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M. R. Becker,4,5 C. Bonnett,6 C. Bruderer,2 M. T. Busha,5,7 M. Carrasco Kind,8,9

C. Chang,2 M. Crocce,3 L. N. da Costa,10,11 E. Gaztanaga,3 E. M. Huff,12,13 O. Lahav,1

A. Palmese,1 W.J. Percival,14 A. Refregier,2 A. J. Ross,12 E. Rozo,15 E. S. Rykoff,5,7

C. Sánchez,6 I. Sadeh,1 I. Sevilla-Noarbe,16,8 F. Sobreira,17,10 E. Suchyta,12,13

M. E. C. Swanson,9 R. H. Wechsler,4,5,7 F. B. Abdalla,1 S. Allam,17 M. Banerji,18,19

G. M. Bernstein,20 R. A. Bernstein,21 E. Bertin,22,23 S. L. Bridle,24 D. Brooks,1

E. Buckley-Geer,17 D. L. Burke,5,7 D. Capozzi,14 A. Carnero Rosell,10,11 J. Carretero,3,6

C. E. Cunha,5 C. B. D’Andrea,14 D. L. DePoy,25 S. Desai,26,27 H. T. Diehl,17 P. Doel,1

T. F. Eifler,20,28 A. E. Evrard,29,30 A. Fausti Neto,10 B. Flaugher,17 P. Fosalba,3

J. Frieman,17,31 D. W. Gerdes,30 D. Gruen,32,33 R. A. Gruendl,8,9 G. Gutierrez,17

K. Honscheid,12,13 D. J. James,34 M. Jarvis,20 S. Kent,17 K. Kuehn,35 N. Kuropatkin,17

T. S. Li,25 M. Lima,36,10 M. A. G. Maia,10,11 M. March,20 J. L. Marshall,25 P. Martini,12,37

P. Melchior,12,13 C. J. Miller,29,30 R. Miquel,38,6 R. C. Nichol,14 B. Nord,17 R. Ogando,10,11

A. A. Plazas,28 K. Reil,7 A. K. Romer,39 A. Roodman,5,7 E. Sanchez,16 B. Santiago,40,10

V. Scarpine,17 M. Schubnell,30 R. C. Smith,34 M. Soares-Santos,17 G. Tarle,30 J. Thaler,41

D. Thomas,14,43 V. Vikram,42 A. R. Walker,34 W. Wester,17 Y. Zhang,30 J. Zuntz24
Affiliations are listed at the end of the paper

22 July 2015

ABSTRACT
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass,
or sky background, are major sources of systematic uncertainties in modern galaxy survey
analyses, in particular in deep multi-epoch surveys. We present a framework to extract and
project these sources of systematics onto the sky, and apply it to the Dark Energy Survey
(DES) to map the observing conditions of the Science Verification (SV) data. The resulting
distributions and maps of sources of systematics are used in several analyses of DES SV to
perform detailed null tests with the data, and also to incorporate systematics in survey simu-
lations. We illustrate the complementarity of these two approaches by comparing the SV data
with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES
SV images. We analyse the BCC-UFig simulation to construct galaxy samples mimicking
those used in SV galaxy clustering studies. We show that the spatially-varying survey depth
imprinted in the observed galaxy densities and the redshift distributions of the SV data are
successfully reproduced by the simulation and well-captured by the maps of observing con-
ditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us
to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using
photometric redshifts. We conclude that spatial systematics in the SV data are mainly due
to seeing fluctuations and are under control in current clustering and weak lensing analyses.
However, they will need to be carefully characterised in upcoming phases of DES in order to
avoid biasing the inferred cosmological results. The framework presented here is relevant to
all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large
Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end im-
age simulations to correctly interpret the deep, high-cadence observations of the sky.
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1 INTRODUCTION

The Dark Energy Survey (DES, The Dark Energy Survey Collab-
oration 2005) began in 2012 and will observe during at least five
seasons to cover∼ 5000 square degrees of the Southern sky, in five
optical bands (grizY). When completed, DES will cover a volume
of the Universe up to 20 times greater than the Sloan Digital Sky
Survey (SDSS, Gunn et al. 2006), the largest optical survey to date.
Hence, DES will provide an enormous legacy data set useful in a
range of astrophysical and cosmological studies. It is thus essential
to develop approaches to robustly analyse DES data while account-
ing for statistical and systematic uncertainties.

The primary science goal of DES is to uncover the nature
of dark energy using a combination of cosmological observables.
In addition to expansion rate measurements using supernova light
curves, DES will rely on probes of the growth rate such as the clus-
tering and gravitational lensing of galaxies and clusters of galax-
ies. Exploiting these observables to probe dark energy requires
exquisite control over the spatial coverage and calibration of the
survey. Spatial fluctuations in the depth or quality of the data
(e.g., the properties of the sky noise, the photometry, or galaxy el-
lipticity measurements) can impact the galaxy catalogues and lead
to systematic biases in cosmological analyses. All ongoing and fu-
ture surveys will be limited by our ability to identify and mitigate
such systematics.

