
FPGA–based Klystron Linearization Implementations
in Scope of ILC

M. Ometa,∗, S. Michizonob, T. Matsumotob, T. Miurab, F. Qiub, B. Chasec, P.
Varghesec, H. Schlarbd, J. Branlardd, W. Cichalewskie

aThe Graduate University for Advanced Studies, Hayama, Japan
bThe Graduate University for Advanced Studies / High Energy Accelerator Research

Organization, Tsukuba, Japan
cFermi National Accelerator Laboratory, Batavia, USA

dDeutsches Elektronen–Synchrotron, Hamburg, Germany
eLodz University of Technology, Lodz, Poland

Abstract

We report the development and implementation of four FPGA–based predistortion–

type klystron linearization algorithms. Klystron linearization is essential for

the realization of ILC, since it is required to operate the klystrons 7% in power

below their saturation. The work presented was performed in international col-

laborations at the Fermi National Accelerator Laboratory (FNAL), USA and

the Deutsches Elektronen Synchrotron (DESY), Germany. With the new devel-

oped algorithms the generation of correction factors on the FPGA was improved

compared to past algorithms, avoiding quantization and decreasing memory re-

quirements. At FNAL three algorithms were tested at the Advanced Supercon-

ducting Test Accelerator (ASTA) demonstrating a successful implementation

for one algorithm and a proof of principle for two algorithms. The functional-

ity of the algorithm implemented at DESY was demonstrated successfully in a

simulation.

Beside this a proof of principle of an FPGA–based klystron and cavity

simulator implemented at the High Energy Accelerator Research Organization

(KEK), Japan was demonstrated. Its purpose is to allow the development and

test of digital LLRF control systems including klystron linearization algorithms

∗momet@post.kek.jp

Preprint submitted to Journal of LATEX Templates July 3, 2014

FERMILAB-PUB-15-317-AD 
ACCEPTED

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



in times no actual klystron and cavity are available.

Keywords: ILC, klystron linearization, FPGA, klystron–cavity simulator

1. Introduction

Klystrons are widely used for the high level radio frequency (HLRF) gen-

eration for driving cavities in particle accelerators. It is planned to adapt this

technology at the International Linear Collider (ILC) [1, 2]. At ILC the klystrons

will be one element in the chain of the digital low level RF (LLRF) control loop.5

Typically the input to output characteristics of a klystron in both amplitude

and phase are not linear. A schematic of a typical input–to–output amplitude

characteristic is shown in Figure 1 in black. In order to perform field regu-

lation, typically klystrons are operated about 40% below saturation. In order

to operate the klystrons at ILC most cost effectively, it is intended to operate10

them 7% (in power) below the point of saturation. At this point the slope of

the input–power–to–output–power characteristics is only about 1
10 compared to

the slope at the linear region. Since the control gain is proportional to this

slope, it also degrades close to the point of saturation. In order to keep the

feedback effective, it is required to keep the slope of the input–to–output am-15

plitude characteristic constant. Furthermore it is preferable to introduce an

output amplitude limiter and to eliminate any output phase rotation. The de-

sired klystron output characteristics in amplitude and phase are represented in

Figure 1 as red dashed lines in the respective plots. Such output characteris-

tics can be accomplished by using a klystron linearization. The linearization20

algorithms described in the following are predistortion–type linearizations, im-

plemented in the firmware of the Field Programmable Gate Array (FPGA), on

which beside others the controller is located. The predistortion added is the in-

verse of the non–linear characteristics of the klystron. It is typically generated

in dependency of the signal amplitude and applied after the controller and the25

addition of feedforward tables and before transmission to the Digital–to–Analog

Converters (DACs).

2



Input Amplitude

O
ut

pu
t A

m
pl

itu
de

actual output desired output

Input Amplitude

O
ut

pu
t P

ha
se

actual output

desired output

Figure 1: Schematic of the klystron amplitude and phase output characteristics.

