
DES-2015-0099

FERMILAB-PUB-15-307-AE

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 31 July 2015 (MN LATEX style file v2.2)

No galaxy left behind: accurate measurements with the faintest
objects in the Dark Energy Survey
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ABSTRACT

Accurate statistical measurement with large imaging surveys has traditionally required
throwing away a sizable fraction of the data. This is because most measurements have have
relied on selecting nearly complete samples, where variations in the composition of the galaxy
population with seeing, depth, or other survey characteristics are small.

We introduce a new measurement method that aims to minimize this wastage, allowing
precision measurement for any class of stars or galaxies detectable in an imaging survey. We
have implemented our proposal in Balrog, a software package which embeds fake objects in
real imaging in order to accurately characterize measurement biases.

We demonstrate this technique with an angular clustering measurement using Dark En-
ergy Survey (DES) data. We first show that recovery of our injected galaxies depends on a
wide variety of survey characteristics in the same way as the real data. We then construct a
flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to
depth and seeing variations. Using the synthetic galaxies as randoms in the standard Landy-
Szalay correlation function estimator suppresses the effects of variable survey selection by at
least two orders of magnitude. With this correction, our measured angular clustering is found
to be in excellent agreement with that of a matched sample drawn from much deeper, higher-
resolution space-based COSMOS imaging; over angular scales of 0.004◦ < θ < 0.2◦, we find
a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09.

We expect this methodology to be broadly useful for extending the statistical reach of
measurements in a wide variety of coming imaging surveys.

1 INTRODUCTION

Wide-field optical surveys have played a central role in modern as-
tronomy. The Sloan Digital Sky Survey (SDSS, York et al. 2000)

alone has furnished nearly 6,000 publications across a wide variety
of subjects: from star formation, to galaxy evolution, to measuring
cosmological parameters; among a multitude of others. The dis-
covery of cosmic acceleration (Riess et al. 1998, Perlmutter et al.
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1999) has motivated several expansive imaging surveys for the fu-
ture: for instance, the Large Synoptic Survey Telescope,1 the Wide-
Field Infrared Survey Telescope (Dressler et al. 2012), and Euclid
(Laureijs et al. 2012). The legacy of these next-generation imaging
efforts will almost certainly yield an even richer harvest than what
has come before them.

With large surveys, astronomical sample sizes have grown,
increasing the statistical power of their measurements; with great
power comes great responsibility (see e.g. Lee et al. 1962) for con-
trol of systematic errors. Taking full advantage of these data means
ensuring that the precision of these measurements is matched by
their accuracy. At present time, however, high-precision measure-
ments are generally made with samples drawn from only the frac-
tion of the data that is nearly complete. We argue that the current
state of the art in survey astronomy is in many ways wasteful of
information, and lay out a general method for improvement.

This paper focuses on measurements of the galaxy angular
correlation function for highly incomplete, flux-limited samples of
galaxies, especially near the detection threshold. We have chosen
this approach for two reasons. First, this measurement is an espe-
cially challenging example of systematic error mitigation; we show
below that, for our faintest galaxies, we will have to eliminate sys-
tematic biases that are much larger than our signal, and do so over a
wide range of survey conditions. The second reason is that system-
atic effects relevant for angular clustering measurements also di-
rectly impact probes of cosmic acceleration (Weinberg et al. 2013),
where the requirements on systematic error control are particularly
strict.

1.1 The current state of the art

Astronomers have been measuring galaxy clustering for several
decades, since at least Zwicky (1937). The angular two-point cor-
relation function, w(θ), is a common tool used to characterize the
anisotropies in the galaxy ensemble. From the very beginning, ef-
forts to measure w(θ) have been challenged by the presence of
anisotropies in the data arising from imperfect measurements, or
from astrophysical complications unrelated to large-scale structure.

A complete list of sources of systematic effects is difficult (if
not impossible) to compile,2 but some issues are common to all
extragalactic measurements, like star-galaxy separation and photo-
metric calibration. Because the point spread function (PSF) varies
across the survey area, the accuracy with which galaxies can be
distinguished from stars will vary, introducing anisotropies asso-
ciated with stellar contamination. Accurate, uniform photometric
calibration for a multi-epoch wide-field optical survey is difficult
to accomplish (Schlafly et al. 2012), and given the variations in
seeing, airmass, transparency, and other observing conditions, uni-
form depth is generally unachievable. A wide variety of schemes
have been used to ameliorate these complicating effects.

For a w(θ) measurement with the Automated Plate Measure-
ment survey – among the earliest digitized sky surveys – Maddox
et al. (1996) built models of the selection function, including plate
measurement effects (e.g., the variation of the photographic emul-
sion’s sensitivity across each plate), observational effects (atmo-
spheric extinction) and astrophysical effects (Galactic extinction).
For each of these, they estimated the contribution of the system-
atic effect to the final w(θ) measurement. Stellar contamination was

1 http://www.lsst.org/lsst/
2 This is part of the problem.

dealt with by subtracting estimated stellar densities from the map
of galaxy counts in cells, and adjusting the amplitude of the final
w(θ) measurement to compensate for the estimated dilution due to
stellar contamination.

Similar measurements of w(θ) were made for validation pur-
poses in the early SDSS data (Scranton et al. 2002). The authors
here cross-correlated the measured galaxy densities with a number
of known sources of systematic errors in order to determine which
regions of the survey to mask.

Many subsequent SDSS analyses were based on a volume-
limited sample of luminous red galaxies, from which ∼120, 000 ob-
jects were targeted for SDSS spectroscopy (Eisenstein et al. 2001).
Here again (see also Padmanabhan et al. 2007 for the properties
of the parent photometric sample) the strategy was to use cross-
correlation techniques to remove data that would imperil the anal-
ysis, leaving an essentially complete sample.

The targets selected for the larger SDSS-III Baryon Oscilla-
tion Spectroscopic Survey (BOSS) measurements (Schlegel et al.
2009) were substantially fainter, and the systematic error correc-
tions for these samples necessarily more sophisticated. Ross et al.
(2011) explored several mitigation strategies for SDSS data. A lin-
ear model for the dependence of the galaxy counts as a function of
potential sources of systematic errors was built, allowing for sub-
traction of the systematic effects from the final galaxy w(θ) mea-
surement. For the most important systematic effects (constrained
again by cross-correlation with the galaxies), galaxies in the w(θ)
estimator were upweighted by the inverse of their detection prob-
ability. The BOSS baryon acoustic oscillation scale measurement
in Ross et al. (2012) made use of this weighting scheme. With the
exception of stellar occultation, these effects were mostly pertur-
bative, and the errors on the angular clustering were large enough
that the stellar occultation corrections only had to be characterized
at the ∼10% level.

The imaging systematic error mitigation used by the WiggleZ
spectroscopic survey (Blake et al. 2010) came closest to the spirit of
this paper. Their spectroscopic target catalog was built by a combi-
nation of SDSS and Galaxy Evolution Explorer 3 (GALEX) mea-
surements. The blue emission-line galaxies targeted by WiggleZ
were faint enough to be substantially affected by variations in the
SDSS completeness, so the GALEX catalogs were used to estimate
the variation of the target selection probability with various survey
properties. Models were fit to this dependence, and the results were
directly incorporated into the window function used in power spec-
trum estimation. The resulting corrections had a ∼ 0.5σ effect on
the final power spectrum, and so like SDSS only needed to be ac-
curate at the ∼10% level.

This list is not exhaustive, but we believe it gives a fair picture
of the state of the art. Generally, for their extragalactic clustering
measurements, modern photometric surveys have relied on select-
ing a relatively complete sample, and then applying small correc-
tions late in the analysis. We believe that this approach is a poor fit
to the age of precision cosmology with ‘big data.’ The rest of this
paper will present our proposed alternative.

1.2 Modeling the Dark Energy Survey selection function

We propose to measure the selection function of imaging surveys
by embedding a realistic ensemble of fake star and galaxy images

3 http://www.galex.caltech.edu/
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in the real survey data. The resulting measurement catalogs com-
prise a Monte Carlo sampling of the selection function and mea-
surement biases of the survey, and can naturally account for sys-
tematic effects arising from the photometric pipeline, detector de-
fects, seeing, and other sources of observational systematic errors.
Several of the major systematic errors examined in the above mea-
surements can be straightforwardly estimated and removed using
the embedded catalogs, though astrophysical effects like dust and
photometric calibration must of course be modeled using external
data.

We test this technique using Dark Energy Survey (DES) imag-
ing. DES is a 5−year optical and near-infrared survey of 5, 000 deg2

of the South Galactic Cap, to iAB 6 24 (Dark Energy Survey Col-
laboration 2005). The survey instrument, the Dark Energy Camera
(DECam, Flaugher et al. 2015), was commissioned in fall 2012.
During the Science Verification (SV) phase, which lasted from
November 2012 to February 2013, data was taken over ∼250 deg2

in a manner mimicking the full 5-year survey, but with substan-
tial depth variations (see e.g. Leistedt et al. 2015), mainly due to
weather and early DECam operational challenges. Coadd images
in each of the five bands, as well as a detection image combining
the riz filters, were produced from the ∼10 single-epoch exposures
per filter.

Our work is complementary to that of Chang et al. (2015),
who used generative modeling, in combination with outputs from
the Blind Cosmology Challenge (Busha et al. 2013) and the Ul-
tra Fast Image Generator (Bergé et al. 2013), to simulate DES-
like data which was then run through the DES analysis pipeline
(Mohr et al. 2012, Desai et al. 2012). A fully generative approach
does have some advantages over the Monte Carlo sampling of the
images described here. With a generative model, one can explore
counterfactual realizations of the survey. This helps, for instance, in
mapping out the interaction between the survey selection function
and the galaxy population (for instance, how the angular clustering
of galaxies interacts with the deblending and sky-subtraction algo-
rithms). By construction, our embedding strategy considers only
the single DES-realization of the survey properties.

However, the generative modeling approach is more sensitive
to model mis-specification errors; it requires models not only for
the noise, photometric calibration, star and galaxy ensemble prop-
erties, etc., but also for cosmic rays, bright stellar diffraction spikes,
CCD defects, satellite trails, and other non-physical signatures that
are difficult to model accurately. The embedded simulations, by
contrast, inherit many of the properties of the image that are oth-
erwise difficult to model. To keep the embedded population as re-
alistic as possible, we draw our simulated stars and galaxies from
catalogs made from high-resolution Hubble Space Telescope imag-
ing.