Establishing an exhaustive list of the sources of potential sys-
tematics in cosmological measurements is beyond the scope of this
paper. However, it is worth recalling that systematics in cluster-
ing and cosmic shear studies are mostly rooted in astrophysical
foregrounds (extinction by dust or obscuration by bright stars), ob-
serving conditions (e.g., seeing, sky noise, airmass), or processing
and calibration (such as the quality of the photometry or the point
spread function). These affect the probability of detecting sources
and also their properties, yielding non-trivial distortions in the re-
duced data, in particular the galaxy catalogues. In DES, various
efforts are dedicated to modelling or capturing the complicated
transfer function connecting the raw data to the final galaxy cat-
alogues. For instance, the Ultra Fast Image simulator (UFig, Bergé
et al. 2013) is used to create simulated DES images, which are then
processed in a similar manner to the real data. This approach has
been investigated e.g., to characterise systematics in shear mea-
surements (Bruderer et al. 2015). UFig was also interfaced with
the BCC N-body simulations (Busha et al. 2013) by Chang et al.
(2014) in order to forward-model the survey transfer function with
known underlying astrophysics and cosmology. In this paper, we
test this transfer function and investigate how well the BCC-UFig
is able to reproduce physical characteristics (e.g., redshift distribu-
tions) and systematics (e.g., spurious galaxy density fluctuations)
found in the DES Science Verification (SV) data. By contrast, BAL-
ROG1 (Suchyta et al. 2015, used in Melchior et al. 2015) takes the
approach of populating real DES images with simulated galaxies
in order to measure the effective transfer function of the survey.
These complementary efforts will be improved in the coming years
to fully exploit DES data.

The observing conditions and astrophysical foregrounds un-
avoidably vary across the survey footprint (e.g., nightly variations
of seeing, or colour reddening by Galactic dust). This paper fo-
cuses on mapping these sources of systematics onto the sky. This
operation is analogous to the construction of foreground templates
for the analysis of cosmic microwave background (CMB) data

1 https://github.com/emhuff/Balrog

(e.g., Tegmark 1997; Slosar, Seljak & Makarov 2004; Ade et al.
2014). Such templates are used in numerous analyses of single-
epoch surveys like SDSS, in particular galaxy and quasar cluster-
ing measurements (e.g., Tegmark et al. 1998; Scranton et al. 2002;
Ross et al. 2012; Ho et al. 2012; Leistedt et al. 2013; Leistedt &
Peiris 2014; Agarwal et al. 2014), and are being used in analyses
of SV data (e.g., Vikram et al. 2015; Crocce et al. 2015; Jarvis
et al. 2015; Becker et al. 2015; Giannantonio et al. 2015). More
generally, templates of potential sources of systematics can be used
to carry out null tests with the data or model their contamination.
As detailed below, multi-epoch surveys such as DES require a ded-
icated projection framework. In addition, the extracted observing
conditions can be incorporated in image simulations to mimic the
survey properties.

This paper is organised as follows. In Section 2 we present a
scheme to map multi-epoch survey data onto the sky, and apply it to
DES SV data. We present and analyse the resulting maps of sources
of observational systematics. In Section 3 we use these maps to
analyse the SV data and the BCC-UFig simulations, and show the
impact of observational systematics on the measured galaxy den-
sities and on the redshift distributions inferred using photometric
redshifts. In Section 4 we conclude and discuss the impact and fu-
ture extensions of this work.

2 MAPPING THE PROPERTIES OF DES-SV IMAGES

2.1 Geometrical projection

Mapping potential sources of systematics, such as observing con-
ditions, is a routine operation in modern galaxy surveys. For the
SDSS, this mapping was relatively straightforward since SDSS was
a single-epoch survey. Therefore, a direct mapping between sky
position and images could be established2 (e.g., Ross et al. 2011,
2012; Leistedt & Peiris 2014). In other words, any of the prop-
erties of SDSS images (e.g., seeing) directly project onto the sky.
This is no longer the case for DES, which is a multi-epoch survey
where several single-epoch CCD images are processed and stacked
into ‘coadd’ images, from which galaxies and stars are then ex-
tracted. The nominal depth in the main DES survey requires up
to ten tilings in each band, while deeper regions require an order
of magnitude more (i.e., in the SN fields, which are dedicated to
the DES supernova programme). The coadding process is done in
non-overlapping regions called ‘tiles’, which are 0.75× 0.75 deg2

squares constructed to cover and uniquely decompose the entire
DES footprint. As a consequence of the multi-epoch nature of DES,
there is not a unique value of e.g., seeing at each sky position,
but rather a distribution of values corresponding to the coadded
single-epoch images. This is illustrated in Figure 1, which shows
the footprints and properties of a set of single-epoch images used
in an arbitrary coadd, part of the DES-SV data (described in the
next section). The seeing, airmass and background noise (as well as
many other properties not shown here) exhibit strong fluctuations
and correlations. Combined with the non-trivial geometrical over-
lap between these images, this demonstrates the need for a flexible
projection framework. In the standard processing pipeline, these
images are processed and coadded in tiles (black line of Figure 1)
with the DESDM software, using the software packages described

2 With the exception of the Stripe 82 region, the deeper multi-epoch pro-
gramme of SDSS, and the small zones of overlap between the single-epoch
images.
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Figure 1. Upper panel: geometrical projection of the single-exposure im-
ages coadded in an arbitrary tile of the DES Science Verification data (black
contour). The colours correspond to different single-epoch pointings, with
the relevant CCDs shown as individual rectangles. Lower panels: properties
of the same set of CCDs, exhibiting significant variations and correlations.
The nontrivial, spatially-varying geometrical overlap and image properties
will result in spatially-varying systematics when analysing the galaxy cata-
logues.

in Sevilla et al. (2011); Desai et al. (2012); Mohr et al. (2012)3. The
operations performed in these codes unavoidably mix the image
properties across the coadds and affect the properties of detected
sources. The geometry of the DECam focal plane — a hexagonal
shape, with 62 science CCDs (Flaugher et al. 2015; Honscheid et al.
2008) — may also be imprinted in the reduced data. Therefore, one
would like to access the full distribution of the single-epoch proper-
ties, and connect it to the coadds, catalogues, and sky coordinates.