Linearization concepts were already implemented in the past using analog

circuits. The over the recent years improved capabilities of FPGAs allowed

not only the implementation of digital LLRF feedback controllers but also the30

implementation of klystron linearization algorithms with high effectiveness and

flexibility. Four algorithms implemented on FPGAs of two different manufac-

turers are described and compared in the following.

2. Klystron Linearization Implemented at DESY

At DESY the Free Electron Laser in Hamburg (FLASH) [3] is operated,35

which uses the same superconducting TESLA–type 9–cell cavity technology [4]

as will be used in ILC. The digital LLRF control system at FLASH was based

on the VME standard, before it was updated to uTCA.4 [5]. For the VME

system a predistortion–type squared amplitude dependent direct lookup table

(LUT)–based klystron linearization was implemented [6, 7], which allowed a40

complex correction corresponding to

 I ′

Q′

 =

fi(A2) −fq(A2)

fq(A2) fi(A
2)

 I

Q

 , (1)

where I and Q is the input of the linearization algorithm, fi(A
2) and fq(A2)

are the correction factors, and I ′ and Q′ is the output of the algorithm.

3



As part of the presented study this concept was reintroduced for the uTCA.4–

based LLRF control system [8]. The target device for the implementation of the45

algorithm was a Xilinx Kintex 7 (K355/K420) FPGA on the LLRF controller

card (uTC). The firmware creation tool set covered Notepad++, ISE Design

Suite 14.4, and ISim. The schematic of the implemented VHDL package is

shown in Figure 2.

I

Q
controller

output
in1

in2

out
out = in1 - in2

in1

in2

out
out = in1 + in2

in1

in2

out
out = in1 + in2

look up table a
addr. depth 2^12

words 2^18

look up table b
addr. depth 2^12

words 2^18

18.0

18.0

18.0

18.0

18.0

18.0

36.0

36.0

37
.0

37
.0

12
.0

 

12.0

12.0

4.
14

4.
14

18.14

18.14

18
.1

4

18.14
18

.1
4

18.14

36
.2

8 19
.1

4

18
.0

I'

Q'
DAC

limiter

Calculation of squared amplitude Look up tables

Correction

18.14

18.14

18.0

18.0

18
.1

4

36.28

36.28

36
.2

8

18.14

18.14

18.14

19
.1

4

19
.1

4
19

.1
4

18
.0

(3
6 

do
w

nt
o 

25
)

Figure 2: Schematic of the direct lookup table–based klystron linearization package.

From the 18–bit I and Q input signals the squared amplitude is computed50

using two multipliers and one adder. The resulting 37–bit word is truncated to

12 bits and used as the address of the lookup tables. The 16–bit output words

of both lookup tables are applied to input I and Q values corresponding to a

complex multiplication using four multipliers, one adder, and one subtracter.

The resulting signals are truncated to 18-bit signals called I ′ and Q′ and are55

outputted.

One unique feature of the implementation presented is the compatibility

with the FPGAs on the uTCA.4–based hardware used at DESY. This means

the klystron linearization package can be implemented and used not only in the

digital LLRF control system at FLASH but also at the upcoming European60

X–Ray Free Electron Laser (European X–FEL) [9]. A second unique feature

of the presented package is an improved MATLAB script for the generation of

the lookup tables, which delivers more accurate results especially at low input

amplitudes.

4



3. Klystron Linearization Implemented at FNAL65

At FNAL ASTA [10] is under construction. Since it is beside an user machine

also an ILC R&D accelerator, the digital LLRF control system was designed

with ILC in mind.

As part of the presented study three kinds of predistortion–type amplitude

dependent klystron linearization algorithms were implemented and tested. The70

target hardware was an Altera Cyclone II FPGA on the multi–cavity field con-

trol (MFC) module [11]. The tools used for the manipulation and creation of

the FPGA firmware were Matlab 2012b, Simulink 2012b, DSP Builder 13.0,

ModelSim, and Quartus II 13.0. The first algorithm implemented was designed

for the linearization of the amplitude only [8]. Its principle is based on equation75

(2).

