varied. Although it is not shown, we have found that it is confined to a similar narrow

band in the 3+0 scenario as the 3+0 parameters θ23 and ∆m2
31 are varied within their

experimental uncertainties. Clearly, if an experiment were to measure an asymmetry vs.

energy that consistently lies outside the similar, narrow 3+0 and 3+1 bands that correspond

to CP conservation, we would have evidence that CP is violated so long as nature has chosen

either the 3+0 or 3+1 scenario. However, a measured asymmetry between νµ → νe and

ν̄µ → ν̄e that lies within these similar narrow bands would not unambiguously signal that

there is no CP violation in neutrino oscillation. As explained above, when there are more

than three flavors, as in the 3+1 scenario, it is possible for there to be little or no CP

violation in one oscillation channel, and yet a large CP violation in some other channel. In

addition, for either the 3+0 or 3+1 case, it might happen that for some non-zero values of

the CP-violating phases and mixing angles slightly different from those corresponding to

the CP-conserving bands, the asymmetry still lies within those bands within uncertainties.

The right-hand panels in Fig. 3 show that when intrinsic CP is violated, Aνν̄ can be

anywhere in a large range. Moreover, for 3+1, this range is much larger than for 3+0,

and includes almost all of the 3+0 range. Thus, we see that sterile neutrinos with O(1)

eV2 masses can very substantially impact CP-violation measurements at long baselines.

While a measured asymmetry outside the band allowed for 3+0 would be evidence for new

physics beyond 3+0, one inside that band would leave uncertain the precise origin of the
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observed CP violation.

To understand why the effect of a fourth, sterile neutrino on CP violation at long base-

lines can be so large, one notes that CP-violating phases affect physics through interferences

between amplitudes. As pointed out in [26], around the first maximum of the atmospheric-

wavelength oscillation, where the long-baseline experiments work, or will work, the (new,

short wavelength oscillation) - (atmospheric-wavelength oscillation) interference, and the

(atmospheric-wavelength oscillation) - (solar-wavelength oscillation) interference, can eas-

ily be of comparable size. Then, if the CP phases are right, 3+1 can be quite different

from 3+0.

In the next section, we see how the probability-level results of this section and the

previous one translate into observable consequences for DUNE by calculating event rates.

w/o phase variation, NH

A
ν 

ν

−1

−0.5

0

0.5

1
w phase variation, NH

w/o phase variation, IH

A
ν 
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1

E [GeV]
1 2 3 4 5 6 7 8 9 10

w phase variation, IH
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1 2 3 4 5 6 7 8 9 10

3+0-max
3+0-min

3+1-max
3+1-min

Figure 3: The neutrino-antineutrino asymmetry Aνν̄ vs. energy E. See text for explanation and discus-

sion.

4 Event Rates at DUNE in the 3+1 and 3+0 scenarios

Having discussed some of the salient features of the probability P 4ν
µe both in vacuum and

matter at baselines characteristic of DUNE, we now perform event rate calculations by

realistically simulating the experiment.

We recall that DUNE (with specifications very similar to LBNE,[18], [19]) is a proposed

future super-beam experiment, to be located in the United States, with a main aim of

establishing or refuting the existence of CPV in the leptonic sector. In addition to this

primary goal, this facility will also be able to resolve other important issues like the mass
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hierarchy and the octant of θ23. The νµ(ν̄µ) super-beam will originate at the Fermilab. The

primary beam simulation assumes a 1.2 MW - 120 GeV proton beam which will deliver

1021 protons-on-target (POT) per year. A 35-40 kt Liquid Argon (LAr) far-detector will

be housed at the Sanford Underground Research Facility in the Homestake mine in South

Dakota, 1300 km away. The experiment plans to have a total of 10 years of running,

divided equally between neutrinos and anti-neutrinos, corresponding to a total exposure

of 35 × 1022 kt-POT-yr. The other experimental details such as signal and background

definitions as well as the detector efficiencies taken in this work are the same as those in

[20], except with the difference that we have not considered tau events in the backgrounds.

The detector efficiencies for both Pµe and Pµ̄ē events are close to 80% with somewhat less

efficiency for Pµ̄ē.

In order to facilitate the drawing of physics conclusions, we assume certain values and

ranges for neutrino oscillation parameters in the standard 3-flavour paradigm, which are

motivated by their current measured ranges and best fit values. Specifically,

• θ12 and θ13 have been fixed at 33.48◦ and 8.5◦ respectively [35].

• We assume that the 2-3 mixing is near-maximal i.e. θ23 = 45◦.5

• We fix ∆m2
21 at 7.5× 10−5 eV2 and ∆m2

31 at 2.457× 10−3 eV2 (−2.374× 10−3 eV2)

for NH (IH). These particular choices have been taken from the analysis of global

data [35].

We note that as stated above, standard global analyses ([36], [37], [35]) assume the 3+0

scenario, but, as has been demonstrated in e.g . [38], their conclusions remain very robust

in the presence of sterile neutrinos. Our assumed ranges for the sterile sector mixing angles

corresponding to the 3+1 scenario are as stated in Sec. 2. In addition, we assume ∆m2
41

to be 1 eV2, and vary δ13, δ24 and δ34 for 3+1 and δCP for 3+0 in the entire possible range

of [−180◦, 180◦]. Finally, we use the fluxes provided in [39].