To construct sky maps of the single-epoch properties, we pro-
ceed as follows. We first connect the single-epochs and coadds, and
keep track of which images were processed and coadded by the
DESDM software. We then resolve the geometry of all images so
that a given position on the sky is connected to a single coadd image
and to a set of single-exposure CCDs. This is realised by access-
ing the images individually and using the WCS4 transformations
to convert local image coordinates into equatorial coordinates. We
also make sure these transformations match the procedures used in
the DES software5. Finally, we employ the HEALPix pixelisation
(Górski et al. 2005) and connect the tree of geometrically-resolved
images to HEALPix pixels on the sky.

The previous construction gives access to the full joint distri-
bution of single-epoch and coadd image properties on the sky. This

3 Including SCAMP (astrometry, Bertin 2006), SWARP (image coaddi-
tion, Bertin et al. 2002), PSFEx (modelling of the point- spread-function,
Bertin 2011) and SExtractor (object detection and measurement, Bertin &
Arnouts 1996).
4 WCS refers to the World Coordinate System of the FITS format (Cal-
abretta & Greisen 2002).
5 In particular, DES images make use of the WCS TPZ projection, built on
the standard TAN projection and adding general polynomial corrections.

Figure 2. Projection of the properties of the single-epoch images of Fig-
ure 1, showing how the time fluctuations and correlations are converted into
spatial fluctuations. ADUs are Analog-Digital Units.

is a complicated object since each HEALPix pixel contains a vec-
tor of image properties. As mentioned before, a crucial product is
the projection of this joint distribution into scalar sky maps. This
requires the computation of one value (such as a summary statistic)
per pixel, e.g., compressing the vector of seeing values in each pixel
into mean, median, standard deviation, or even minimum and max-
imum values. This process can be done for any quantity of interest,
with arbitrary weights. This is how any potential source of spatial
systematics arising from single-epoch images can be mapped onto
the sky. Figure 2 shows the result of projecting some of the prop-
erties of the images of Figure 1. We see that the geometry of the
CCDs as well as the relative orientations of the focal planes for the
various exposures strongly affect the coverage and mean properties
of the survey.

2.2 Application to DES SV data

Science Verification (SV) data refers to the testing data acquired
between November 2012 and February 2013, processed by the
“SVA1” version of the DESDM pipeline (Yanny et al. 2015) and
consisting of 858 coadd tiles, 665 of which have data in all five
grizY bands. The SV data cover more than 300 deg2 in total, split
into contiguous regions of interest: the large SPT-E and SPT-W re-
gions (≈ 200 and 50 deg2, respectively), the RXC J2248, Bullet,
and El Gordo known rich clusters (≈ 10 deg2 each), COSMOS
(≈ 6 deg2) and the Supernovae fields SN-E, SN-X, SN-S, SN-C
(≈ 10 deg2 each). The footprint of DES-SV is shown in Figure 3
with the various fields labelled.

To create maps for the full SV data set, we create a sym-
bolic tree of CCD and coadd images, resolve their geometries, and
project them into HEALPix maps. However, unlike the illustration
shown in Figure 1 and Figure 2, we now crop the projection to each
tile (the black contour of Figure 1) since the DESDM software sep-
arately processes tiles using the stacks of CCD images. We perform
this projection in the full SV area and stitch the projected coadds to
assemble the full SV footprint. In terms of outputs, we project the
following quantities in the five grizY bands: airmass, seeing, sky
brightness, sky sigma (defined later in this paragraph), and expo-
sure time. These can all affect the quality of the photometric mea-

c© 2015 RAS, MNRAS 000, ??–??
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Figure 3. The DES SV footprint, partitioned into several discontinuous re-
gions, the largest being the SPT-E and W fields (≈ 200 and 50 deg2, re-
spectively). The small red regions contain objects where spectroscopic red-
shifts are available, used to train the photometric redshift estimation codes,
as discussed in Section 3.

surements (see e.g., Li et al. 2015). We compress the multi-epoch
information into average and total maps (e.g., mean seeing and total
exposure time). For the former, a natural choice would be to take
the uniformly-weighted average in each HEALPix pixel. However,
this choice is probably too simplistic, as in practice images are
coadded using weights derived from the flux variance. More pre-
cisely, the DESDM pipeline provides a ‘weight’ or ‘variance’ map
for each single-epoch image. An additional quantity, coined ‘sky
sigma’, characterises the variance of the flux in each pixel. For an
image i and a given pixel, it is denoted by σi, and depends on a
number of parameters, including the flux itself, the gain of the am-
plifier, the readout noise, the bias correction, and the flat-fielding.
Single-epoch images are coadded using these variance maps such
that the coadded flux is the weighted average over all exposures,

Ftot =

∑
i wipiFi∑

i wi
, (1)

in each coadd pixel, where wi = (p2iσ
2
i )−1. The extra pis are

rescaling factors to enforce a common photometric calibration to
the single-epoch fluxes. They read

pi = 100(mZ−mZi)/5, (2)

where mZi is the zero point magnitude of the single-epochs and
mZ that of the coadd image. The variance of the total flux in each
pixel of the coadd image is given by

σ2
tot =

[∑
i

wi

]−1

. (3)

A detailed discussion of these quantities is beyond the scope of
this paper, but we note that the total sky sigma is proportional
to the magnitude limit of the survey. In the above formulae, we
omitted the pixel indexing in σi, but the coadding and the evalu-
ation of σ2

tot must be performed pixel by pixel across the coadd
image. The technicalities of this process (including the projection
and coadding) are handled by the SWARP software (Bertin et al.
2002). Yet, the projection formalism presented above can be used
to quickly estimate σ2

tot (and for example construct approximate
magnitude limit maps). For this purpose we compute an average
sky sigma per single-epoch CCD image, defined as the pixel aver-
age of σi across the CCD. Rather than computing σi and σ2

tot per

Figure 4. Maps of some of the main observational quantities (potential
sources of systematics) in the SPT-E and W fields (top and bottom of each
sub-panel). The HEALPix maps are produced at Nside = 4096, where
each pixel is the mean value of the observed Nside = 16384 sub-pixels, in
order to obtain more accurate values near the edges of the survey.