 Iout

Qout

 = fcorr(A)

 Iin

Qin

 (2)

Figure 3 shows a schematic of the linearization algorithm implemented. From

the Iin and Qin input values the amplitude A is computed by A =
√
I2in +Q2

in.

For the implementation of the square root function a proprietary block of the

Altera DSP Builder library was used. By a 3rd order polynomial function de-80

pending on the amplitude A a correction factor fcorr is calculated. Furthermore

an amplitude limitation is included, which compares the expected output am-

plitude to a preset limit. If the limit is exceeded the correction factor is set to

fcorr = limit
A . If the limit is not exceeded the correction factor is not changed

and applied to the Iin and Qin input values. By two switches the linearized or85

the original Iin and Qin values can be chosen as the output Iout and Qout.

The second implemented linearization algorithm was an upgrade of the pre-

vious one, which added the support of phase linearization. It is based on the

equation (3)

 Iout

Qout

 =

fi(A) −fq(A)

fq(A) fi(A)

 Iin

Qin

 , (3)

5



Figure 3: Schematic of third order polynomal–based klystron linearization algorithm.

where fi(A) and fq(A) are 2nd order polynomial functions. In Figure 490

the schematic of the implemented algorithm is shown. From the Iin and Qin

input values the amplitude is computed. Based on this I and Q correction

factors are calculated by two 2nd order polynomial functions. The computed

I and Q correction factors are applied to the input Iin and Qin values using

a complex multiplication realized by four multipliers, one subtracter, and one95

adder. From the corrected Iin and Qin values the amplitude is computed and

compared to a predefined limit. If the amplitude exceeds the limit, a correction

factor fcorr,l = limit
B is applied. If the limit is not exceeded, the the correction

factor fcorr,l = 1 is applied, leaving the corrected Iin and Qin unchanged. By

two switches the linearized and amplitude limited or the original Iin and Qin100

values can be chosen as the output Iout and Qout.

Determination
of amplitude A

Calculation of
correction factor q

fcorr,q=f·A2+g·A+h

If B > limit
then fcorr,l=limit/B

else fcorr,l=1

Iin

Qin

Iout

Qout

Switch

Switch

Calculation of
correction factor i

fcorr,i=b·A2+c·A+d

in1

in2

out
out = in1 - in2

in1

in2

out
out = in1 + in2

Determination
of amplitude B

Figure 4: Schematic of second order polynomal–based klystron linearization algorithm.

In the case of the third implemented linearization algorithm the correction is

also based on equation (3), but in this case fi(A) and fq(A) are created by lookup

tables with interpolation [12]. The lookup table with interpolation–based algo-

6



rithm consists of two lookup tables (four for the final implementation). In the105

first lookup table the nodes yn are stored, similar to the case of a direct lookup

table. In the second lookup table, the slopes between the nodes mn calculated

by the differential quotient are stored. The output value of the algorithm y is

calculated by

y = yn + ∆x ·mn , (4)

where ∆x = x − xn. x is the input value x and xn the to the node yn110

corresponding x value. Figure 5 shows a schematic of the implementation of the

klystron linearization algorithm. Since a complex correction factor is generated,

the lookup table with interpolation algorithm is implemented two times. Beside

the change of the method of the generation of the complex correction factor,

the signal flow is the same as described previously for the klystron linearization115

based on two 2nd order polynomial functions.

Determination
of amplitude A

If B > limit
then fcorr,l=limit/B

else fcorr,l=1

Iin

Qin

Iout

Qout

Switch

Switch

LUT1

in1

in2

out
out = in1 - in2

in1

in2

out
out = in1 + in2

Determination
of amplitude B

LUT2

LUT3

LUT4

5 bit

5 bit

5 bit

5 bit

18 bit (13 bit data)

18 bit (13 bit data)

18 bit

18 bit

Figure 5: Schematic of the lookup table with interpolation–based klystron linearization pack-

age.

4. Comparison of Algorithms

In Table 1 the clock cycles required for the execution of the linearization

algorithms and for the execution of the amplitude limitations are compared.

