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ABSTRACT
We study the clustering of galaxies detected at i < 22.5 in the Science Verification observa-
tions of the Dark Energy Survey (DES). Two-point correlation functions are measured using
2.3 × 106 galaxies over a contiguous 116 deg2 region in five bins of photometric redshift width
∆z = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors are assessed
by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning
algorithm (TPZ). A companion paper (Leistedt et al 2015) presents maps of several observa-
tional variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we
characterize and mitigate systematic errors on the measured clustering which arise from these
observational variables, in addition to others such as Galactic dust and stellar contamination.
After correcting for systematic effects we measure galaxy bias over a broad range of linear
scales relative to mass clustering predicted from the Planck ΛCDM model, finding agreement
with CFHTLS measurements with χ2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ)
redshifts. We test a “linear bias” model, in which the galaxy clustering is a fixed multiple of
the predicted non-linear dark-matter clustering. The precision of the data allow us to deter-
mine that the linear bias model describes the observed galaxy clustering to 2.5% accuracy down
to scales at least 4 to 10 times smaller than those on which linear theory is expected to be sufficient.

Key words: photometric surveys – galaxies clustering – systematic effects – large-scale structure
of Universe.

1 INTRODUCTION

Vast galaxy surveys trace the large-scale structure (LSS) of the Uni-
verse at late times and therefore complement and improve the wealth
of information already provided by cosmic microwave background
(CMB) and supernovae experiments. In particular our understand-

? crocce@ice.cat

ing and characterization of the cosmic accelerated expansion. Imag-
ing from multi-band photometry, e.g., SDSS (York et al. 2000),
PanSTARRS (Kaiser, Tonry & Luppino 2000), KiDS (de Jong et al.
2013), HSC (Miyazaki et al. 2012) and the planned LSST (Tyson
et al. 2003), provides the angular positions and detailed color in-
formation of the galaxies. From this color information, photometric
redshifts (photo-z) can be measured for each galaxy providing dis-
tance estimates that have typically low resolution. While obtaining
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detailed radial information requires a spectroscopic redshift survey,
e.g., 2dF (Colless et al. 2001), VVDS (Le Fèvre et al. 2005), WiggleZ
(Drinkwater et al. 2010) and BOSS (Dawson et al. 2013), obtaining
spectra is more time consuming. Hence the data volume available to
a photometric redshift sample will naturally far exceed that of a spec-
troscopic one. Many LSS studies have already obtained constraints
on cosmological parameters from photo-z samples, such as the sum
of neutrino masses, the matter/energy content of the Universe, and the
nature of dark energy (Padmanabhan et al. 2007; Thomas, Abdalla &
Lahav 2010; Crocce et al. 2011; Ho et al. 2012; Carnero et al. 2012;
de Simoni et al. 2013).

The Dark Energy Survey (DES, Flaugher (2005)) will image
5000 deg2 of the South Galactic Cap to a depth of i < 24, recording
300 million galaxies in 5 broadband filters (grizY ), thereby provid-
ing high quality photometric redshifts up to redshift z = 1.4 (Sánchez
et al. 2014). The DES camera (DECam, Flaugher et al. 2015; Diehl
& and the Dark Energy Survey Collaboration 2012) was installed and
commissioned in the second semester of 2012. A Science Verification
(SV) period of observations followed, lasting from November 2012 to
February 2013. The DES observations officially started in late August
2013.

In this paper, we analyze the clustering of galaxies observed dur-
ing the SV period. The SV region has been observed to match the
nominal 24th mag depth in the i- band expected for the full DES sur-
vey, and we can therefore use the data to characterize the properties
of the galaxy samples that DES can reliably observe. We perform de-
tailed systematic tests on the galaxy samples and develop methods to
mitigate systematic effects on the measured clustering. We asses the
impact on clustering measurements from uncertainties in photomet-
ric redshift estimation by obtaining our samples using two different
photo-z algorithms, one based on a template fitting method and an-
other on a machine learning one. Each of these methods has advan-
tages and disadvantages, which we discuss. Our resulting clustering
measurements allow us to characterize the evolution of bias as a func-
tion of redshift, to assess the validity of linear bias models and to pro-
vide baseline clustering measurements that other DES studies using
SV data can use to compare against (e.g., Giannantonio et al. 2015;
Suchyta et al. 2015). We were able to complete this work without the
benefit of a large number of simulated DES SV galaxy samples, but
future DES LSS studies (covering larger volumes) will rely on such
simulations.