c© 2015 RAS, MNRAS 000, ??–??
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Figure 5. Full-sky angular power spectra of some of the i band observa-
tional systematics shown in Figure 4. Prior to power spectrum estimation,
the maps were divided by their average values in order to obtain dimension-
less C`’s. The power spectrum of the DES-SV coverage mask (presented
in Rykoff et al. 2015; Crocce et al. 2015) is also shown in black. Any ex-
cess of power relative to the mask implies structure and features in the maps,
which can yield non-trivial contamination and systematics in the galaxy cat-
alogues. We also indicate the characteristic scales affected by the geometry
of the SV survey and DECam instrument.

pixel, we only need to calculate σi per CCD and σ2
tot in the dis-

tinct regions of image overlap, as shown in Figure 1. This yields a
significant reduction of the complexity of the full projection, which
needs to be performed for the five bands for a number of quan-
tities of interest, using several hundred thousands of single-epoch
images. Finally, any quantity of interest can be averaged using the
same weights wi (which we call ‘sky sigma weights’), which is
more useful than the unweighted average. The effective seeing of
the coadd images is better approximated by the sky sigma-weighted
mean since the coadds are based on these weights.

A number of maps were constructed for the DES-SV data, in
order to capture the spatial fluctuations of the observing conditions
and other observational quantities. They are used in numerous SV
analyses to perform spatial null tests with the data (e.g., Vikram
et al. 2015; Crocce et al. 2015; Jarvis et al. 2015; Becker et al.
2015; Giannantonio et al. 2015). Figure 4 shows some of the main
maps for the i band: the total exposure time, the mean sky sigma
and total sky sigma, and the minimum, maximum and mean seeing.
All quantities were calculated according to the previous scheme,
i.e., the weighted average method and the sky sigma weights, with
the exception of the mean sky sigma maps. This is because the
weighted sky sigma is equivalent to the total sky sigma described
above. Showing both maps sheds light on the difference between
adding the noise properties linearly or in quadrature. In the fol-
lowing we analyse these maps and detail the implications for the
analyses of SV data. We focus on the SPT-E and W regions since
they are the largest contiguous regions of the data.

2.3 Analysis of the DES SV observing conditions

The maps shown in Figure 4 exhibit significant structure and fea-
tures on all scales, mostly because DES data have three intrin-
sic scales on which their properties can vary: the size of the DE-
Cam focal plane (2.2 deg diameter field of view), the coadd tile
(0.75× 0.75 deg2), and the single CCD (0.3× 0.15 deg2). In spite
of the random offsets and overlap of the focal plane when obtain-
ing images and coadding them, these three scales get imprinted in
the projected observing conditions. For example, the focal plane

geometry is clearly visible in the total sky sigma maps in a number
of regions. This is due to a significantly lower or greater number of
observations, or to their respective noise levels (sky sigma). Also,
the mean seeing map is affected by outliers, i.e., by extreme (low
or high) values of seeing in the set of single-epochs, as shown in
the min/max maps in the bottom of Figure 4. The rectangular CCD
geometry is also visible in the maps, especially near the edges. In
addition, the observing properties of the 62 CCDs in a given single-
epoch are very correlated since they experience quasi-identical ob-
serving conditions. By contrast, correlations between exposures are
due to proximity in time, for example if the observations were taken
the same night. Finally, the tiles edges are particularly visible in
truncated regions or due to applying different zero point magni-
tudes (e.g., the centre of SPT-W, or the sharp transition in the upper
part of SPT-E).

To identify which scales may be affected by the features de-
scribed above, we compute the full sky angular power spectra of
the maps in Figure 4 (the full SV, not only the SPT-E and W re-
gions). The results are shown in Figure 5; all spectra are made di-
mensionless and normalised such that

∑
` C` = 1 to clarify the

comparison. As seen before, all maps exhibit significant power on
all scales. The labels show which multipole ranges correspond to
the typical scales of the SV fields, DECam focal plane, tiles, and
CCDs. It is important to note that many of the features of Figure 5
are due to the sky coverage (i.e., the footprint) of SV, not the corre-
lations in the observed regions. This is emphasised by an extra line
showing the power spectrum of the DES-SV footprint mask. Here
we do not deconvolve the effect of the mask on the power spectra
because it typically redistributes the power between the ` modes.
In the pseudo-spectrum estimation method, this deconvolution as-
sumes flat priors on the power spectra, while quadratic maximum
likelihood estimators can incorporate more flexible priors on the
power spectra (see e.g., Leistedt et al. 2013). This deconvolution
would significantly affect the observed power spectra due to the
small sky coverage of SV data. By contrast, not deconvolving the
mask enables one to separate the scales affected by the survey cov-
erage and by the observing conditions. The significant power in the
` ∈ [0, 200] range is mostly due to the size and shape of the SV
fields (all fields except SPT-E and W have approximately the size
of the focal plane). In the other power spectra, any power in excess
of the black line is due to structure within the fields, i.e., to the fea-
tures described previously. As expected, airmass and seeing maps
mostly have additional power on small scales. But the sky sigma
maps have much more power on all scales, in particular around the
focal plane and coadd scales.

As seen in Figure 4, the maps of the observing conditions are
correlated. Figure 6 shows the Pearson correlation coefficients of
the DES-SV maps in the gri bands (calculated for the full SV area).
These spatial correlations have two origins: the time correlations
between observations made closely spaced in time, and physical
correlations between some of the properties. For example, the noise
level and seeing are correlated.