The for this required time does not effect the total loop delay, because all com-120

7



putations are performed in a parallel process. The loop delays added due to the

application of the linearization algorithms are also listed in Table 1.

Table 1: Comparison of delays. (* including amplitude limiter)

Algorithm Lin. Limiter Add. loop del.

[clk. cyc.] [clk. cyc.] [clk. cyc.]

Direct LUT 6 - 2

3rd order 31* - 1

2nd order 20 19 3

LUT w/int. 19 19 3

The computation times of the linearization and amplitude limitation algo-

rithms in the case of the 3rd order polynomial function–based, the 2nd order

polynomial function–based, and lookup table with interpolation–based algo-125

rithms are dominated by the computation of the amplitude using the square

root block, which is pipelined with 12 clocks. The algorithm with the shortest

computation time is the one based on direct lookup tables. If the application

allows quantization errors this is the method of choice. The second fasted algo-

rithm is the one based on the lookup tables with interpolation.130

From the viewpoint of total added loop delay, the 3rd order polynomial

function-based algorithm with only 1 clock cycle added is the best. This is due

to the fact, that in the linearization algorithm already the amplitude limitation

is included. This algorithm is only applicable, when solely the amplitude has to

be linearized. All other three algorithms add 3 clock cycles of loop delay. This is135

also true for the case the direct lookup table–based algorithm is combined with

an amplitude limiter. Furthermore is should be kept in mind that the algorithms

are implemented on different FPGAs with different clock frequencies. The Xilinx

Kintex 7 on which the direct lookup table algorithm was implemented is clocked

at a frequency of 81.25 MHz. The Altera Cyclone II on which all remaining140

algorithms were implemented are clocked at a frequency of 62.5 MHz.

Table 2 compares the resources used on the Cyclone II FPGA in the cases

8



of the different linearization algorithms. This shows that regarding the usage

of total logic elements the 3rd order polynomial function–based and the lookup

table with interpolation–based algorithms are most resource efficient. Regarding145

the hardware multipliers the lookup table with interpolation–based algorithm

is most efficient.

Table 2: FPGA resource usage.

Total 9 bit

logic hardware

elements multipliers

w/o lin. 28% 76%

3rd order 31% 99%

2nd order 32% 91%

LUT w/int. 31% 84%

Beside the comparison of the hardware utilization and performance also the

expected linearization performance was compared. To this end an arbitrary

correction function was generated. This function is shown in Figure 6 in green.150

Furthermore this function was modeled using all algorithms mentioned above.

The results are also shown in Figure 6. Beside this also an algorithm based on

a lookup table with interpolation and an adaptive node distribution, which is

intended to be implemented in the future, is included.

In order to compare the expected modeling performances of the algorithms155

the differences between the original function and the modeled output was com-

puted. The result is shown in Figure 7.

From the deviation plots the sums of absolute values of the deviations over all

plotted points were computed for all simulated algorithms. This yields a similar

information as the integral over the error functions. The computed sums are160

listed in Table 3.

This shows from the viewpoint of expected linearization performance in the-

ory the best choice within the group of implemented algorithms is the lookup

9



Figure 6: Simulated arbitrary correction function output [a.u.] versus input amplitude [a.u.]

for the original function (green), a direct LUT (red), LUT with interpolation (orange), LUT

with interpolation and an adaptive grid (blue), a 3rd order polynomial function–based algo-

rithm (grey), and a 2nd order polynomial function–based (pink).

table with interpolation–based klystron linearization. Due to the interpolation

the quantization errors are eliminated. Even it is notable that also the 3rd or-165

der polynomial function based algorithm yields a better performance than the

direct lookup table solution, it should be kept in mind, that the performance

strongly depends on the lookup table grid spacing. The best performance of all

algorithms presented in the test yielded the lookup table with interpolation and

adaptive grid spacing–based algorithm. It is intended to implement and test it170

in future studies.