5 We note that the currently-allowed 3σ range on θ23 is [38.3◦, 53.3◦] with the best fit at 42.3◦(49.5)◦

for NH (IH) [35]. The θ23 best fit values from the global analyses [36, 37] are different from [35]. However,

in this work, we make the simplifying assumption of maximal mixing, relegating a more rigorous statistical

analysis to a follow-up work.
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Figure 4: Neutrino and anti-neutrino event rates in DUNE plotted as a function of the reconstructed

neutrino energy. The vertical spread for a given color for an energy bin shows the maximum and the

minimum events rates possible.

Fig. 4 shows the spread of binned events as a function of the reconstructed neutrino

energy for the 3+0 case and the 3+1 case. For the 3+0 case, we varied only δCP in the

range [−180◦, 180◦] to obtain the events band shown in red. For 3+1, we chose three sets

of θ14, θ24 values - (20◦, 10◦), (15◦, 10◦) and (5◦, 5◦). For all these three cases, we varied θ34

in the range [0, 30◦] and the phases δ13, δ24 and δ34 in the range [−180◦, 180◦] each. The

resulting event-bands are shown in blue, green and magenta, respectively. The left (right)

panels show the neutrino (anti-neutrino) rates, while the top (bottom) panels are for the

NH (IH) scenario.

It can be seen that for all three sets of θ14, θ24, the 3+1 band can potentially encompass

the 3+0 band, leading to substantial degeneracy. When the number of events falls in the

overlapping region between these two bands (which is the red region in Fig. 4), there is

considerable ambiguity as to whether the events are produced by a certain value of δCP in

– 11 –



the 3+0 sector or by some combination of θ34, δ13, δ24 and δ34 in the 3+1 sector.

Fig. 4 also shows that the 3+1 band gets wider as the values of θ14, θ24 and hence the

effective mixing angle sin 2θ4ν
µe increase. Indeed, for sufficiently large 3+1 mixing angles,

the 3+1 band is substantially larger than its 3+0 counterpart. An observed surfeit or a

dearth of events compared to those expected in the 3+0 case, especially near the event

maxima (around the region 2-4 GeV), could be a pointer to the presence of sterile states.

5 Implications

Prior to summarizing our conclusions, it is useful to discuss certain implications which

arise from our results. We have noted above that in the presence of even a single sterile

neutrino, conclusions such as, a) Whether CP is conserved or violated, and b) if the latter,

whether the violation is ascribable to the active neutrinos or the additional sterile neutrino,

or a combination of the two, are all rendered significantly ambiguous. An important

consequence is thus the need for an improved synergistic linkage between the global LBL

and SBL efforts [40], since it appears that results obtained in the former cannot be correctly

interpreted without definitive conclusions drawn from the latter.

Our work also has ramifications for near detector (ND) design and physics requirements

in DUNE and other LBL experiments. Even if there is no sterile sector and the standard

three-family scenario is nature’s choice, in order to fully exploit the CPV capabilities of a

far detector (FD), the ND must establish the expected number of events at the FD in the

absence of oscillations with very high precision, in order to ensure systematic errors stay well

below statistical ones. The rates expected at the FD depend on fluxes and cross-sections

measured, along with their energy dependence, to significantly high accuracy at the ND for

all four species of neutrinos, νe, ν̄e, νµ, ν̄µ. In the 3 + 0 scenario, these measurements, while

very demanding, are assumed to be made under conditions where there are no oscillations

between the source and the ND. This task is rendered significantly more complex, however,

in the presence of a sterile sector capable of altering the fluxes between the source and the

ND over the planned distance of ∼ 500 m in DUNE. Historically, uncertainties in source

fluxes and cross-sections have always been a major limiting factor for neutrino experiments

seeking precision in oscillation studies. The high intensity of the DUNE beam and the

presence of a highly capable and precise ND, designed to overcome these limitations, are

thus rendered even more crucial than assumed earlier in order to deconvolute the added

complexities arising due to a sterile sector, if it were to be present in nature. Moreover, we

note that current data allow the mass-squared splitting in the sterile sector to be sufficiently

large such that oscillations due to it can average out even at the ND distance of ∼500 m.

Such an eventuality further underscores the need for a strong connection between the SBL

and LBL experimental programs, since these oscillations, even though not directly observed

at the ND, would nonetheless affect its crucial service task of accurate flux determination.
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6 Summary and Conclusions

To summarize, we have studied the effects of the additional mixing angles and CP phases

in the case of a 3+1 sterile sector on the determination and measurement of CPV at

long baselines for the DUNE experiment. From a probability analysis, we show that the

effects of the additional CP phases can be large at its chosen baseline of 1300 km. These

effects, which arise from large interference terms (between the 3+0 and 3+1 sectors) in

the appearance probability, are accentuated by the presence of matter, which additionally

brings in contributions from sterile-sector mixings and phases which are dormant at short

baselines. From event rate calculations, we show that the presence of a sterile sector

manifests itself in measurably altered rates in energy bins across the spectrum, without

significant distortion in the shape. This alteration in event rates increases, as expected, for

larger values of the mixing angles connecting the active and sterile sectors.

Importantly, the presence of a sterile sector obfuscates conclusive determinations of

CP violation or conservation at the far detector, and makes uncertain the ability to ascribe

any perceived CPV to a unique phase in the 3+0 sector. Thus, the linkage between the

presently planned long and short baseline programs must be explored and strengthened.

Until the presence of an ∼ eV2 sector is conclusively ruled out, our work emphasizes

the need for a complementary SBL sterile-search program and for a highly capable and

versatile near detector for DUNE, enabling it to reduce systematics to low levels so that it

may achieve its stated primary goals for CPV detection.
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