1.3 Angular clustering in the Dark Energy Survey

Crocce et al. (2015) present a DES benchmark measurement of
w(θ), adopting a standard approach to their clustering analysis by
choosing a relatively complete sample (i < 22.5) and masking po-
tential sources of systematic errors traced by maps of the DES ob-
serving properties measured by Leistedt et al. (2015). In this paper,
we use our Monte Carlo simulation framework to correct for the
spatially-dependent completeness inhomogeneities, and then mea-
sure clustering signals at magnitudes well below the nominal lim-
iting depth of i < 22.5 used by Crocce et al. (2015).

The paper is organized as follows. In Section 2, we present

Balrog,4 our software pipeline for embedding simulations into as-
tronomical images. In Section 3, we describe our empirical proce-
dure for generating a realistic ensemble of simulated sources, then
prototype Balrog by injecting ∼40, 000, 000 simulated objects into
178 deg2 of DES SV coadd images. We generate a synthetic cata-
log using the same procedure as is used for generation of the DES
science catalogs. Section 4 validates that the photometric proper-
ties of the synthetic catalogs are a close match to those of the real
DES catalogs for a wide range of quantities. If these synthetic cata-
logs really capture the variation in the survey selection function and
measurement biases, it should be possible to use them as randoms
to measure w(θ) accurately even for the faintest galaxies in the sur-
vey. We do exactly this in Section 5, demonstrating that our clus-
tering measurements for the faintest DES galaxies (23 < i < 24)
show excellent agreement with higher resolution external space-
based data, which are complete over the selection range. Section 6
concludes with a discussion of our results.

2 Balrog IMPLEMENTATION

Balrog is a Python-based software package for embedding simu-
lations into astronomical images; Figure 1 shows a diagram of the
pipeline’s workflow. Balrog begins with an observed survey im-
age, then inserts simulated objects with known truth properties into
the image. Source detection and analysis software is run over the
image, measuring the observed properties of the simulated objects.
We emphasize that because a real survey image has been used, Bal-
rog’s output catalog automatically inherits otherwise difficult to
simulate features, such as over-subtraction of the sky background
by the measurement software, proximity effects of nearby objects,
unmasked cosmic rays, etc.

The remainder of this section further details how we imple-
ment these injection simulations in Balrog. The discussion is or-
ganized according to three components of Balrog’s functionality,
each of which is devoted a section to follow:

(i) input survey information, such as reduced images, their PSFs, and
flux calibrations (Section 2.1);

(ii) simulation specifications, defining how to generate the simulated
object population (Section 2.2);

(iii) measurement software (Section 2.3).

We have designed Balrog with ease of use and generality in
mind, allowing for a wide range of simulation implementations,
and we provide thorough documentation with the software. Balrog
employs software widely used throughout the astronomical com-
munity: internally it calls SExtractor (Bertin & Arnouts 1996)
for source detection and measurement, and the object simulation
framework is built on GalSim (Rowe et al. 2014).

2.1 Survey information

The top left of Figure 1 lists the survey data required by Balrog.
First are the reduced images and their weight maps – the inverse
of the noise variance of the image at background level. The latter
are required for reliable measurements of object properties; Balrog

4 https://github.com/emhuff/Balrog. Balrog is not an acronym. The soft-
ware was born out of the authors digging too deeply and too greedily into
their data, ergo the name.
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Measurement software
configurations Run measurement software

Simulated objects
truth catalog

Parse simulation
configuration

Object simulation
configuration file

Data: image, weight map,
PSF, zeropoint, gain

Data +

simulations

Run measurement software

Measurement catalog
with simulations

Draw simulated
objects into image

Measurement catalog
without simulations

Figure 1. High-level overview of Balrog’s processing. Shape usage follows standard flowchart notation. White parallelograms are inputs, dark gray parallel-
ograms are outputs, and light gray rectangles are processes/commands. (The simulation truth catalog is coupled with the measurement software because by
default Balrog runs SExtractor in association mode, using the simulation positions as the matching list, cf. Section 2.3.)

does not modify the weight maps, but passes them as input argu-
ments to SExtractor. Both the images and weight maps are ex-
pected to conform to the Flexible Image Transport System (FITS)
standard (Hanisch et al. 2001, Greisen & Calabretta 2002).

All simulated Balrog objects are convolved with a PSF prior
to being drawn into the image. Currently, Balrog requires a PSF
model generated by PSFEx (Bertin 2011) to be given as the input
defining the convolution kernel. These models encode a set of ba-
sis images to represent the spatial-dependence of the PSF, with an
adjustable-degree polynomial for interpolation of the basis coeffi-
cients across the image. Balrog’s PSF convolution calls GalSim’s
Convolve method, and the implementation operates in World Co-
ordinates, where the astrometric solution to use is read from the
image’s FITS header. We note that GalSim’s PSF functionality is
not limited to images generated by PSFEx; it accepts a wide va-
riety of other possibilities as well. We have chosen to implement
the PSFEx models in our initial version of Balrog, because they
are used in DES. However, Balrog could be extended to accept a
broader range of PSF model types.

A photometric zeropoint (zp) is required to transform simu-
lated object magnitudes (m) into image fluxes (F), by applying the
usual conversion between the two quantities:

F = 10 (zp − m)/2.5 . (1)

Natively, the conversion assumes that all pixels share this same
calibration,5 whereby the images should have standard reductions,
such as bias subtraction and flat field division, applied prior to run-
ning Balrog (in order to remove pixel-dependent variations across
the image). By default, Balrog tries to read the zeropoint from the
FITS header, but also accepts command line arguments.

In addition to the noise inherited from the image, Balrog
also adds Poisson noise to the simulated objects’ pixel flux values,
where the noise level is set by the image’s effective electron/ADU
gain. This added Poisson noise is only significant when the object
flux level is well above the background variation level. Like the ze-
ropoint, Balrog can read the gain from the FITS header or accept
a command line argument.

5 With Balrog’s user-defined function API, one can implement non-
uniform photometric calibrations across an image, such as we do in Sec-
tion 3.3 with stellar locus regression zeropoint offsets. We refer readers to
the code repository and documentation therein for details.

2.2 Simulating images

The right side of Figure 1 depicts image simulation and injection.
Balrog simulates objects as a superposition of arbitrarily many el-
liptical Sérsic profiles. Users are free to assign the magnitude, half
light radius, Sérsic index, orientation angle and axis ratio of each
Sérsic component. (To be explicitly clear, the Sérsic quantities are
pre-convolution values.) Each object also includes three adjustable
quantities that are shared between the components: a center coor-
dinate, lensing shear, and magnification.

Assigning object properties is accomplished by Python code
inside a configuration file which Balrog parses and executes. We
have packaged example configuration files with the software to
demonstrate its usage: for instance, assigning to constants, arrays,
or jointly sampling from a catalog. Users are also able to write any
Python function of their own and use it as a sampling rule, allowing
generality and arbitrary complexity to the simulations.

Balrog uses GalSim to perform all the routines necessary to
transform a catalog of truth quantities into images of these simu-
lated objects. GalSim rendering is extensively validated in Rowe
et al. (2014), and demonstrated to be accurate enough for simu-
lation of weak lensing data in Stage III and IV dark energy sur-
veys, including DES. Beyond accuracy alone, GalSim is ideal for
Balrog because it is highly modular; Balrog’s range of simulation
customizations are built upon this modularity.

Here, we overview the most important simulation steps in Bal-
rog, and refer readers to the Balrog code repository and GalSim
documentation for complete details. Figure 2 is a diagram summa-
rizing the process. In the text, our convention is to denote GalSim
methods using typewriter font. First, each Sérsic component
is initialized as a circularly symmetric Sersic object, with a
given flux, half light radius, and Sérsic index (right side of Fig-
ure 2). Next, the components are stretched to their specified axis
ratios and rotated to their designated orientation angles using the
applyShear method. Once all components have been built, they
are added together and the given lensing shear and magnifica-
tion are applied to the composite object, calling applyShear and
applyMagnification respectively (left side of Figure 2). The
Convolve method is called to convolve the object with the PSF.
GalSim’s GSParams argument can be adjusted within the Balrog
configuration file, to be passed as an argument to GalSim when de-
termining the target accuracy of the convolution. GalSim’s draw
then creates an image of the simulated object. The CCDNoise

© 0000 RAS, MNRAS 000, 000–000
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i = 0 i < Nobj obj = 0 j = 0 j < Ncomp

obj.applyShear(g1[i], g2[i])

obj.applyMagnification(µ[i])

obj.Convolve(PSF)

img = obj.draw(WCS)

img.ccdNoise(Gain)

Image += img

i++

Truth catalog

PSF

WCS

Gain

Image

F = power(10, (mz-m[i,j])/2.5)

ob = Sersic(F, n[i,j], re[i,j])

ob.applyShear(b/a[i,j], β[i,j])

obj += ob

j++
Yes

No Yes

Figure 2. Balrog’s object simulation schema. This figure is effectively a “zoom in” of the “Draw simulated objects into image” node of Figure 1. The truth
catalog is generated by Balrog based on the user’s configuration setup. White parallelograms are inputs to the pipeline, dark orange rectangles call GalSim
commands, and light orange nodes are Python code. Diamonds are decision points. There are two loops: index i loops over the number of simulated objects,
Nobj; index j loops over the number of Sérsic components for each object, Ncomp. The final output is the image in the bottom left of the diagram, after all the
simulated objects have been embedded.

method adds Poisson noise to the object’s image, setting the gain
equal to that of the input image and the read noise to zero. Finally,
the noisy object’s image is assigned a center coordinate within the
original input image, and its flux is added to the original image on
a pixel-by-pixel basis.

2.3 Measurement software

The final step in the Balrog pipeline is source detection and mea-
surement. The configuration settings of the measurement software
are an important component of this process. Accordingly, users can
pass Balrog any of the configuration files SExtractor accepts as
input and will use them to configure SExtractor runs, automati-
cally making any modifications to the files necessary for running in
the Balrog environment. For convenience, users can also override
SExtractor settings from the Balrog configuration file.

By default, prior to inserting simulated objects, Balrog runs
SExtractor in association mode over the original image. In this
mode, we pass SExtractor a list of coordinates of the objects to be
simulated, and real objects whose positions lie within 2 pixels6 of
any of the Balrog positions are extracted into a catalog. This allows
users to check for blending between real and Balrog objects, and
if preferred, remove such instances from their analyses.

Once the simulated objects are injected into the image, Bal-
rog’s default behavior makes another SExtractor run in associa-
tion mode, again extracting only sources whose detected positions
are within 2 pixels of one of the Balrog positions. The resulting
catalog is Balrog’s primary output, a table of the simulated ob-
jects’ measured properties. By running in association mode, execu-
tion time is saved, skipping measurement of all the sources already

6 Two pixels is the SExtractor default, and substantially larger than our
typical centroid errors.

present in the image prior to the simulations. This is most relevant
if the user configures SExtractor to perform measurements that
involve fitting a model to the sources, which is computationally ex-
pensive.