5. Test of Algorithms

The functionality of the direct lookup table–based linearization algorithm

implemented at DESY could only be verified in a iSim simulation. To this

10



Figure 7: Simulated deviation to original arbitrary correction function [a.u.] versus input

amplitude [a.u.] for a direct LUT (red), LUT with interpolation (orange), LUT with interpo-

lation and an adaptive grid (blue), a 3rd order polynomial function–based algorithm (grey),

and a 2nd order polynomial function–based (pink).

end a non–linear klystron characteristic in amplitude and phase recorded at175

the 10 MW klystron of FLASH (ACC67) as shown in Figure 8 in blue was

implemented in a VHDL test bench. Furthermore a MATLAB script for the

calculation of the lookup table content was written. The result of the simulation

of the linearization is shown in Figure 8 in purple. The amplitude was linearized

sufficiently. The output phase stayed constant except a slight fluctuation at high180

input amplitudes. With this a proof of concept was demonstrated.

The three linearization algorithms implemented at FNAL were tested at

ASTA in two different setups. In preparation for the test of the klystron lin-

earization algorithm a klystron characterization was conducted in all cases. To

this end under open loop operation of the klystron a feedforward (FF) ampli-185

tude scan over the whole range possible from 0 to 1 [a.u.] was performed. The

klystron output characteristics in terms of amplitude, square root of the output

11



Table 3: Sums of absolute values of deviations over all plotted points for all simulated algo-

rithms.

Algorithm Sum of errors

Direct LUT 6752.3

LUT w/int. 588.1

LUT w/int./ad. grid 250.8

3rd order 3964.5

2nd order 7584.0

power, and phase were recoded. Based on this the parameters and lookup tables

for the three linearization algorithms were computed.

The first algorithm tested was the 3rd order polynomial function–based lin-190

earization. In the corresponding test setup the klystron was directly run into

a dummy load. Since this linearization algorithm was designed for amplitude

linearization only, no phase information is discussed in this case. Figure 9 shows

the klystron output amplitude [sqrt(kW)] versus the FF amplitude during the

characterization, which means without the linearization, in blue. In the same195

figure the red plot shows the klystron output amplitude characteristic with the

linearization activated. The achieved output agrees very well with in average

less than 1% deviation from the simulated linearized output shown in Figure

9 in green. With this a successful implementation of the 3rd order polynomial

function–based linearization algorithm was demonstrated.200

At the time of the test run of the linearization algorithms based on the 2nd

order polynomial functions and the lookup table with interpolation, the 5 MW

klystron was connected to cavity 5 of the ILC RF unit. Since the test run was

conducted during cavity conditioning, the administrative limit for the klystron

output power was 800 kW. In order to drive the klystron into saturation at205

such a low output power, the attenuation on the RF drive was reduced to 2 dB.

Furthermore the klystron gun voltage was reduced to -89.6 kV. Figure 10 shows

the klystron output amplitude versus the FF amplitude during characterization

12



Figure 8: Plots of result of iSim simulation without the klystron linearization (blue) and with

linearization (purple). Left: Klystron linearization algorithm output amplitude [a.u.] versus

input amplitude [a.u.]. Right: Klystron linearization algorithm output phase [◦] versus input

amplitude [a.u.].

and in the case of no linearization active in yellow. The same figure shows

also the klystron output amplitudes in case the two linearization algorithms210

were active (blue for the 2nd order polynomial–based and purple for the lookup

table with interpolation–based). The target amplitude characteristic is plotted

in green. In order to analyze the linearization performances in more detail

Figure 11 shows the differences between the target and achieved klystron output

amplitudes [sqrt(kW)] versus FF amplitude [a.u.] for 2nd order polynomial215

function–based linearization in blue and for the LUT with interpolation–based

linearization purple. From this it can be seen that the 2nd order polynomial

function–based klystron linearization has the better linearization performance

concerning the amplitude.

Figure 12 shows the klystron output phase for the case no linearization was220

active in yellow as well as the target phase characteristic in green. In the same

figure the also the phases during the 2nd order polynomial function–based (blue)

and the lookup table with interpolation–based (purple) algorithms were active

are shown. In Table 4 the maximal phase rotations for all cases are summarized.