In conclusion, the observing conditions fluctuate significantly
on a wide range of scales, and may affect the properties of the
galaxies detected in DES coadd images. Any resulting spurious
spatial correlations that propagate into the galaxy catalogues will
need to be detected and eliminated. Typical techniques to mitigate
these effects in clustering analyses include modelling the survey
window function (e.g., Maddox, Efstathiou & Sutherland 1996;
Blake et al. 2010), or using cross-correlations (Scranton et al. 2002;
Ross et al. 2011, 2012; Ho et al. 2012; Crocce et al. 2015) or
mode-projection (Leistedt et al. 2013; Leistedt & Peiris 2014) to

c© 2015 RAS, MNRAS 000, ??–??



6 Leistedt, Peiris, Elsner, Benoit-Lévy et al
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Figure 6. Correlation coefficients between some of the maps produced for
the DES-SV data.

correct or mask the spatial modes affected by the observing condi-
tions. Crucially, these approaches require the availability of accu-
rate templates of the sources of systematics, which were precisely
constructed in this section. We now turn to a concrete example of
use of these templates.

3 APPLICATION TO BCC-UFIG

The BCC-UFig (Chang et al. 2014) is a framework of image-level
simulations of the DES-SV data. It relies on the Ultra Fast Image
Generator (UFig, Bergé et al. 2013) and the BCC cosmological
simulations (the Blind Cosmology Challenge, Busha et al. 2013) in
order to obtain realistic images of a galaxy survey simulated with a
known cosmological model. The BCC-UFig covers the SPT DES-
SV region, and consists of 480 coadd images in the griz-bands,
and 432 in the Y-band. As detailed in Chang et al. (2014), these
images were processed using the same software packages as the
DESDM SVA1 pipeline. In this paper we exploit the fact that the
simulated BCC-UFig images integrate some of the actual observing
conditions of the DES-SV data. In particular, the simulated coadd
images incorporate the median values of the seeing, limiting mag-
nitude, and magnitude zeropoint of the true DES-SV images. These
quantities were obtained from the products presented in the previ-
ous section (i.e., maps of the median observing conditions, analo-
gous to the mean maps shown in Figure 4), by averaging each map
over the surface of the tiles. The result of this smoothing is shown
in Figure 7, and we comment on its effect on the galaxy catalogues
below. The fact that the BCC-UFig is based on simulated coadd im-
ages and not on single-epochs is the main difference with the real
SV data. However, as discussed below, BCC-UFig reproduces most
of the spatial systematics found in the data and relevant to cluster-
ing and weak lensing analyses, because these are due to fluctuations
in observing conditions at scales larger than the coadds.

Survey simulations like the BCC-UFig can be used to test
analysis techniques and pipelines in the presence of realistic sys-
tematics. For example, Chang et al. (2014) used the BCC-UFig

Figure 7. Maps of the i band SV observing conditions incorporated in the
BCC-UFig simulation, obtained by smoothing the maps of Figure 4 in tiles.
The analysis mask shows the region considered when measuring the redshift
distributions and galaxy number densities presented below.

to compare the performances of various star-galaxy classifiers and
study the evolution of the observed galaxy and stellar densities as a
function of some of the observing conditions (depth, seeing, Galac-
tic latitude). Such tests cannot be performed at high significance in
the real data due to the small size and sky coverage of the sample of
spectroscopically confirmed galaxies (based on the COSMOS and
SN fields, shown in red in Figure 3).

In this paper, we produce galaxy catalogues based on the
BCC-UFig and compare them with the SV data catalogues. We
mostly attempt to mimic the galaxy catalogues used in the clus-
tering and cross-correlation analyses of SV Crocce et al. (2015);
Giannantonio et al. (2015). We first construct a multi-band cata-
logue by cross-matching the positions of the objects detected in the
griz bands. We then remove all objects with extreme fluxes or col-
ors: x > 30 and x − y > 3 or x − y < −1, where x and y are
mag auto magnitudes in griz bands measured by SExtractor. To
select galaxies in this catalogue, we use the ‘modest’ classifier. As
described in Chang et al. (2014); Soumagnac et al. (2013), objects
are labelled as galaxies by this classifier if they do not satisfy any
of the following criteria: (mag auto i < 18 and class star
> 0.3) or (spreadmodel i + 3*spreadmodel err i< 0.003)
or (mag auto i< 21 and mag psf i> 30). Finally, we only con-
sider objects with 18 < mag auto i < 22.5 in the SPTE region,
and we split this galaxy sample into redshift bins using photometric
redshifts. We now investigate the realism of these galaxy samples,
first in terms of their redshift distributions.

3.1 Photometric redshifts and redshift distributions

Photometric redshifts (photo-z) — redshifts estimated from broad-
band fluxes and colours — are one of the main sources of uncer-
tainties in imaging surveys, and it is essential to reproduce this as-
pect of the data with BCC-UFig galaxies. We employ three photo-z
codes: BPZ (Benı́tez 2000; Coe et al. 2006), TPZ (Carrasco Kind &
Brunner 2013, 2014), and ANNz2 (Sadeh, Abdalla & Lahav 2015).
These rely on very distinct algorithms that were tested on early SV
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Figure 8. Redshift distributions of the SV data (left) and BCC-UFig (right)
catalogues obtained using the photometric redshift estimation methods
trained on a spectroscopic sample of galaxies (see text for details). They
are normalised such that

∫
N(z)dz = 1. By comparison, the variance ob-

tained by randomly splitting the redshift samples is of the order of 0.01 in
all redshift bins.

data in Sánchez et al. (2014). They are also used in the main SV
clustering and cosmic shear analyses (Giannantonio et al. 2015;
Crocce et al. 2015; Jarvis et al. 2015; Becker et al. 2015). For de-
tails on the three codes and a updated comparison using SV data,
we refer the reader to Bonnett et al. (2015). Here we only provide a
brief summary of the three algorithms and focus on comparing the
redshift distributions inferred from the SV data and the BCC-UFig
simulation.