We emphasize that Balrog is not doing forced photometry in
association mode; we intend Balrog to be usable for probing de-
tection probability. SExtractor always runs detection over the full
image. Measurement happens later in a separate step. Association
mode matching then decides if a detected object should be mea-
sured or not; only detections with positions near the given associ-
ation list – here the Balrog simulation positions – are extracted.
Association with the Balrog positions is why the truth catalog en-
ters as input to the measurement steps in Figure 1.

By default, Balrog runs in single-image mode, meaning sim-
ulated objects are injected into a single image, then SExtractor’s
detection and measurement are made using that same image. Bal-
rog can also be configured to run SExtractor in dual-image mode,
where detection and measurement occur in different images. Doing
this is common in surveys; for example, DES builds a multi-band
riz coadd for detection, which increases the depth of detections, and
then makes measurements in each of the passbands.

Dual-mode Balrog operates slightly differently than the de-
fault single-mode. One uses a two-call approach in order to self-
consistently add the simulated objects to both images. First one
builds a detection image with simulated objects; this is then passed
as the detection image to a subsequent Balrog call which adds the
simulated objects to the measurement image.

This two-step approach to Balrog’s dual-mode is a code-level
choice made by the authors, but a well-motivated one. In the case of
a multi-band detection image, adding objects directly to the detec-
tion image is not fundamentally correct. One should add the Balrog
objects to each single-band image individually and then recoadd to
build the Balrog detection image; this approach most faithfully re-

© 0000 RAS, MNRAS 000, 000–000
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produces the real data’s processing. For instance, different bands
have different PSFs and this approach convolves each separately,
whereas adding to the detection image directly would apply a single
“average” convolution. Accordingly, we opted to implement dual-
mode as described.

3 DES + Balrog

Both the validation work in Section 4 and the clustering measure-
ments presented in Section 5 make use of a common sample, con-
sisting of DES data and associated Balrog simulations. Here, we
detail our data products and how they are generated. In Section 3.1,
we explain the input we pass to Balrog to populate the simula-
tion sample. Next, Section 3.2 discusses the DES imaging and its
processing. Section 3.3 then specifies how we configure and run
Balrog on this DES data. We describe how we construct our DES
and Balrog catalogs in Section 3.4, including the cuts we make to
the samples.

3.1 Input ensemble

Our strategy for populating simulated object parameters is to sam-
ple magnitudes, sizes, and other Sérsic properties from a catalog
whose probability distribution function (PDF) over the parameter
space is reasonably representative of that of the Universe on large
scales. We begin with the COSMOS mock catalog (CMC) com-
piled by Jouvel et al. (2009), who used Le Phare (Ilbert et al. 2006)
to fit template spectral energy distributions to 30-band COSMOS
photometry (Ilbert et al. 2009). The template fits were convolved
with the transmission curves of several instruments, in order to gen-
erate synthetic magnitude measurements of the COSMOS galax-
ies using different cameras. The measurements include Suprime-
Cam’s (Miyazaki et al. 2002) griz filter bands, comparable to DE-
Cam’s griz pass bands, and we adopt the Suprime-Cam magnitudes
to sample our simulation population’s fluxes. At the time of the
simulation, the CMC photometry was not available for DECam’s
filters, but this has since changed, and future versions of these syn-
thetic catalogs will use the DECam filters.

In order to assign realistic morphology to the CMC galax-
ies, we match them (simple angular coordinate matching) to the
morphology catalog of Mandelbaum et al. (2014), consisting of
single-component elliptical Sérsic fits to deconvolved COSMOS
images. The morphology catalog is not complete, so we perform a
nearest-neighbor four-dimensional reweighting to the matched cat-
alog (using 7 nearest neighbors7), such that the galaxies’ griz mag-
nitude distributions in the matched catalog reproduce those of the
CMC. The reweighting is analogous to reweighting spectroscopic
redshift distributions for use in calibrating photometric redshifts,
as presented in e.g. Lima et al. (2008) (and applied to DES data in
Sánchez et al. 2014), and we will use similar methodology again in
Section 5.4. The catalog of Sérsic fits is for a selection of galaxies
only, and we do not reweight the CMC stars. They are assigned to
be point objects with vanishing half light radii. In our Balrog sim-
ulations for this paper, we did not use the CMC quasars, but we will
include them in subsequent runs.

We make a few quality cuts prior to reweighting the galaxy

7 This number was selected as optimal to best-match the CMC; we note,
however, that the results of the reweighting method are rather insensitive to
the number of nearest neighbors.

sample, and for consistency, apply the same cuts to the stellar sam-
ple where relevant. First, we require all three CMC colors, g − r,
r − i, and i − z, to be between -1 and 4. We also reject objects
whose half light radii in the Sérsic catalog are larger than 100′′.
Finally, we require i 6 25. Beyond this limit, the morphology cata-
log is substantially incomplete, and we lack adequate statistics for
the four-dimensional reweighting. After applying these cuts, our
(CMC + morphology) matched catalog contains ∼70, 000 objects,
and the final reweighted version of the catalog given to Balrog to-
tals ∼ 200, 000 objects: ∼ 190, 000 galaxies and ∼ 10, 000 stars. In
Section 4, we find that this catalog is of adequate size to span the
parameter space used in our analysis, and in future Balrog runs,
we will construct the catalog to span an even larger space.

For the purpose of this work, we populate our Balrog simu-
lations by jointly sampling brightnesses, half light radii, ellitptic-
ities, orientation angles, and Sérsic indexes from our reweighted
CMC + morphology-matched catalog, and simulate objects as sin-
gle component elliptical Sérsic objects with no lensing. The simu-
lated positions are randomly distributed over the celestial sphere in
our footprint, i.e. we are populating randoms which have no intrin-
sic clustering. Each object is added at the same location in the g, r,
i, and z DES images, and drawn with the same morphology in each
band, inheriting its colors from the CMC.

3.2 DES imaging

The imaging data we consider were taken during the DES SV pe-
riod, which occurred prior to the start of first-year survey operations
(Diehl et al. 2014); SV was used to verify that DECam is able to
deliver data of sufficient quality to meet DES’ science goals. We
have run Balrog on 178 deg2 of the SV footprint, in an area north
of the Large Magellanic Cloud (LMC) and within the SPT-E field
– the largest contiguous area of the SV footprint. The SPT-E area
overlaps with the coverage of the South Pole Telescope (SPT, Ruhl
et al. 2004), and its depth approaches that of DES full-survey depth
in some areas. Figure 3 shows a map of the detected DES and Bal-
rog galaxy number density over our selected area, where we have
applied the cuts discussed in Section 3.4. The following several
paragraphs focus on the processing of the DES imaging from which
these samples are derived.

The DES SV data was processed through the DES Data Man-
agement (DESDM) reduction pipeline (Mohr et al. 2012, Desai
et al. 2012); we briefly outline salient reductions and refer read-
ers to the references for further details. First, single epoch images
are overscan subtracted, a cross-talk correction is made, and a look
up table removes nonlinear CCD responses to incident flux lev-
els. Bias frames are applied to subtract out any remaining additive
offsets, dome flats correct for multiplicative variations in pixel sen-
sitivity, and a “star flat” (e.g. Manfroid 1995) divides out the illu-
mination pattern across the detector. Artifacts such as cosmic rays,
satellite trails, and stellar diffraction spikes are masked. Astromet-
ric solutions are computed by scamp (Bertin 2006) matching stellar
positions to the UCAC4 reference catalog (Zacharias et al. 2012).
The pipeline outputs reduced images, along with inverse-variance
weight maps and masks.

DES’ photometric calibration is described in detail in Tucker
et al. (2007). Briefly, SDSS photometric standards fields are ob-
served at the beginning and end of each night. Stars from the DES
images are matched to SDSS standard stars, fitting each band’s ab-
solute zeropoint as a linear function of airmass over all overlapping
matches. The zeropoint for each CCD in every image is then refit
by jointly minimizing the magnitude differences between (1) DES
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Figure 3. Map (declination vs. right ascension) of the density of detected DES (left) and Balrog galaxies (right) on the SPT-E footprint used in this analysis.
While the two maps are very similar, there is an excess in counts in DES data at declination δ < −58; this is due to increased stellar contamination caused by
the nearby LMC. Our Balrog run has made no attempt to model anisotropic stellar counts.

objects common to multiple exposures and (2) any DES objects that
match to SDSS standards.

DESDM builds coadds of the single-epoch images with
SWarp (Bertin et al. 2002), using the discussed astrometric so-
lutions and photometric calibrations as input. Each coadd image,
known as a tile, is ∼ 0.5 deg2 in area. SWarp computes the effec-
tive gain noise level of each tile as well as the combined inverse-
variance weight map. PSFEx (Bertin 2011) is then run over the
coadds to fit the PSF model, using a second-degree polynomial for
interpolation over the tile. Finally, DESDM runs SExtractor in
dual-image mode, using a multi-band riz image for detection, to
produce the catalogs of DES objects.

The SV photometric calibration for the coadds was supple-
mented with stellar-locus regression (SLR), which uses the near
universality of the colors of Milky Way halo stars as a means to fit
for photometric zeropoints (e.g. High et al. 2009). Our SLR correc-
tions (Rykoff et al. in prep.) were implemented with a modified ver-
sion of the big-macs stellar-locus fitting code (Kelly et al. 2014).
All corrections were made relative to an empirical reference locus
derived from calibrated standard stars observed on a photometric
night. We recompute coadd zeropoints over the full SV footprint on
a HEALPix (Górski et al. 2005) grid of NSIDE = 256, using bilin-
ear interpolation to correct all objects in the catalog at a scale of
better than ∼14′. We use J band magnitudes from the Two Micron
All Sky Survey (2MASS) stellar catalog (Skrutskie et al. 2006) as
an absolute calibration reference, which yields absolute calibration
uniformity of better than 2%, with color uniformity ∼1%.

3.3 Running Balrog

The input we give to Balrog is made up of the data products
discussed in the previous section: the coadded SV images from
DESDM, as well as their inverse-variance weight maps, PSF mod-
els, astrometry, photometric zeropoints, and effective gains. We
self-consistently add the same Balrog objects to the g, r, i, and
z images, build an riz detection image for each realization us-
ing identical SWarp configuration as DESDM, and then run Bal-
rog over each band with SExtractor configurations, which again
match those of DESDM.