13



Figure 9: Klystron output amplitude [sqrt(kW)] versus FF amplitude [a.u.] of test of 3rd order

polynomial function–based linearization: without linearization (blue), simulated linearized

output (green), with 3rd order polynomial function–based linearization (red).

It can be seen that the lookup table with interpolation–based klystron lineariza-225

tion algorithm has the best linearization performance concerning the phase with

13◦ over the whole FF amplitude range. For the FF amplitude range until the

point of saturation the phase rotation is with only 5◦ even lower.

Table 4: FPGA resource usage.

Phase rotation over

FF amplitude range

w/o lin. 40◦

2nd order 15◦

LUT w/int. 13◦

The fluctuations in amplitude and phase in the case of the lookup table with

interpolation–based algorithm originate from an error regarding the computa-230

14



Figure 10: Klystron output amplitude [sqrt(kW)] versus FF amplitude [a.u.]: 2nd order poly-

nomial function–based linearization (blue), and with LUT with interpolation–based lineariza-

tion (purple), without linearization (yellow), target amplitude (green).

tion of the slope lookup tables. Nevertheless with the presented data a prove of

concept of both the 2nd order polynomial function–based and the lookup table

with interpolation–based linearization algorithms was demonstrated.

6. Cavity–Klystron Simulator

Nowadays FPGA–based cavity simulators are a common tool for the de-235

velopment and test of digital LLRF control system in times no actual cavity

is available. Nevertheless, simulating only a cavity does not reflect the en-

tire actual system including high power amplifiers such as e.g. klystrons. The

situation can be improved by including an active analog amplifier within the

feedback loop simulating non–linear characteristics such as a saturation behav-240

ior. The disadvantage of using such an analog amplifier is that it has a different

input–to–output characteristic (especially regarding the phase) compared to a

15



Figure 11: Differences between target and achieved klystron output amplitude [sqrt(kW)] ver-

sus FF amplitude [a.u.]: 2nd order polynomial function–based linearization (blue), and with

LUT with interpolation–based linearization (purple).

klystron. This situation can be overcome by extending the FPGA–based cavity

simulator by a klystron simulator package. By this a realistic test environment

for offline developments and tests can be realized. Since such an FPGA–based245

klystron simulator is highly configurable and flexible, it is possible to simulate

any possible non–linear characteristics of the klystron and other components

both in amplitude and phase.

A klystron–cavity simulator was developed and implemented on a uTCA250

AMC board at KEK. It consists mainly of two packages, the first for the klystron

simulator and the second for the cavity simulator. The klystron simulator pack-

age is realized using a direct lookup table–based algorithm, similar to the one

implemented for the klystron linearization at DESY (see above). The cavity

16



Figure 12: Klystron output phase [◦] versus FF amplitude [a.u.]: 2nd order polynomial

function–based linearization (blue), and with LUT with interpolation–based linearization (pur-

ple), without linearization (yellow), target phase (green).

simulator package is based on the time discrete cavity differential equation255

Vi,n
Vq,n

 =

1 − Tω1/2 −∆ω

T∆ω 1 − Tω1/2

Vi,n−1
Vq,n−1


+Tω1/2RL

Ii,n−1
Iq,n−1

 .

(5)

For the implementation the algorithm was simplified by assuming the case

of no detuning. Figure 13 shows a simplified schematic of the entire klystron–

cavity algorithm implementation on the uTCA AMC board.

The VHDL code for the klystron–cavity simulator was written in Notepad

++, compiled in ISE, and tested in the ISim simulator. After sufficient testing260

the klystron–cavity simulator algorithm was programmed to the FPGA on a

uTCA AMC board. This board was connected with a second uTCA AMC

17



I

Q
in1

in2

out
out = in1 - in2

in1

in2

out
out = in1 + in2

in1

in2

out
out = in1 + in2

look up table a
addr. depth 2^12

words 2^16

look up table b
addr. depth 2^12

words 2^16

16.0

16.0

16.0

16.0

16.0

16.0

32.0

32.0

33
.0

33
.0

12
.0

 