BPZ is a Bayesian template fitting photo-z code that relies on
a set of calibrated template spectra, which are redshifted and con-
verted into template colours using the DES filters. It computes a
posterior probability for the redshift of each object given its ob-
served colours and errors, by fitting for all templates and marginal-
ising over the choice of template. By contrast, TPZ and ANNz2
are machine learning codes that must be trained on a representa-
tive sample of the data to infer a set of heuristic rules (i.e., a flex-
ible data-driven model) to compute the redshift from the observed
photometric colours. TPZ is a publicly available code6 based on
prediction trees and random forests, while ANNz2 uses a combi-

6 http://lcdm.astro.illinois.edu/code/mlz.html
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Figure 9. Difference between the redshift distributions for mean seeing
bins, i.e., computed for the good (low seeing) and bad (high seeing) regions.

nation of machine learning algorithms, including neural networks
and k-nearest neighbours. The three photo-z codes deliver a red-
shift probability distribution function (PDF) and a photo-z point
estimate, usually measured as the mean or the mode of the PDF.

We employ the BPZ, TPZ and ANNz2 algorithms that were
trained and calibrated on the SV data, more specifically on the sam-
ple of galaxies presented in Bonnett et al. (2015) for which spec-
troscopic redshifts are also available (about 46, 000 galaxies). This
sample is shown in red in Figure 3 and was used to calibrate the
BPZ template prior and train the TPZ and ANNz2 methods. Note
that we only use mag auto magnitudes and colours with BPZ and
ANNz2, and we only include the magnitude errors in the training
of TPZ (where they are used to perturb the magnitudes when re-
training the prediction trees, in order to obtain reliable redshift pos-
terior PDFs).

Following most analyses of SV (e.g., Crocce et al. 2015; Gi-
annantonio et al. 2015), we create five BCC-UFig redshift samples
by selecting the objects with photometric redshift falling in a top
hat window of size ∆z = 0.2 in the range 0.2 < z < 1.2. We
use the ANNz2 photo-z point estimates to bin our data in the red-
shift ranges, i.e., to select the objects that fall in each redshift bin.
We then reconstruct the N(z) by stacking the redshift PDFs of the
selected objects for the three codes. Figure 8 shows the redshift
distributions of the SV data samples compared with their BCC-
UFig counterparts. We recall that the BCC-UFig and SV data were
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8 Leistedt, Peiris, Elsner, Benoit-Lévy et al

subject to the same colour and quality cuts, and restricted to the
same portion of the sky: the SPT-E region analysis mask shown in
Figure 7. Hence, the inferred redshift distributions should match
relatively well since the colours of the BCC-UFig galaxies were
shown to correctly match that of the data in Chang et al. (2014).
This is confirmed by Figure 8: when comparing the left and right
panels, the features and relative amplitudes between the N(z) in-
ferred from the three codes are very similar.

An important difference between the left and right panels is
that the true redshift distributions can be calculated for the BCC-
UFig and be compared with the distributions inferred using photo-
metric redshifts. Analysing the detailed performance of the photo-z
codes is beyond the scope of this paper; a full investigation in the
context of the weak-lensing SV data samples is presented in Bon-
nett et al. (2015). However, the results of Figure 8 show that most
features of data redshift distributions are recovered in the simula-
tion. For instance, BPZ yields wider N(z)s than machine learning
methods, but less accurate near z ∼ 0.4 due to the layout of the
DES grizY filters and the limitations of the set of template spectra.
Also, the redshift distributions inferred by TPZ are narrower than
the true underlying distribution. These features persist when select-
ing galaxies with BPZ or TPZ photo-z point estimates. Selecting
with ANNz2 minimises the width of the inferred N(z) from the
three methods, and reduces the amount of low-redshift outliers in
the third bin.

The comparison of true and inferred redshift distributions is
not trivial with the SV data given the small sample sizes of spectro-
scopically confirmed galaxies, especially at high redshift. For this
reason, a realistic survey simulation like BCC-UFig is a powerful
tool for testing critical analysis stages such as photometric redshift
estimation, in regimes that are difficult to explore with the data.
More specifically, Figure 8 demonstrates that the features seen in
the redshift distributions calculated for the SV data are compatible
with and well-reproduced by the BCC-UFig simulation.

We now challenge an assumption made above (and in current
SV analyses): the fact that the redshift distributions can be spatially
averaged over a large area without accounting for systematics (here
the entire SPT-E region). While the analysis of SV data is restricted
to the most uniform regions, as shown by the analysis mask in Fig-
ure 7, these include unavoidable residual depth and quality fluctua-
tions. The meanN(z) is the main quantity of interest for cosmolog-
ical analyses. However, its variance due to statistical and system-
atic uncertainties must be evaluated, in order to assess the robust-
ness of theoretical clustering and gravitational lensing predictions
using the N(z). As we will see below, the statistical fluctuations
are small, as expected from the area and number density of objects.
However, it is essential to test for residual spatial systematics in the
inferred redshift distributions.

Here we focus on testing the variability of N(z) distributions
due to residual depth fluctuations and observational systematics in
the SPT-E region. For each of the quantities presented in the pre-
vious section (e.g., seeing) we compute the median value and use
it to split each redshift sample into two subsamples. These cover
different regions of the sky, observed under different conditions.
We compute the difference between the redshift distributions cor-
responding to the two patches, i.e., taking the redshift distribution
of the galaxies in the region where the systematic is above the me-
dian value, and subtracting that of the galaxies in the other region.
Figures 9 and 10 show these differences for the i band seeing and
exposure time, respectively; these are two significant sources of
spatially-varying depth in the SV data (e.g., Crocce et al. 2015).
Importantly, the variance obtained by randomly splitting the red-
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Figure 10. Same as Figure 9, but for exposure time. However, note that the
fluctuations go in the opposite direction since we compute low minus high
values, which corresponds to bad and good regions for exposure time.

shift samples (instead of splitting based on observing conditions) is
of the order of 0.01 in all redshift bins.