We make use of the SLR offsets introduced in Section 3.2 in

our imaging simulations. We employ Balrog’s user-defined func-
tion API to read the SLR zeropoints and make position-dependent
modifications to the simulated fluxes in each image, in addition the
usual single zeropoint used by Balrog. This takes an input truth
magnitude and adjusts it back to the pre-SLR flux scale, i.e. the
original calibration for the coadd images.

In each Balrog realization we add only 1, 000 objects to the
image (of area ∼ 0.5 deg2), in order to keep the Balrog-Balrog
blending rate low. We iterate each coadd tile 100 times, simu-
lating a total of 100,000 objects per DES coadd tile. Combining
the results generates a Balrog output measurement catalog which
is approximately the same size as the DES measurement catalog.
The total run time for our Balrog simulations was approximately
30, 000 CPU-hrs, much less than the time needed by DESDM to
process the data.

Admittedly, injecting our Balrog objects directly into the
coadds instead of self-consistently into each overlapping single-
epoch image is less ideal. For example, the coadd PSF is not as reli-
able of a model of the data as is simultaneously using the full set of
single-epoch PSFs. However, the single-epoch version of Balrog is
roughly ten times more computationally expensive, and we opt to
test the simpler approach first. Using Balrog in other DES analyses
which are more sensitive to the PSF and which directly use single-
epoch level information (such as weak lensing ones) will require
running on all the single-epoch images. In this work, our measure-
ments are focused on galaxy clustering, and we demonstrate that
the coadd approximation is sufficient in this context.

3.4 Catalog selection

To construct the DES sample, we download the SV coadd data from
the DESDM database of SExtractor measurements, returning de-
tections from the same areas where Balrog was run. We then apply
the SLR zeropoint shifts to both the DES and the Balrog catalogs.
At this point, the full Balrog and DES catalogs total ∼ 16 million
detections each.

Next, we apply some quality cuts to both samples. In Sec-
tion 5, we undertake galaxy clustering measurements, and the qual-
ity cuts we make are similar to ones made in the benchmark DES
clustering analysis of Crocce et al. (2015). We base our cuts on a
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Table 1. MODEST CLASS selection.

Galaxies Stars

(FLAGS I 6 3) AND NOT (FLAGS I 6 3) AND
( ((CLASS STAR I > 0.3) AND (MAG AUTO I < 18)) ( (CLASS STAR I > 0.3)
OR ((SPREAD MODEL I + 3*SPREADERR MODEL I) < 0.003) AND (MAG AUTO I < 18)
OR ((MAG PSF I > 30.0) AND (MAG AUTO I < 21.0)) AND (MAG PSF I < 30.0)
) OR (((SPREAD MODEL I + 3*SPREADERR MODEL I) < 0.003) AND

((SPREAD MODEL I + 3*SPREADERR MODEL I) > −0.003)))
)

subset of their selection criteria as means to help achieve a reason-
ably well-behaved source population.

First is a simple color selection:8

−1 < MAG AUTO G − MAG AUTO R < 3

AND − 1 < MAG AUTO R − MAG AUTO I < 2

AND − 1 < MAG AUTO I − MAG AUTO Z < 2.

This helps to elminate objects inside regions which are contami-
nated in one filter band’s image, but not the others, such as satellite
or airplane trails.

Furthermore, we make a cut based on SExtractor position
measurements. Among the SExtractor detections, there exists a
class of objects whose windowed centroid measurements are sig-
nificantly offset in different filter bands,9 up to over a degree in
the worst cases. This is to be expected for objects with low signal-
to-noise ratios, since detection occurs in riz, while measurement
occurs in each band independently, and the centroid measurement
for a dropout in a given band is essentially unconstrained. However,
large positional offsets persist at all signal-to-noise levels, such that
about 2% of all objects at any signal-to-noise have significant off-
sets. We reject any object with large (> 1′′) offset between the g-
and i-band centroids, which has been detected with > 5σ signifi-
cance in g-band.

We also apply the mask used by Crocce et al. (2015). (Specif-
ically, we use the mask as it exists prior to introducing redshift
dependence.) The details of the mask’s construction are found in
Appendix A; in brief, it is based on five criteria:

(i) coordinate cuts to select SPT-E area north of the LMC,
(ii) excising regions with the highest density of large positional offset

objects discussed above,
(iii) removing objects in close proximity to bright stars,
(iv) selecting regions with 10σ-limiting magnitude of i > 22.5, and
(v) requiring detections over a significant fraction of the local area.

The cuts we have mentioned in this section are not strictly
necessary for the validation tests presented in Section 4 to follow.
In fact, Balrog is able to populate objects like the ones that have
been cut into the simulated sample. However, we are most inter-
ested in Balrog’s behavior for objects which will survive into a
science analysis. Therefore, we choose to exclude them from the
clustering study presented in Section 5.

Throughout the remainder of our analysis, we also remove any
objects from the Balrog simulation catalog which have a matched
counterpart in the catalog generated by running SExtractor prior

8 Crocce et al. (2015) use DETMODEL colors, but we choose to use AUTO
colors.
9 We suggest astrometric color as the name for this effect.

to inserting any simulated objects (cf. Section 2.3). Doing so re-
moves approximately 1% of the Balrog catalog. Some of these ob-
jects are genuine Balrog objects, some are DES objects, and oth-
ers are blends of the two, depending on the relative brightness of
the input Balrog object compared to the DES object found in the
image at the simulation location. This choice does have a small
impact (∼1%) on the clustering: including the ambiguous matches
effectively mixes some real galaxies into the randoms used for clus-
tering, artifically suppressing the clustering signal; excluding the
ambiguous matches has the opposite effect. We discuss this issue
along with other fundamental limitations of the embedding simula-
tion approach in Section 5.1.

The final selection mechanism we use is star-galaxy
separation. Star-galaxy separation is accomplished with the
MODEST CLASS classifier, which is explained in e.g. Chang et al.
(2015), and utilized in additional DES analyses such as Vikram
et al. (2015) and Leistedt et al. (2015).10 The classifier has been
tested with DES imaging of COSMOS fields. Table 1 lists the
full MODEST CLASS selection criteria. It incorporates SExtractor’s
default star-galaxy classifier CLASS STAR, which is based on a
pre-trained neural network, as well as morphological information
about how well the object resembles the PSF; for each object,
SPREAD MODELmeasures a normalized linear discriminant between
the best-fit local PSF model derived with PSFEx, and a slightly
more extended model made from the PSF convolved with a circu-
lar exponential disk (see e.g. Desai et al. 2012, Bouy et al. 2013,
Soumagnac et al. 2015). SPREADERR MODEL is the error estimate
for the SPREAD MODEL measurement.

Including the cut on SPREADERR MODEL, in addition to
SPREAD MODEL alone, improves the faint end galaxy completeness.
Including the MAG PSF cut improves the purity at the bright end.
Soumagnac et al. (2015) investigate more sophisticated means of
star-galaxy separation, such as machine learning techniques beyond
SExtractor’s pre-trained CLASS STAR, and in a subsequent publi-
cation (Aleksić et al. in prep.), we will present a neural network
approach trained on Balrog data. In Section 5.5 we demonstrate
that MODEST CLASS suffices for our current analysis.

After applying all the cuts discussed in this section, the DES
and Balrog galaxy catalogs total ∼ 10 million objects each. These
are the samples whose number densities we mapped in Figure 3.
We use these catalogs as our primary data products in Section 4
and Section 5.

10 As noted in Appendix C, Crocce et al. (2015) use a new quantity –
WAVG SPREAD MODEL – for star-galaxy separation.
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Figure 4. Top: Magnitude distributions (PDFs) of DES and Balrog galaxies in four DES filters. Bottom: Illustration of the difference between DES and
Balrog magnitude distributions is shown in black; errors are estimated from jackknife resampling, as described in Appendix B. The yellow band shows the
sample variance of the DES catalogs, also jackknife estimated.
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Figure 5. Top: An idiosyncratic selection of measured photometric properties. The logarithmic PDFs for DES and Balrog in each panel have been shifted
by an additive constant. From left to right: reported errors in one of SExtractor’s stellarity measures, i−band size, z−band size, and i − z color. We expect
the filter mismatch described in Section 3.1 to drive at least some of the color residuals. Cosmic variance in the COSMOS field is also present, though we
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distributions in the top panel. The yellow band indicates the sample variance of the DES measurements. All errors are estimated from jackknife resampling.
(See Appendix B for further details.)

© 0000 RAS, MNRAS 000, 000–000



10 Suchyta et al.

4 Balrog VALIDATION

To validate Balrog’s functionality, we analyze the catalogs con-
structed in Section 3.4, testing if the properties of the Balrog ob-
jects are representative of the DES data. For our Balrog runs, we
have attempted to build an input catalog which is deeper than our
actual DES data. If this input distribution is indeed an adequately
representative sample, and our DES calibrations (PSF, flux cali-
bration, etc.) are well measured, running the simulations through
Balrog should successfully reproduce measurable properties of the
DES catalogs.

The Balrog and DES comparison tests presented in this sec-
tion are as follows: Section 4.1 plots one-dimensional distributions
of measured SExtractor quantities, Section 4.2 does similarly for
two-dimensional distributions, and Section 4.3 considers number
density fluctuations. Section 4.2 and Section 4.3 include assess-
ments of the populations’ behavior as a function of observing con-
ditions of the survey. The one- and two-dimensional distributions
offer a general overview of the agreement between Balrog and
DES, and the number density tests validate that the agreement is
sufficient to use our Balrog galaxies as randoms in Section 5’s clus-
tering measurements.

We also make note of Appendix B, where we explain our jack-
knifing procedure, used to estimate errors in this section, as well as
in Section 5. To summarize, we use a k-means algorithm to separate
our data sample into 24 spatial regions of roughly equal cardinality,
then leave one region out in each jackknife realization and calculate
the covariance over the realizations.

4.1 One-dimensional distributions

We compare the griz magnitude (MAG AUTO) distributions of galax-
ies, for both the DES and the Balrog samples in Figure 4. The top
row of the figure plots each band’s log10 p, the logarithm of the
PDF, and the second row plots the difference in this quantity be-
tween Balrog and DES, i.e. the fractional deviation between the
two PDFs. The error bars plotted are the square root of the diago-
nal elements of the jackknife covariance matrix, as described in Ap-
pendix B, where we have jackknifed the difference curve, ∆ log10 p.
For MAG AUTO & 21 – the region of the parameter space occupying
the bulk of the galaxies – Balrog reproduces the DES distribution
to better than 5% differences, approaching 1% over some intervals.
The yellow bands in bottom row of Figure 4 show the jackknife
errors of the DES PDFs plotted in the top row. In the densest pa-
rameter space regions, many of data points of the differences be-
tween Balrog and DES are within the DES variance, particularly
in the i and z-bands. This means that in these regions of magnitude
space, Balrog galaxies are statistically indistinguishable from DES
galaxies.