12.0

12.0

4.
12

4.
12

16.12

16.12

16
.1

2

16.12

16
.1

2

16.12

32
.2

4 17
.1

2

16
.0

16.12

16.12

16.0

16.0

16
.1

2

32.24

32.24

32
.2

4

16.12

16.12

16.12

17
.1

2

17
.1

2
17

.1
2

16
.0

(3
2 

do
w

nt
o 

21
)

16.0

16.0

T w1/2 RL

in1

in2

out
out = in1 + in2

in1

in2 out
out = in1 + in2

1 - T w1/2

I'

Q'

16.0

16.0

Klystron simulator package

Cavity simulator package

IQ conversionADC 1

FPGAuTCA uTCA

DAC1P

DAC1N

DAC2P

DAC2N

FPGA

I+

I-

Q+

Q-

Figure 13: Simplified schematic of the klystron–cavity algorithm implementation on the uTCA

AMC board (FB7).

board, on which the original LLRF controller firmware was kept as described

in the following and shown in Figure 14. The features of the LLRF controller

algorithm important for the test setup are a CAV SIM IIR filter, a proportional265

and integral gain, and the addition of FF tables. The output of the DACs of

controller board are converted from differential to single end using two analog

converters. The restored I and Q values are sent to a IQ vector modulator.

A second input of the vector modulator is a 10 MHz signal. By the vector

modulator the I and Q values are converted from a baseband to an IF signal.270

This signal is split into two paths. One is connected to the ADC2 channel of

the controller board. The second one is connected to the ADC1 channel of the

klystron–cavity simulator board. Its differential baseband I and Q output is

converted to single end signals by two analog converters. The single end I and

Q signals are fed to a IQ vector modulator. Beside this also a 10 MHz signal275

is fed to the IQ vector modulator. By this an IF signal is generated, which is

filtered by a band pass filter and fed to ADC1 on the controller board.

With this configuration an open loop (FF only) as well as a closed loop

(FB with or without FF) operation driving the klystron–cavity simulator was

successfully demonstrated.280

In a first test the functionality of the cavity simulator package was checked.

To this end the response of the klystron–cavity simulator in an open loop (FF

only) operation was observed. In order to engage in operation a previously

recorded klystron characteristic was programmed to the lookup tables of the

18



uTCA controller board
DAC1P

DAC1N

DAC2P

DAC2N

ADC1

FPGA with
controller firmware

uTCA kly.-cav.-sim. board

DAC1P

DAC1N

DAC2P

DAC2N

ADC1
FPGA with
kly./cav. sim. firmware

differential to single

end converter

I+

I-

IQ vector

modulator
differential to single

end converter

Q+

Q-

IQ vector

modulator

differential to single

end converter

differential to single

end converter

I+

I-

Q+

Q-

I

Q

I

Q

IF

IF

10 MHz

Splitter

BPF

IF

IF

BPF

BPF

Amplifier

ADC2

10 MHz

Amplifier

Figure 14: Simplified schematic of the test setup covering the klystron–cavity simulator board

and the LLRF controller board.

klystron simulator package. The half bandwidth for the cavity simulator was285

set to f1/2 = 216.7 Hz corresponding a loaded Q value of 3 · 106. Figure 15

shows on top the output of the LLRF controller board, which is a rectangular

pulse in amplitude and a constant phase. The same figure shows on the bottom

the input of the LLRF controller board, which corresponds to the output of the

klystron–cavity simulator. A typical cavity response can be observed.290

In a second test the functionality of the klystron simulator package was

checked. To this end a FF table amplitude scan was performed from 1000

to 6500 counts, while the DAC output of the klystron–cavity simulator was

observed as a digital signal via EPICS. Figure 16 shows the output amplitude

[counts] during the steady state condition versus the FF amplitude [counts] for295

the expected output in green and the measured DAC channel output of the

simulator in red. The expected output plot is based on a simulation using the

same lookup table content as programmed to the simulator board. The expected

output and the measured output agree very well with deviations of less than

2.5% at FF values below 1500 and above 5000.300

With these two test runs a proof of concept of the algorithm implementation

19



Figure 15: Top: DAC output amplitude [a.u.] (left) and phase [◦] (right) versus time [ms] of

the LLRF controller. Bottom: ADC input amplitude [a.u.] (left) and phase [◦] (right) versus

time [ms] of the LLRF controller.

was demonstrated.