These figures indicate that theN(z) differences are significant
compared to the sample variance. This is expected since good re-
gions (e.g., low seeing or high exposure time) have lower noise and
better photometry. As a consequence the photo-z codes will have
better overall quality and yield narrower redshift PDFs. Therefore,
the derived redshift distributions when selecting objects in top hat
redshift windows will be more accurate. In our difference conven-
tion, this translates into a positive bump surrounded by wells in Fig-
ure 9 (since we take the difference between low seeing minus high
seeing regions), and the opposite in Figure 10 (where we compute
low exposure time minus high exposure time). This is indeed ob-
served in most bins, even though this depends on the details of the
photometric redshift estimation.

While the observed N(z) fluctuations are significant com-
pared to the sample variance, they are small compared to the overall
amplitudes shown in Figure 8 (less than 5% in all the cases we
tested). This can be seen not only in the histograms of the true
redshifts from BCC-UFig, but also in the N(z) inferred from the
photo-z codes. In fact, in the right panels corresponding to BCC-
UFig, these distributions follow the fluctuations of the true red-
shifts. This is not the case in all panels, because low and high red-
shift objects suffer from other issues that make the comparison dif-
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ficult. In particular, we did not re-weight the redshift distributions
to adjust the colour distributions of the training, validation and data
samples, as in Bonnett et al. (2015); Sánchez et al. (2014). Such
corrections do not affect the comparison between the data and the
simulation.

This analysis provides an estimate of the order of magnitude
of the N(z) fluctuations due to observational sources of systemat-
ics and spatially varying depth in the SV data. Provided the mean
N(z) is properly characterised, these fluctuations will not bias the
cosmological analyses. However, because they are due to residual
spatial systematics, they may cause other types of contamination in
the galaxy catalogues. This is shown in Crocce et al. (2015) and in
the next section, where seeing is found to spuriously correlate with
the SV data and contaminate the clustering measurements.

3.2 Spatial null tests

We now turn to the spatial properties of the BCC-UFig redshift
samples. Figure 11 shows the average galaxy density measured in
the previous redshift samples as a function of a few sources of
systematics (median exposure time, seeing, and sky sigma). We
create these data points by jointly analysing HEALPix maps (at
Nside = 4096) of the galaxy redshift bins (SV data and BCC-
UFig) and the maps of observing conditions presented in the pre-
vious sections. Prior to estimation, all maps are divided by their
mean values, so that the observables are dimensionless and con-

centrated near the central values (1, 1) in the panels of Figure 11.
The dynamical range explored by the galaxy densities in each panel
depends on the observational quantity under consideration. For ex-
ample, normalised seeing values are mostly concentrated between
0.9 and 1.1, while exposure times span a wider range, as can be
verified in Figure 4. The error bars are obtained by jack-knife re-
sampling in 50 sky regions, which is possible thanks to the large
number of objects (greater than 104 in each region).

Analogous galaxy density measurements are shown in
Suchyta et al. (2015); Crocce et al. (2015) using the SV data. Fig-
ure 11 shows very similar trends and amplitudes despite using dif-
ferent maps (the median maps instead of the weighted mean maps).
The most significant fluctuations are due to the r and i band see-
ing, particularly in the first and last redshift bins, in agreement with
what is found in Suchyta et al. (2015); Crocce et al. (2015). Other
observational properties create similar but smaller fluctuations. Re-
markably, the BCC-UFig redshift samples exhibit similar galaxy
density fluctuations in most bins. In particular, Figure 11 shows
that the characteristic features of the seeing and sky sigma fluctua-
tions as a function of galaxy density are reproduced by BCC-UFig.
This demonstrates that the simulation succeeds in capturing some
of the galaxy density fluctuations caused by the systematics con-
sidered here. The remaining qualitative and quantitative discrepan-
cies are likely due to the approximations adopted in the simulation.
The most significant effect is likely the incorporation of observing
conditions at the tile level instead of the single-epoch images: the
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10 Leistedt, Peiris, Elsner, Benoit-Lévy et al

current implementation limits the spatial resolution of systematics
to relatively large scales.

More generally, it is interesting to quantify the extent to which
the maps capture depth fluctuations in the data. This is because the
effects described above — spurious spatial variations in the red-
shift distributions and galaxy densities — are usually corrected for
or marginalised over in cosmological analyses. This is either done
at the level of the survey window function or in the measured power
spectra or correlation functions. We do not attempt to develop and
validate such a model since this must be done in the context of
a specific analysis at hand (e.g., clustering), which is beyond the
scope of this paper. However, we demonstrate that the maps trace
the main sources of systematics by showing that they strongly cor-
relate with depth fluctuations and stellar contamination. Figure 12
shows the Pearson correlation coefficient of some relevant observ-
ing condition maps with (1) a map of the stars misclassified as
galaxies (by the ‘modest’ classifier) in the BCC-UFig galaxy sam-
ple described above; (2) maps of the average i band magnitude er-
rors in the BCC-UFig and SV data (‘Gold’ catalogue, see Crocce
et al. 2015) in mag auto i magnitude bins. Figure 12 shows that
the exposure time and total sky sigma maps strongly correlate with
the magnitude errors in all bands and magnitude bins, in both the
data and the simulation, demonstrating that the maps capture most
of the depth fluctuations. In fact, a depth map of the SVA1 ‘Gold’
catalogue was constructed using the method described in detail in
Rykoff et al. (2015). Briefly, a coarse depth map is first constructed
by fitting the magnitude–magnitude error relation of galaxies, ex-
ploiting the fact that the magnitude errors satisfy σm ∝ σF /F
where F and σF are the galaxy flux and its standard deviation.
This relation depends on the local limiting magnitude of the survey,
which can be estimated in coarse HEALPix pixels where there are
enough galaxies to obtain precise limiting magnitude estimates (but
at low spatial resolution). This map is then refined by constructing a
data-driven model of the depth based on the maps of the observing
conditions presented here, which are available at very high resolu-
tion (using machine learning algorithms, see Rykoff et al. 2015).
The maps were also used in Crocce et al. (2015) to build a linear
model of the spurious correlations observed in the angular correla-
tion functions, and correct for them.