We also make plots analogous to Figure 4, using measured
quantities other than single-band magnitudes (Figure 5). In each
of the top panels, we have shifted log10 p for both the DES and
Balrog curves by an additive constant, so all the panels share a
similar range on the y-axis. We plot distributions in (MAG AUTO I
- MAG AUTO Z) color, i-band SPREADERR MODEL, as well as i-
and z-band FLUX RADIUS. FLUX RADIUS measures the PSF con-
volved half light radius. SPREADERR MODEL is the error in the
SPREAD MODEL measurement introduced in Section 3.2. We again
find that Balrog reproduces DES to ∼ 5% differences or better
in the bulk of the distributions; this result holds across bands
and across different SExtractor quantities. We chose to include
SPREADERR MODEL in our comparison because it is not obviously

2

3

4

5

lo
g 1

0
N

B

DES

18 20 22 24
MAG AUTO

[
mag

]
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

∆
lo

g 1
0

N

Figure 6. Stellar magnitude distributions in DES and Balrog, i-band. The
Balrog curve has been normalized by selecting 23 < MAG AUTO I < 24 ob-
jects, and multiplying by the detected DES star-to-galaxy number ratio di-
vided by the detected Balrog star-to-galaxy number ratio (as in Section 5.5
when estimating DES stellar contamination levels). At the bright end, the
difference is primarily a result of the lack of bright stars (i < 19) in the CMC
catalog (due to saturation in the COSMOS images) used to seed the Balrog
simulations. Furthermore, the stellar density varies substantially across the
SV field (see Figure 12), so the COSMOS stellar population is not neces-
sarily representative.

straightforward to simulate directly; it is the error in a measurement
unique to SExtractor. Nevertheless, Balrog is able to recover a
distribution similar to DES.

If Balrogwere a perfect model of the data, ∆ log10 p would be
consistent with zero everywhere, but in practice, we do not expect
to recover this result. Even in the limit of perfect survey calibra-
tions (PSF, photometric calibration, etc.), one would need a com-
pletely representative input population to recover perfect agree-
ment. We have made the assumption that single component ellip-
tical Sérsic objects fully describe the galaxy population, but this is
not strictly true. Moreover, COSMOS (point) sources begin satu-
rating for i . 19 (Leauthaud et al. 2007, Capak et al. 2007). The
CMC does not include such objects, and thus our reweighted cat-
alog is not expected to be entirely complete at bright magnitudes.
Furthermore, COSMOS is a small field (∼ 2 deg2): with limited
statistics and cosmic variance, it is not necessarily entirely repre-
sentative of a larger area survey like DES, especially at brighter
and larger size limits; this could be another contributing factor why
Balrog’s brighter and larger galaxies are less representative of DES
than its fainter and smaller ones. Finally, we have also used Sub-
aru filters for our input magnitudes, (because DECam ones were
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Figure 7. Top left block: These six panels show the sensitivity of the i-band size-magnitude distributions of DES and Balrog galaxies to survey depth. The
color scale in the upper four panels shows normalized counts. Bottom block: Histograms of of the depth selection in each column; we split into two samples:
the deepest 25% of the area and the shallowest 25% of the area. Right block: Differences between the left panels. The bottom panel shows the difference
between the above two differences. While these histograms are noisy, this figure shows that Balrog well captures the effect of depth on the measured galaxy
properties. The systematic differences visible here are mainly due to the small differences between the DES and CMC catalogs.

not available), which will introduce some error when comparing
Balrog and DES distributions.

Figure 4 and Figure 5 plotted galaxy selections, but our Bal-
rog run also included stars. Figure 6 shows the i-band DES and
Balrog stellar distributions. We have normalized the Balrog curve
in the top panel in the following way: N in each bin of the Balrog
curve is multiplied by the detected star-to-galaxy number ratio in
DES divided by the detected star-to-galaxy number ratio in Balrog,
where we have selected detections from 23 < MAG AUTO I < 24.
(This is the same way we normalize when estimating the DES
stellar contamination ratio of our faint clustering sample in Sec-
tion 5.5.)

There is more variation in the stellar distributions compared to
the galaxy distributions, and this is to be expected. First, we see a
large deficit due to the effects of saturation in the COSMOS imag-
ing at i . 19, as mentioned above. Stars are more compact than
galaxies and thus more heavily affected by saturation. Furthermore,
the stellar population intrinsically fluctuates much more strongly
across the sky than the galaxy population, and the small stellar sam-
ple from the COSMOS field need not be entirely representative of
DES as a whole. Indeed, the DES catalog contains more detected
stars than the Balrog catalog.11For this analysis, we are primarily
interested in galaxies and the COSMOS stellar population suffices;
however, in a broader context, we offer it as an example of how one

11 ∼35% more, with increased deviation near the LMC.

should be mindful to use Balrog with an input simulation popula-
tion which is appropriate for one’s science case.

4.2 Two-dimensional distributions and observing conditions

In addition to validating Balrog’s ability to recover DES’ distribu-
tions of measured quantities, we also need to test if Balrog behaves
like DES as a function of observing properties of the survey. Leist-
edt et al. (2015) have constructed HEALPix maps of several char-
acteristics of the DES SV observations, including PSF full width
at half maximum (FWHM), 10σ limiting magnitude in 2′′ aper-
tures (m2′′

10σ),12 airmass, sky brightness, and sky variance (where the
square root of sky variance is called sky σ). Each map computes an
average of a given quantity in the overlapping single-epoch obser-
vations for any pixel in the map, using either an ordinary mean or a
weighted mean, where the weights are taken from the single-epoch
inverse variance maps. We use the maps of Leistedt et al. (2015),
available at a resolution of NSIDE = 4096, and compare Balrog’s
behavior against DES’ behavior as a function of the observing con-
ditions.

First, we split our DES and Balrog galaxy samples into two
divisions according to the local 10σ magnitude limit, selecting the
top and bottom 25 percentiles. The depth histograms for these two

12 These measurements are analogous to the MANGLE depths (discussed in
Appendix A), without quite as fine a resolution.
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Figure 8. Analogous to Figure 7, but instead showing the (i-band size-magnitude) dependence on average seeing in the coadd images. Again, Balrog success-
fully captures the dependence of the measured galaxy properties on observing conditions. The systematic differences visible here are mainly due to the small
differences between the DES and CMC catalogs.

samples are shown in the bottom row of Figure 7, with the shal-
lower sample in the left column. The first two rows of this left-
most column show normalized Balrog and DES two-dimensional
histograms in the i-band size-magnitude plane for the shallower
magnitude limit selection. The top two rows of the middle column
show likewise for the deeper selection. The third row quantifies
the fractional difference between the Balrog and DES rows. Like
the one-dimensional examples, in the densest regions of parame-
ter space Balrog and DES largely agree. Moreover, simultaneous
agreement in both depth samples offers evidence that Balrog traces
the distribution’s properties as a function of magnitude limit. The
rightmost column of Figure 7 further tests this: the top two rows in
this column plot the Balrog and DES differences of the shallower
and deeper distributions, and the third row plots the fractional dif-
ference between the two rows above, i.e. this panel compares the
DES and Balrog magnitude-size derivative with respect to magni-
tude limit. Except in regions of sharp change, agreement in well-
sampled areas of parameter space is typically ∼ 10% differences,
offering additional evidence that Balrog reasonably tracks the DES
changes with observing conditions.

We have made analogous plots to Figure 7, splitting on prop-
erties other than magnitude limit, and find similar results. Figure 8
offers another example, dividing the sample based on PSF FWHM.
The figure is largely reminiscent of Figure 7.

4.3 Number density and observing conditions

To conclude this section, we test Balrog’s ability to recover DES-
like number density fluctuations as a function of the survey proper-

ties mapped by Leistedt et al. (2015), i.e. we investigate if Balrog
recovers DES’ window function over the observing conditions. If
this check is successful, it means Balrog galaxies can be used as
a set of random points in a clustering analysis in order to correct
for varying detection probability over the footprint. In Section 4.1
and Section 4.2, we demonstrated that Balrog is largely, but not
perfectly, representative of the DES data; assessing whether or not
agreement is good enough depends on one’s science case. Here, we
investigate if the agreement is at an adequate level such that Balrog
detection rates are representative of DES detection rates, within the
respective error estimates.

Figure 9 plots number density fluctuations in our full DES
and Balrog galaxy samples as a function of i-band survey prop-
erties, binning in each survey property over the 2 to 98 percentile
range. Alongside these number density plots, we also include the
histograms of the survey observing conditions over the same range.
For each number density bin, we count the number of galaxies in
the given pixels, divide by the area covered by those pixels, and
normalize by the average density over the full sample. We plot both
the DES and Balrog samples, where the points have been slightly
offset for visual clarity. The error bars on each set of points are esti-
mated by 24 jackknife realizations of the curve, as described in Ap-
pendix B. We find that the DES and Balrog results are consistent
with each other within the errors estimates, which demonstrates
Balrog’s modeling as adequate to recover the DES window func-
tion over the tested sample. We have repeated this exercise using
the survey properties across other filter bands, finding consistent
results.
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Figure 9. Number density fluctuations in the DES and Balrog galaxy samples as a function of i-band survey properties, binning the survey properties over
the 2 to 98 percentile range. (The DES and Balrog curves have been slightly offset for visual clarity.) For each number density bin, we count the number of
galaxies in the given pixels, divide by the area covered by those pixels, and normalize by the average density over the full sample. Error bars are estimated
from 24 jackknife resamplings of the curves (cf. Appendix B). Alongside the number density plots are histograms of the survey observing conditions, again
binned over the 2 to 98 percentile range.
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5 ANGULAR CLUSTERING

The final test of the Balrog catalogs described in this paper is their
use in systematic error amelioration for an angular clustering mea-
surement. Selecting the Balrog catalog in the same way as the real
catalog produces a sample with a nearly identical window function
as the data’s. The Balrog catalogs have inherited systematic errors
in the imaging and analysis pipelines, but otherwise have no in-
trinsic clustering themselves. Hence, using them as randoms in a
two-point estimator is a simple and efficient way of removing the
systematic errors while maintaining the real clustering signal. The
rest of this section describes how this is done.