7. Conclusions

In an international collaboration with DESY and FNAL total four FPGA–

based predistortion–type klystron linearization algorithms were implemented305

and tested. At DESY a direct lookup table–based algorithm was implemented

in the scope of the new µTCA.4 hardware used for LLRF control at FLASH.

The implementation was tested successfully in an iSim simulation resulting in

a prove of concept.

At FNAL linearization algorithms based on one 3rd order polynomial func-310

tion, two 2nd order polynomial functions, and lookup tables with interpolation

20



Figure 16: Output amplitude [counts] versus FF amplitude [counts]: for the expected output

(green) and the measured output (red).

were implemented. In all cases the quantization of the output of the linearization

algorithm was avoided. In the cases of the polynomial function–based algorithms

furthermore the memory requirements could be reduced drastically, since only

few configuration parameters had to be stored instead of lookup tables. The315

three algorithms were tested using a 5 MW klystron at FNAL ASTA resulting

in a successful implementation of the 3rd order polynomial–based algorithm and

the prove of concept of the two other algorithms. Within the group of imple-

mented and tested algorithms the one based on lookup tables with interpolation

yields theoretically the best linearization performance.320

It is proposed to add an adaptive adjustment of the spacing of the nodes

to algorithm based on lookup tables with interpolation. In a simulation an im-

provement of modeling the correction function was demonstrated. It is intended

to implement and test the improved algorithm in an actual setup.

The described linearization technique is not only suitable for ILC but is325

21



also for other accelerators and applications at which high efficiency RF usage is

required.

Beside the development of the klystron linearization algorithms an FPGA–

based klystron–cavity simulator was implemented and successfully tested in a

development environment resulting in a prove of concept. The simulator pro-330

vides a realistic environment for tests and developments of digital LLRF control

systems while an actual klystron or cavity is not available.

References

[1] http://www.linearcollider.org

[2] ”The International Linear Collider – Technical Design Report”, CERN,335

FNAL, KEK (2013).

[3] R. Kammering, ”Feedbacks and Automation at the Free Electron Laser

in Hamburg (FLASH)”, THPPC121, p. 1345, Proc. ICALEPCS2013, San

Francisco (2013).

[4] ”TESLA Technical Design Report - PART II - The Accelerator ”,340

http://flash.desy.de

[5] J. Branlard, ”Status Update of the uTCA LLRF System for XFEL and

FLASH Upgrade” (Presentation), ILC 9mA Meeting (2011).

[6] W. Cichalewski, ”Linearization of Microwave High Power Amplifiers Chain

in the RF Systems of Linear Accelerators for FLASH and X-FEL” (PhD345

Thesis), Technical University of Lodz, Lodz (2008).

[7] P. Fafara, ”FPGA–based Implementation of a Cavity Field Controller for

FLASH and X–FEL”, Meas. Sci. and Technol. 18 (2007) 2365-2371, (2007).

[8] M. Omet, ”Development and Test of Klystron Linearization Packages for

FPGA–based Low Level RF Control Systems of ILC–like Electron Accel-350

erators”, Proc. RT2014, Nara (2014).

22



[9] ”The European X-Ray Free Electron Laser Technical Design Report”,

http://xfel.desy.de

[10] http://asta.fnal.gov/

[11] P. Varghese, ”Multi–cavity Field Control (MFC) Module Description”,355

FNAL, Batavia (2009).

[12] B. Chase, private communication, FNAL, Batavia (2014).

23


	Introduction
	Klystron Linearization Implemented at DESY
	Klystron Linearization Implemented at FNAL
	Comparison of Algorithms
	Test of Algorithms
	Cavity–Klystron Simulator
	Conclusions