The outline of the paper is as follows: we introduce the cluster-
ing estimators and the theory used throughout the paper in Section 2,
describe our data set in Sections 3 and 4, and present the maps of po-
tential systematics in Section 5. In Section 6 we discuss the extent and
mitigation of possible systematics, summarize and discuss our results
in Section 7, before concluding in Section 8.

2 ANGULAR CLUSTERING: THEORY AND ESTIMATORS

In this section we review the modeling of the angular correlation func-
tion and its covariance matrix, in photo-z bins. We also describe the
algorithms used to estimate these quantities from the data.

2.1 Two-point Angular Correlations: Modeling

Galaxy clustering can be modeled starting from the dark matter over-
density field at the angular position n̂ and at redshift z: δ(n̂, z). If we
assume a linear bias model, the projected overdensity of our galaxy
sample is given by,

δg(n̂) =

∫ ∞
0

b(z)
dn

dz
(z) δ(n̂, z) dz . (1)

where dn/dz is the probability of detecting a galaxy at a given red-
shift (i.e. the normalised redshift distribution) and b(z) is the bias. The
angular two-point correlation function between redshift binsA andB
is then defined as,

wAB(θ) ≡ 〈δg(n̂)δg(n̂ + θ̂)〉 =

=

∫
dz1 φA(z1)

∫
dz2 φB(z2) ξ(r12(θ), z̄) (2)

where r2
12 = r(z1)2 + r(z2)2 − 2r(z1)r(z2) cos(θ) with r(z) being

the comoving distance to redshift z (assuming a flat Universe), and

φ(z) =
D(z)

D(z̄)
b(z)

dn

dz
(z),

whereD(z) is the linear growth factor. Equation ( 2) should in princi-
ple be written in terms of a spatial correlation function ξ that evolves
with redshift. Instead we evaluate the spatial correlation at some mean
redshift z̄ and encode the growth evolution relative to this redshift
into the selection function φ (this is exact at the linear level) which
we make proportional to D(z)/D(z̄). In turn, rather than assuming a
parametric function for b(z), we will measure a single bias value at
each tomographic photo-z bin. Lastly, the way we estimate the red-
shift distribution of the sample, dn/dz, is described in Sec. 4 and
shown in Fig. 3.

We calculate the linear and nonlinear power spectra using
CAMB (Lewis et al. 2000). For nonlinear dark matter clustering we
use the recently re-calibrated Halofit prescription (Takahashi et al.
2012) built into CAMB. We then Fourier transform these into config-
uration space to obtain ξ and evaluate Eq. (2). Even though the effect
of redshift space distortions is negligible for the angular scales con-
sidered in this paper, we do include them in our predictions (e.g. see
formulae in Crocce, Cabré & Gaztañaga 2011).

Throughout the paper we assume a fiducial flat ΛCDM+ν (one
massive neutrino) cosmological model based on Planck 2013 +
WMAP polarisation + ACT/SPT + BAO, with parameters (Ade et al.
2014) : ωb = 0.0222, ωc = 0.119, ων = 0.00064, h = 0.678,
τ = 0.0952, ns = 0.961 and As = 2.21 · 10−9 at a pivot
scale k̄ = 0.05 Mpc−1 (yielding σ8 = 0.829 at z = 0) where
h ≡ H0/100 km s−1 Mpc−1 and ωi ≡ Ωih

2 for each species i.

2.2 Two-point Angular Correlations: Estimators

In this paper we use two different estimators for angular correlation
functions. One is a direct pair-count algorithm particularly suited to
investigating small-scale clustering, and another based on pixelized
maps using HEALPix which is particularly useful to investigate the
cross-correlation of our galaxy sample with maps of potential system-
atics (such as observing conditions) in an efficient way at the expense
of decreased angular resolution.

The pair-counting algorithm uses the publicly available tree code
ATHENA 1 to measure the angular correlation function with the stan-
dard Landy & Szalay (1993) estimator,

w(θ) =
DD − 2DR+RR

RR
(3)

where DD, DR and RR represent the number of pairs of objects,
taken from the galaxy catalogue (D) or from a randomly generated
sample covering the angular footprint (R), which are separated by
a scale θ within a bin size ∆θ. The random points are distributed
uniformly over the footprint. As we discuss in Sec. 4.3 our angular
footprint considers only regions of the survey that are deeper than the

1 www.cosmostat.org/software/athena
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flux limit in the sample definition, therefore the distribution of random
points is uniform in regions where the sample is complete.