We describe what we believe are the practical and fundamental
limitations of embedding simulations for clustering measurements
in Section 5.1. Section 5.2 discusses the algorithms we use to make
our w(θ) measurements. In Section 5.3, we select two magnitude-
limited DES samples and perform tests in Section 5.5 to show that
stellar contamination is unimportant for the measured angular clus-
tering signals. In Section 5.4, we select similar populations from the
public COSMOS galaxy catalog of Capak et al. (2007) (∼2 deg2 in
area) and match them to our DES samples. Section 5.6 then demon-
strates that over the measurable range of angular separations, our
Balrog-corrected DES measurements reproduce the much deeper
COSMOS measurements, but with substantially improved accuracy
and range, owing to the larger survey volume.

5.1 Caveat Likelihood

Fundamentally, our simulated galaxies are sampling the likelihood
function that connects the measured parameters (αmeas) of stars and
galaxies to the underlying true parameters (αt) of objects in the
DES images. In general, the detection probability and measurement
biases for some particular galaxy depend on the rest of the galax-
ies in the image, even including objects that may not be detected.
Denoting the set of all relevant object parameters by {α}, and ex-
pressing the dependence on position on the sky θ explicitly, we can
write:

L = p(αmeas | {αt} , θ). (2)

L is meant to incorporate sample selection criteria, so the probabil-
ity p(θ) of any object being selected for analysis is the likelihood
integrated over the true and observed properties:

p(θ) =

∫
p(αmeas | {αt} , θ) dαmeasd{αt}. (3)

This is also sometimes called the window function, and it is this
function that the random catalogs used in correlation function esti-
mators (like Equation 6) are meant to be sampling.

The likelihood sampled by the Balrog catalogs is only an ap-
proximation of the true L. In part, this is a result of simplifications
made in the simulation. Our input catalog, for instance, is limited
in its realism by the galaxy templates used to generate the synthetic
colors in the COSMOS mock catalogs and by the finite size of the
COSMOS field. This limitation is equivalent to integrating in Equa-
tion 3 only over the regions of αt covered by COSMOS. This issue
is one of several described above that can in principle be addressed
with improvements to the simulations.

There are more fundamental limitations to this procedure,
however. When a simulated galaxy and a real galaxy overlap, it
is not always possible to determine whether the resulting catalog
entry belongs in the Balrog catalog. If the real object is largely
unmodified by the presence of the simulated galaxy, then associ-
ating it with the truth properties of the simulated galaxy results in

an incorrect measurement of L. If the real object is substantially
modified by the presence of the simulated galaxy, the resulting cat-
alog entry could be used to infer the likelihood function for blends,
though we have not built the inference machinery necessary to do
so. Finally, if the simulated object’s properties are not substantially
modified by the presence of the real object, then associating the
resulting catalog entry to the simulated object’s truth properties re-
sults in a useful measurement of L at that location.

These ambiguous matches tend to introduce a small amount
of real galaxy contamination into the randoms, and result in a small
multiplicative bias to the clustering of roughly twice the contam-
ination rate. Excluding them excludes some Balrog galaxies in a
manner that reverses the sign of the multiplicative bias, with simi-
lar amplitude. Ambiguous matches comprise only ∼ 1% of our Bal-
rog galaxies, resulting in a multiplicative bias that is smaller than
the statistical error on the amplitude of the w(θ) measurement pre-
sented below. For this reason, we do not apply any correction for
this effect.

Finally, and most fundamentally, Balrog samples the likeli-
hood under slightly different conditions than the real data. If the
image contains n real objects, the measurement likelihood for the
nth is

L = p(αn,meas | αt,1,αt,2, ...,αt,n−1, θ), (4)

while the likelihood sampled in this image by a single added Bal-
rog galaxy is:

L = p(αn+1,meas | αt,1,αt,2, ...,αt,n−1,αt,n, θ). (5)

If the likelihood really is strongly non-local – that is, if the mea-
sured properties of each galaxy depend strongly on the properties
of other nearby objects – then the Balrog catalogs will not be sam-
pling the same likelihood as the data, and we should not expect w(θ)
estimates made with them to be correct. All correlation function es-
timators that use random catalogs assume that the window function
and the density field are statistically independent, however, so a
coupling between L and the galaxy density field would also make
Equation 6 invalid for any random catalog.

These complications should all be much less severe for cata-
logs made with the high-resolution space-based COSMOS imag-
ing. Insofar as this is true, we can regard any measured difference
between the COSMOS angular clustering and that measured with
Balrog as evidence that the simulated catalogs are not sampling the
same likelihood function as the data.

5.2 Estimation algorithms

We adopt the Landy & Szalay (1993) estimator for the correlation
function:

w(θ) =
DD − 2DR + RR

RR
, (6)

with D labelling the data and R labelling the randoms. The ran-
doms sample the window function for an intrinsically unclustered
sample, and are used to remove any signal induced by non-uniform
detection probability. For our DES data, we will compare estimates
of w(θ) made using Balrog randoms to the same measurements us-
ing uniform randoms that sample the survey geometry only (by ap-
plying the same spatial masking to the uniform randoms as applied
to the data). We have not run Balrog on the COSMOS imaging,
and hence all our COSMOS w(θ) measurements use the standard
uniform randoms.

We compute Equation 6 using TreeCorr (Jarvis et al. 2004),
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Figure 10. COSMOS sample selection. The heat map colored histograms plot normalized counts. Top left: i-band magnitudes and r − i colors for the full
COSMOS catalog after basic quality cuts. Top right: Distribution of i-band magnitude and r − i colors using truth catalog properties of Balrog galaxies in
our faint sample. Bottom left: (Unnormalized) weights applied in the i, r − i color plane to COSMOS galaxies in order to match the DES truth distribution.
Bottom right: i-band magnitudes, r − i colors of the reweighted COSMOS sample.

a software package implementing a k-d tree algorithm for efficient
calculation of correlation functions over large datasets. We adjust
the bin slop parameter, which controls the fraction of the bin
width by which pairs are allowed to miss the correct bin, such that
bin slop × bin size < 0.1, in order to reduce the binning errors
made by the algorithm. We run TreeCorr over each of the 24 k-
means jackknife realizations, as explained in Appendix B, in order
to estimate the correlation function’s covariance.

As a cross-check, we have also computed our correlation func-
tions with athena (Schneider et al. 2002), another tree-code which
implements its own internal jackknife algorithm to estimate the co-
variance, where the data’s area is divided into squares on a grid
of N rows × M columns, leaving out one of the squares in each
jackknife iteration. Using either code, we measure consistent w(θ)
signals.

As discussed in Crocce et al. (2015), jackknife resampling is a
noisy estimate of the covariance of w(θ), which is reasonably well-
suited for the diagonal elements, but theory-based errors are better-
suited for the off-diagonal terms. Because we attempt no physi-
cal interpretation of our clustering signals, we omit any theoretical
modeling, and do not explore noise estimates beyond jackknife re-
sampling.

5.3 DES sample selection

We choose two separate DES samples for our clustering mea-
surements: a bright sample (21 < MAG AUTO I < 22), which
is a subset of the magnitude selection used in the DES bench-
mark clustering analysis of Crocce et al. (2015), and a faint sample
(23 < MAG AUTO I < 24), where the DES catalogs are substan-
tially incomplete, and, as we will see in Section 5.6, the variation
in the observed galaxy density across the sky is dominated by vari-
ations in the selection function. We should expect the bright clus-
tering signal measured with Balrog randoms to easily reproduce
the signal measured with uniform randoms (as done in the DES

benchmark clustering analysis) and to agree with COSMOS; this is
primarily a sanity check. Our faint selection is a strong test of the
methodology – success here would indicate accurate measurement
of spatial clustering even where, because of the low signal-to-noise
ratio of the sample, anisotropies in the window function strongly
affect the intrinsic clustering signal. Neither sample is identical to
the DES benchmark sample; in Appendix C we offer a brief look at
this sample.

5.4 COSMOS sample selection

We use the public COSMOS multi-wavelength photometry catalog
(Capak et al. 2007) to validate our clustering measurements. First,
we make a few basic quality cuts, selecting objects with:

blend mask = 0

AND star = 0

AND auto flag > -1.

At the time of this writing, we did not have an appropriate angular
mask for the COSMOS field. We have used the positions of objects
flagged as problematic in the COSMOS photometric catalog as our
mask definition. When constructing our sample, we first exclude
any COSMOS galaxy within 10′′ of an object flagged as bad. Visual
inspection shows good agreement between this set of bad objects
and problematic regions in the COSMOS imaging. Unfortunately,
this shortcut makes the small-scale COSMOS clustering difficult to
interpret, so we elect not to use COSMOS measurements of w(θ)
for θ < 10′′ in the analyses. We have increased the 10′′ separation
cut, and verified that our results on scales larger the masking radius
are not sensitive to the value chosen.

Small changes in the properties of the selected galaxies can
have significant effect on the amplitude of w(θ), so we take care to
ensure that the sample we select from COSMOS is well-matched
to the DES galaxies. Our technique for doing this is a resampling
scheme based on and motivated by that described in e.g. Lima et al.
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(2008), Sánchez et al. (2014), and analogous to how we reweighted
our Sérsic catalog in Section 3.1.

First, we make the same cuts on the Balrog galaxies as we
have for the DES galaxies (cf. Section 5.3). For each Balrog
galaxy, we also have the truth magnitudes and colors used to gener-
ate the galaxy, which are directly comparable to the magnitudes and
colors from the COSMOS photometric catalog (cf. Section 3.1).
Matching the properties of the Balrog and COSMOS catalogs in
this space should ensure similar samples with comparable cluster-
ing. We choose to work in two dimensions: i-band magnitude and
r − i color, selecting i mag auto and (r mag − i mag)13 from the
COSMOS catalog as the complements to our Balrog truth quan-
tities. The top row of Figure 10 presents the COSMOS measure-
ments alongside our faint Balrog selection for the chosen quanti-
ties.

To match the samples, for each COSMOS galaxy we calcu-
late the distance to the 50th-nearest Balrog galaxy in this color-
magnitude space. The number of COSMOS galaxies inside this dis-
tance is proportional to the ratio of the two distributions, and when
properly normalized, equal to the weight required to match them.
Normalization is such that the ensemble of weights sums to unity.
We then randomly resample the COSMOS catalog, using the calcu-
lated weights as the selection probability for each object,14 which
generates our DES-matched COSMOS sample.