Note that the correlations between the noise and the magni-
tude errors are less significant in the simulation than in the data.
This is due to the approximation highlighted previously: BCC-
UFig is based on simulated coadd images, not on simulated single-
epochs. Hence, systematics at scales smaller than the coadds are
not resolved. The previous section showed that this approximation
yielded correctly reproduced systematics in the galaxy densities
and redshift distributions, which are due to large-scale fluctuations
of the observing conditions (e.g., seeing). However, fluctuations in
the noise and depth can be significant on sub-coadd scales. This
explains why the correlation coefficient between the map of total
sky sigma and the magnitude errors in BCC-UFig is less signifi-
cant than what found in the data.

Finally, as shown in Figure 12, the observing condition maps
correlate with the stellar contamination in the BCC-UFig samples.
This test cannot be performed with the SV data since object types
are only available for a small sample of spectroscopically con-
firmed sources, restricted to a small region of the sky, as shown
in the previous sections. A large, realistic simulation such as BCC-
UFig allows us to confirm that the observing conditions trace the
main sources of spatial systematics in the galaxy samples, and can
be used to model and remove them in cosmological studies.
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Figure 12. Pearson correlation coefficients between observing conditions,
stars missclassified as galaxies in the BCC-UFig reduced data, and mean
i band magnitude errors (magerr auto i) in both the BCC-UFig and
SVA1-Gold galaxy catalogues (in magnitude bins, using mag auto i).
This shows that the maps of the observing conditions are significantly cor-
related with the stellar contamination and depth fluctuations in the SV data
and simulations, therefore capturing the main sources of spatial systematics
present in the galaxy samples.

4 CONCLUSIONS AND OUTLOOK

We detailed a method to extract and project the properties of multi-
epoch galaxy surveys onto the sky, making use of the properties
of the images and the HEALPix pixelisation. We applied this tech-
nique to the DES SV data and mapped the main sources of ob-
servational systematics, including the average properties of seeing,
airmass, and sky sigma. These maps will be made publicly avail-
able in the forthcoming DES data releases, and are currently used
in analyses of SV data (e.g., Vikram et al. 2015; Crocce et al. 2015;
Jarvis et al. 2015; Becker et al. 2015; Giannantonio et al. 2015).

High-resolution maps of the observing conditions can be used
as templates to identify, model, and mitigate spatial systematics or
residual contamination in the data. As an illustration, we measured
the galaxy densities and redshift distributions of DES SV tomo-
graphic redshift galaxy samples, and showed that they were signif-
icantly affected by the observational conditions of the survey due
to residual depth and photometry fluctuations. These systematics
are correctly mitigated in current SV analyses thanks to the sky
masks and corrections to the two-point correlation measurements
validated by stringent null-tests (see e.g., Giannantonio et al. 2015;
Becker et al. 2015; Crocce et al. 2015). However, it will be increas-
ingly difficult to keep them under control in future studies. For in-
stance, restrictive sky masks can remove unreliable regions but of-
ten discard hard-won data and do not alleviate the need to treat spa-
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tial systematics in the retained regions. As the depth and sensitivity
of the survey increase, these systematics will become increasingly
significant compared to statistical errors. The power of masking or
current correction techniques is also limited since they rely on tem-
plates and contamination models which are not validated against
simulations.

One approach to resolve these issues, i.e., assess the signifi-
cance of systematics and validate the techniques to mitigate them,
is to resort to realistic image simulations. All the tests and analy-
ses of this paper were performed in parallel on galaxy samples ob-
tained by processing the BCC-UFig in the same way as the SV data
and applying the same quality and selection cuts. These simulated
galaxy samples include spatial systematics since the image simu-
lations incorporate the actual SV observing conditions. Even with
the approximation of simulating coadd images instead of single-
epochs, we found that the principal effects of spatial systematics
observed in the galaxy densities and redshift distributions were suc-
cessfully reproduced by the BCC-UFig galaxy samples. Further-
more, the data and the simulation agreed quantitatively in many
cases, showing that the current BCC-UFig simulation, even with
known limitations, is sufficiently realistic to study a range of ef-
fects. The availability of the ground truth in the simulation (e.g., the
true redshifts) allowed us to quantify the significance of the sys-
tematic density and redshift fluctuations for the first time, and to
demonstrate that the observing condition maps capture systemat-
ics such as depth fluctuations and stellar contamination. Pursuing
this route will be essential for the future DES studies, since these
fluctuations will have to be carefully characterised and mitigated.
Future versions of the BCC-UFig simulation will be more realis-
tic and reproduce spatial systematics at higher resolution. Com-
bining them with high-resolution maps of the observing conditions
and the effective transfer function measured by BALROG (Suchyta
et al. 2015) will allow us to fully exploit the potential of DES data
for cosmological studies. These complementary avenues will be es-
sential to correctly interpret the deep, high-cadence data delivered
by the Large Synoptic Survey Telescope (LSST), where both the
statistical power and the impact of the observing conditions will be
increased by many orders of magnitude (e.g., LSST Science Col-
laboration et al. 2009; LSST Dark Energy Science Collaboration
2012; Jee & Tyson 2011; Carroll et al. 2014).
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