We repeat this process separately for both the bright sample
and the faint sample; Figure 10 presents our results for the faint
sample. Using the weights in the bottom left panel, we resample
the COSMOS catalog in the top left panel. After doing so, we
recover the bottom right panel, which is a good match to the top
right panel – the faint Balrog sample. We have confirmed that, af-
ter this matching, the g− and z−band magnitude distributions are
also strikingly similar to the Balrog truth distributions. We have
also matched on quantities other than r − i color and i-band mag-
nitude, as well as varied the number of nearest neighbors to query,
and measured consistent clustering signals.

5.5 Stellar contamination

Stars that are accidentally included in the galaxy clustering analy-
sis can have a significant impact on the measured clustering (e.g.,
Scranton et al. 2002, Maddox et al. 1996). An unclustered stellar
population simply dilutes the measured angular clustering. If the
stars themselves cluster nontrivially, the measured signal is a mix-
ture of the true galaxy and stellar clustering, with mixture coef-
ficients set by the fraction f of the galaxy sample that has been
mis-classified as stars. We refer readers to Appendix D of Crocce
et al. (2015) for a detailed treatment of the subject.

To estimate the stellar contamination in our DES samples, we
use the Balrog simulations. From the Balrog truth catalog, we can
infer the fraction of Balrog objects which were simulated as stars
but misclassified as galaxies. However, because the DES and Bal-
rog stellar densities vary (cf. Section 4.1), we need to renormalize
this Balrog contamination rate; we multiply by the detected DES
star-to-galaxy number ratio and divide by the detected Balrog star-
to-galaxy number ratio.

13 i mag auto quantifies a total magnitude, while r mag and i mag are 3′′

aperture measurements.
14 We resample to five times the number of objects with nonzero weights.
However, results are insensitive to this choice; upping the sampling density
arbitrarily high is unnecessary.
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Figure 11. Map (declination vs. right ascension) of the DES stellar number
density across the SPT-E footprint. An additional parallel has been drawn
at δ = −58◦, indicating the cut we make in our clustering measurements to
eliminate the area of highest stellar contamination.

In both the bright and faint DES samples, we find f ∼ 5%.
Inspection of the magnitude-FHWM plane in the COSMOS data
indicates that stellar contamination is small (∼0.1% for i < 22), so
we omit any corrections due to this contamination in the COSMOS
measurements.

As shown in Figure 11, the stellar density varies dramatically
across the DES survey area examined in this analysis. The edge of
the LMC intrudes at δ < −58, so we have removed this extreme re-
gion from the clustering analysis, and for the following tests we di-
vide the remainder of the area into three declination-selected strips:

(i) δ > −50,
(ii) −55 < δ < −50,

(iii) −58 < δ < −55,

in order to test if our clustering signals are robust against stellar
population size. The two northernmost regions are roughly equal in
stellar density, while the southernmost’s is about 35% greater.

We measure the stellar autocorrelation wss in each of the
declination-selected samples. The expected spurious clustering
from stellar contamination is proportional to this signal, but sup-
pressed by the square of the contamination fraction (Myers et al.
2006, Crocce et al. 2015). We find that f 2wss is well below errors
in the angular correlation function for both the bright and faint sam-
ples; the faint measurements, which have larger stellar clustering,
as well as slightly higher stellar contamination, are shown in Fig-
ure 12.15 (For visual clarity, Figure 12 only plots f 2wss in the south-
ernmost region, the most pessimistic case). To account for dilution
from stellar contamination, we apply a (1 + f )2 correction (Myers
et al. 2006, Crocce et al. 2015) to the galaxy autocorrelation func-
tions. We show in the bottom of Figure 12 that after applying the

15 MODEST CLASS stellar selection is not entirely pure at
23 < MAG AUTO I < 24, so a portion of the plotted stellar signal is
actually from galaxies. We have also selected brighter magnitude ranges
where the stellar selection is pure and found f 2wss to be smaller than
what is shown in Figure 12; i.e. we have plotted the most pessimistic
signal. At any rate, even if our plotted f 2wss were more than a factor
of 2 underestimated, it would still be below the level of errors in the
galaxy-galaxy autocorrelation functions.
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Figure 12. Testing stellar contamination. All error bars in the figure are estimated with jackknife resampling (cf. Appendix B). Top: The bar-only points
show galaxy angular correlation function measurements for our faint (23 < MAG AUTO I < 24) DES sample over different declination ranges: δ > −50 in
blue, −55 < δ < −50 in red, and −58 < δ < −55 in black. (For visual clarity, only every other point has been plotted, and there is a slight offset between
points at the same angular scale. Legend labels denote the southern edge of the regions.) Stellar density varies between the regions (cf. Figure 11), and a stellar
contamination dilution correction has been applied to each curve (cf. Section 5.5). The contamination fractions for each region are: f−50 = 0.044, f−55 = 0.048,
f−58 = 0.058. The black stars plot the stellar autocorrelation function multiplied by the square of the galaxy stellar contamination fraction, in the region of
highest stellar density and highest stellar clustering. (To maintain readability, we omit the stellar autocorrelations over the other two regions, and choose to
focus on the most pessimistic case.) If large enough, the stellar autocorrelation quantity can induce an additive bias to the galaxy clustering measurements, and
we note that it is comparably small over the range of scales where we are able to make a statistically significant measurement. Bottom: Differences between
the stellar contamination dilution corrected galaxy autocorrelation function measurements in the top panel. There is no significant difference between the
resulting measurements, suggesting that stellar contamination is not a significant source of systematic bias for this measurement.

correction, the differences between the galaxy signals for the three
regions are small compared to the autocorrelation errors, further
indicating that stellar contamination is not a significant source of
systematic bias.

5.6 Clustering measurements

We now present our w(θ) measurements. Angular clustering mea-
surements for flux-limited samples generally see power-law behav-
ior at small angular separations, steepening above degree scales
(e.g. Maddox et al. 1996, Scranton et al. 2002, McCracken et al.
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Figure 13. Angular clustering results. Black and red points show w(θ) measurements for our DES galaxies, with uniform and Balrog randoms, respectively.
(Points at the same separation have been slightly offset for visual clarity.) The yellow band measures the 1σ confidence interval on w(θ) in a matched COSMOS
sample (cf. Section 5.4). The gray dashed lines are COSMOS measurements from McCracken et al. (2007), which we note are not matched to the DES sample,
but which could be measured to a smaller scale than our DES-matched COSMOS measurements. (See Section 5.4 and Section 5.6 for more details). All errors
are estimated with jackknife resampling, (see Appendix B). Insets show the distribution of true Balrog (light blue) and observed DES (blue) magnitudes,
with selection regions highlighted. In both panels, we have multiplied the signal by its approximate power-law slope. Top: Clustering of the bright, fairly
complete sample. As expected, variations in the DES window function, as measured by the Balrog randoms, do not appear significant for the clustering
above 15′′ (0.004◦). Bottom: Clustering of the faint sample, which is near or at the magnitude limit of the survey, and ∼ 35% incomplete on average. It is
strongly impacted by systematic effects due to the spatial variations of DES survey properties. We include the measurement using uniform randoms purely as
an estimate of the of the importance of systematic errors, noting that it would be inappropriate to use uniform randoms to measure w(θ) for a 23 < i < 24
sample selected with 10σ limiting magnitude i > 22.5. The Balrog randoms appear to capture essentially all of the extra power, suppressing it by roughly two
orders of magnitude (see Section 5.6 for further explanation). Note the excellent agreement with the matched COSMOS measurements. Like McCracken et al.
(2007), Balrog suggests little deviation from a power-law down to small scales.
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Figure 14. MCMC power-law fits for the w(θ) measurements shown in Figure 13. Contours are the 68% and 95% intervals. The DES measurements (red) use
Balrog randoms, and the COSOMS measurements (yellow) are for the sample matched to DES. The text displays the best-fit marginalized parameter values.
Left: bright sample. Right: faint sample.

2007). We expect that significant residual additive systematic er-
rors should produce a deviation from a constant power-law behav-
ior below degree scales, while residual multiplicative biases should
produce a corresponding multiplicative offset between the DES and
COSMOS measurements.

Our bright sample galaxies are a subset of the DES benchmark
sample, which has been extensively studied in a separate analy-
sis (Crocce et al. 2015). The limiting magnitude of the benchmark
sample (i < 22.5) was made, in the conservative tradition of large-
scale structure measurements, in order to produce a clean sample
with relatively uniform selection; as shown in Figure 13, this selec-
tion indeed produces a reliable clustering signal at large scales.

The top panel of Figure 13 shows measurements of the angular
clustering for our bright (21 < i < 22) sample. We plot w(θ) esti-
mated using Balrog randoms in red, and that estimated using the
uniform randoms in black. An overall correction to the amplitude
of both these DES curves has been applied in order to correct for
the effects of stellar dilution (cf. Section 5.5). The shaded region
shows the 1σ confidence interval (inferred from jackknife resam-
pling, cf. Appendix B) from the matched COSMOS photometric
sample.

These three estimates are statistically consistent with one an-
other within the range probed by our COSMOS clustering mea-
surement. Any excess systematic power traced by the Balrog cat-
alogs here is evidently not significant for the measurements above
θ & 15′′ (0.004◦). Below this scale, the uniform and Balrog curves
diverge; the measurements made using the Balrog sample continue
the power-law behavior down to ∼ 7′′, where blending effects start
to become significant. We have not attempted to diagnose this be-
havior in detail. However, we remark that COSMOS measurements
made by McCracken et al. (2007) for a similar, but not identi-
cal sample, also suggest little deviation from a power-law down
to these scales; we include their measurements with our results in
Figure 13. They select the same range of i-band magnitudes, but we
note that the sample is not reweighted to match the DES one (cf.
Section 5.4), and thus need not exhibit an identical signal. There-
fore, the McCracken et al. (2007) results offer strong evidence, but
not definitive proof, to validate the small-scale power-law-like Bal-
rog results.

Our faint sample (23 < i < 24) is close to the formal limiting

magnitude for the survey. As is evident from Figure 4, DES is sub-
stantially incomplete in this regime, and this is where we should
expect the spatial variation in survey properties to matter the most.
We include the clustering signal measured using uniform randoms
purely as an estimate of the of the importance of systematic errors
for this faint sample.

The bottom panel of Figure 13 presents our angular clustering
results for this faint selection. Balrog and the faint-sample matched
COSMOS results are in excellent agreement, and the former con-
tinues its power-law behavior down to almost 4′′ (0.001◦). Subject
to the same caveats discussed above, we again plot a COSMOS
measurement from McCracken et al. (2007), using an unmatched
sample over the same magnitude range, noting similar power-law
behavior down to small scales.

The amplitude of the signal in the faint clustering measure-
ment closely follows our COSMOS signal. We note that the sys-
tematic error has a substantially different shape than the galaxy
autocorrelation, and so where it is significant, it should produce
a deviation from the power-law behavior. This suggests that the
residual additive systematic error in the faint sample Balrog mea-
surement is small compared to the latter’s jackknife errors. At 0.5◦,
the Balrog clustering errors are ∼0.0005, and so the spurious clus-
tering has been suppressed by about two orders of magnitude from
its value (∼0.01 at the peak of the grey curve in Figure 13).

Figure 14 plots the results when we fit power-laws to our w(θ)
measurements:

w(θ) = Aθα. (7)

The darker contours show the 68% confidence intervals on the am-
plitude (A) and the power-law index (α), while the lighter contours
show the 95% confidence intervals for these quantities. We also
indicate the best-fit (marginalized) parameter values in the figure.
The COSMOS results are those of the DES-matched sample, and
the DES results are calculated using the Balrog randoms. The fits
are made using emcee (Foreman-Mackey et al. 2013), an affine-
invariant Markov chain Monte Carlo (MCMC) sampler. We find
the off-diagonal components of the jackknife covariance estimates
to be unstable in the fits (cf. Section 5.2; Crocce et al. 2015), so
we have restricted the χ2 likelihood sampling to diagonal elements
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only. The fits extend over the range of angular scales probed by the
COSMOS measurements (0.004◦ < θ < 0.2◦).

In both the bright and faint samples, the DES results fall inside
the 1σ COSMOS contours. Owing to the much increased survey
area, the DES measurements shrink the uncertainty contours con-
siderably, by about a factor of 5 or more in both α and A. When
we fix the power-law index to the best-fit DES value, and fit for the
scaling amplitude between the two samples, we find this amplitude
to be 1.04 ± 0.11 in the bright sample, and 1.00 ± 0.09 in the faint
sample.

6 DISCUSSION

We have developed a Monte Carlo injection simulation software
package designed to allow accurate inference of galaxy ensemble
properties where the catalogs are likely to be highly biased and in-
complete. Our simulations are computationally tractable, requiring
approximately 3 CPU seconds per simulated galaxy, and the re-
sulting catalogs have the same pattern of systematic variation with
image quality as the real data.

We demonstrate that the use of these simulated catalogs as ran-
doms in a clustering measurement is an effective and operationally
simple way to suppress systematic errors in the angular clustering
signal. We use Balrog catalogs generated with DES data to repro-
duce the known angular clustering of faint galaxies previously mea-
sured with high quality space-based imaging data. We show that
this measurement agrees with the COSMOS measurement, even
for galaxies for which DES is substantially incomplete.

Figure 15 plots the area coverage of our DES sample as func-
tion of depth. In the conservative approach, clustering analyses of-
ten select only galaxies brighter than the magnitude limit. We have
included galaxies as faint as MAG AUTO I = 24, for which there is
no area in our sample reaching this depth.

This procedure extends the reach of clustering measurements
in ground-based surveys like DES to much deeper samples, en-
abling statistical science for rare, faint, and high-redshift objects
near the survey limit, fully exploiting the great data volume of the
surveys. This is the first time, as far as we are aware, that accurate
angular clustering measurements have been made with a substan-
tially incomplete sample.

The data represented here are a small fraction of the final
DES data volume. In future work, we will generate Balrog cata-
logs covering all the imaging data. Several simple improvements
over the analysis presented here are planned, including folding in
photometric redshifts into the measurements (see Bonnett et al.
2015, Sánchez et al. 2014 as references describing photometric
redshift estimation for DES); using an input catalog with galaxy
colors matched to the DECam filters; embedding the simulations
into the full stack of single-epoch images instead of directly into
the coadds; and adopting input catalogs spanning a larger range of
galaxy properties, in order to avoid the intrinsic sample variance of
catalogs drawn from the small COSMOS field.

We anticipate that injection simulations similar to Balrog will
be useful for a wide variety of measurements beyond clustering.
Accurate models of biases and completeness can, we hope, let mod-
ern surveys take full advantage of all the available data.
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Figure 15. Area as a function of (10σ i-band) depth for our DES cluster-
ing samples. Traditionally clustering analyses select magnitudes 6 to the
depth. We have included MAG AUTO I < 24 galaxies, beyond the limiting
magnitude of any or our area.
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APPENDIX A: MASKING

We apply the mask of Crocce et al. (2015) to our data. This mask
is made in a five-step process.

(i) Coordinate cuts are made to select area in the SV SPT-E region
(cf. Section 3.2). The relevant cut for the area over which we have
run Balrog is δ > −60. This avoids areas of high stellar density
from the LMC.

(ii) As mentioned in Section 3.4, SExtractor detections include a
population with large offsets between windowed centroid mea-
surements in different bands. The SV footprint was pixelized at
HEALPix resolution NSIDE = 4096, masking the 4% of the pix-
els with the highest density of objects with:

MAG AUTO G/MAGERR AUTO G > 5 AND

‖ (ALPHAWIN J2000 G, DELTAWIN J2000 G)

− (ALPHAWIN J2000 I, DELTAWIN J2000 I) ‖ > 1′′

About 25% of the large outlier population is within these regions.

(iii) The mask eliminates areas in close proximity to bright stars
from the 2MASS catalog (Skrutskie et al. 2006). A circular
exclusion region is drawn around each 2MASS star with radius
(−10 MJ + 150)′′, where MJ is the J-band magnitude, setting a
maximum radius of 120′′ and eliminating all circles with radius
< 30′′. The footprint is pixelized at NSIDE = 4096 resolution, and
HEALPixels whose centers fall within 10′′ of any exclusion zone
are flagged as bad in the mask.

(iv) The mask selects regions with 10σ limiting depth of
MAG AUTO I > 22.5, where the depths are calculated according to
procedure presented in Rykoff et al. (in prep.). Briefly, the SEx-
tractor MAGERR AUTO vs. MAG AUTO distribution is fit in pixels
of HEALPix resolution NSIDE = 1024 to determine the depth
on a coarse scale. The random forest algorithm implemented in
sklearn16 is used to find coefficients on this pixelation scale which
fit the depth as a function of:

(a) the MANGLE (Swanson et al. 2008) 10σ limiting magnitude mea-
surements in 2′′ apertures available from DESDM,

(b) maps of the survey observing properties (e.g. airmass, PSF size,
etc.) compiled by Leistedt et al. (2015) (see also Section 4.2).

These products are generated at a finer resolution than the
MAGERR AUTO vs. MAG AUTO curve can be fit: the maps of Leistedt
et al. (2015) at NSIDE = 4096, and MANGLE to arbitrary resolution,
meaning the survey depth can then be mapped more finely using
the coefficients of these quantities.

(v) The mask selects regions where at least 80% of the area includes
detections. Each region is defined on a HEALPix grid of NSIDE =
4096, checking for detections within each of the 64 subpixels of an
NSIDE = 32768 pixelized MANGLE mask.

Figure B1. k-means jackknife regions. Each point is a DES galaxy, colored
according to which of the 24 k-means clusters it is assigned membership.
The algorithm divides the footprint into regions with roughly uniform car-
dinality.

APPENDIX B: JACKKNIFE ERRORS

Several instances of the work in this paper make use of jackknife er-
ror estimates. We generate jackknife regions for our data’s footprint
using a k-means algorithm,17 a method to partition n data points
into k-clusters, assigning each data point into the cluster with the
nearest mean; here, the region closest in angular distance. The set of
clusters, S = {S 1, S 2, ..., S k}, with centers µ = {µ1, µ2, ..., µk}, is gen-
erated by minimizing the within-cluster sum of distance squares:

arg min
S

k∑
i=1

∑
x∈S i

‖x − µi‖
2. (B1)

Each datum is associated to the region whose center is nearest on
the celestial sphere, where a cluster’s set of associated points has
been labelled as x. For approximately uniform data, k-means pro-
duces cluster sets roughly equal in number of associated points.
Figure B1 shows k-means classification for our DES galaxies, af-
ter applying the cuts described in Section 3.4; galaxies are colored
according to which cluster they were assigned.

After generating k-means jackknife regions, we proceed in the
usual way to estimate jackknife errors. One S n and its associated x
is left out in each realization, and we find the covariance of the
vector of interest over the realizations:

Ci j =
(N − 1)

N

N∑
n=1

[
fn(xi) − f (xi)

][
fn(x j) − f (x j)

]
, (B2)

where f is the measurement over the full area, without removing
any of the sample, and fn is the realization with S n removed. N is
the number of jackknife regions; we use N = 24 throughout this
work.

16 http://scikit-learn.org
17 https://github.com/esheldon/kmeans radec/
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Figure B2. Angular clustering measurements using a sample similar to that of Crocce et al. (2015), with Balrog (red points) and uniform randoms
(black points). The figure is similar to Figure 13. Selection cuts are discussed in Section 3.4 and Appendix A. Shown in the inset, a magnitude cut of
18 < MAG AUTO I < 22.5 has been applied; blue is the observed magnitude distribution and light blue is the truth magnitude distribution from Balrog. The
correlation functions have been scaled by the approximate power-law slope. The results suggest that the measurements made in Crocce et al. (2015) are
unaffected by significant sources of systematic bias at scales θ > 0.01◦.

APPENDIX C: BENCHMARK COMPARISON

Some of the ongoing and planned clustering analyses of DES
data make use of the benchmark sample, which is described
in full in Crocce et al. (2015). This sample uses the mask de-
scribed in Appendix A. Galaxies are selected with a magnitude cut
18 < MAG AUTO I < 22.5. Star-galaxy separation is performed
using a new quantity, termed WAVG SPREAD MODEL, which is a
weighted average of the SExtractor SPREAD MODEL quantity es-
timated from stars in the single-epoch DES images. Crocce et al.
(2015) measures the angular clustering of this sample, recovering
results that are in general agreement with prior measurements.

We present here an additional, approximate validation of the
DES benchmark results. Without Balrog galaxies embedded in
single-epoch images, we cannot perfectly capture the effects of
the star-galaxy separation used in selecting the benchmark sample.
However, we measure and adjust for the stellar contamination as in
Section 5.5, thus we do not expect any substantial difference in the
resulting measurement.

A comparison between the clustering signals of our
benchmark-like sample, measured with uniform and with Balrog
randoms, is shown in Figure B2. The results are quantitatively sim-
ilar to those shown in Figure 13. There is no significant correction
introduced by Balrog above 0.01◦, suggesting that the benchmark
sample is unaffected by significant measurement biases at moderate
and large scales. This is consistent with the independent measure-
ments from Crocce et al. (2015).
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Spain

34 Centro de Investigaciones Energéticas, Medioambientales y Tec-
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