The pixel-based estimator for the correlation between maps 1
and 2 is given by,

w1,2(θ) =

i=Npix∑
i=1

j=Npix∑
j=i

(Ni,1 − N̄1)(Nj,2 − N̄2)

N̄1N̄2
Θi,j , (4)

where Npix is the number of pixels used, Ni is the value in pixel
i of the quantity of interest (either the number of galaxies or, e.g.,
the seeing), N̄ represents the mean over all pixels, and Θi,j is 1 if
pixels i, j are separated by a scale θ within a bin size ∆θ and is zero
otherwise. The sum only runs through those pixels that fall within the
footprint.

2.3 Covariance Matrix

In order to estimate the covariance matrix for our w(θ) measurements
we combine two different approaches: a modeling of the off-diagonal
elements and the jackknife (JK) method for the variance.

The jackknife technique, which has been widely applied to an-
gular galaxy clustering measurements at small scales (e.g., Scranton
et al. 2002; Myers et al. 2006; Ross & Brunner 2009; Coupon et al.
2012) works by splitting the footprint into NJK small equal-area sec-
tions and recomputing w(θ) with each section removed. The covari-
ance matrix between w(θ) measurements at two angular separations
between two redshift bins, A and B, is estimated by,

CovJK,ABθi,θj
=

NJK − 1

NJK

NJK∑
k=1

∆wA[θi] ∆wB [θj ], (5)

∆wA(B)[θ] =
(
w
A (B)
k [θ]− w̄A (B)[θ]

)
, (6)

wherewk is the correlation function measured with the k-th JK region
removed and w̄ is the mean of the NJK jackknife w(θ)’s. In our case
we use 40 JK regions, in such a way that each patch is∼ 2 deg across,
matching our largest scales of interest.

Theoretical estimates of the covariance for angular clustering
have also been explored and tested (e.g. Dodelson (2003); Cabré et al.
(2007); Crocce, Cabré & Gaztañaga (2011); Ross et al. (2011b)).
They rely on the assumption that errors scale as the square root of
the survey area Cθi,θj ∼ f−1

skyC
full sky
θi,θj

. The covariance for a full-sky
survey is then easily derived considering that angular power spec-
trum measurements C` are uncorrelated, Cov``′ = Var(C`)δ``′ with
Var(C`) = 2C2

` /(2` + 1). One can then use a Legendre transform
to express this error in real space for Cfull sky

θi,θj
and arrive to,

CovTHθi,θj =
2

fsky

∑
`>0

2`+ 1

(4π)2
P`(cos θi)P`(cos θj)(C`+1/n̄)2 (7)

for auto-correlations in one bin, and

CovTH,ABθi,θj
=

1

fsky

∑
`>0

2`+ 1

(4π)2
P`(cos θi)P`(cos θj)

[(
CAB`

)2

+
(
CAA` + 1/n̄a

)(
CBB` + 1/n̄b

)]
(8)

for cross-correlations between bins A and B. In Eqs. (7,8) we have
included the standard shot-noise contribution arising in the variance
of the C` estimates (n̄ is the number of objects per steradian). The
angular power spectrum between bins A and B is given by

CAB` =
2

π

∫
dkk2P (k, z̄)WA

` (k)WB
` (k) (9)

with the kernel defined for each bin by

W`(k) =

∫
dz b(z)

dn

dz
(z)

D(z)

D(z̄)
j`(kr(z)) (10)

As before, we evaluate the power spectrum in Eq. (9) at some mean
redshift and then compute the growth within W` with respect to this
reference point. In Eq. (10) each bin is characterized by its dn/dz and
b, while j` are the spherical Bessel functions.

Measurements of the correlation function at different angular
scales are considerably correlated. The JK estimation is limited by the
number of independent samples one can build out of the given foot-
print and hence yields noisy off-diagonal correlations. Obtaining good
estimates of the off-diagonal elements is important, as the correlation
w(θ) between adjacent θ bins are typically greater than 0.9. For the
diagonal elements of the covariance matrix, we expect the JK estima-
tion to be adequate and favor it over the theoretical estimation as it is
extracted from the data itself and hence can trace effects such as non-
linearities, the effect of the mask, and residual systematic variation.
The theory estimate on the other hand is adequate for off-diagonal el-
ements because it avoids the intrinsic noise from the limited number
of realizations. Therefore we combine both approaches by defining
our covariance matrix as,

CovMIX
θi,θj = CorrTHθi,θjσJK(θi)σJK(θj) (11)

where σ2
JK(θi) ≡ CJKθi,θi from Eq. (5) and CorrTHθi,θj is the correlation

matrix (or reduced covariance matrix) defined by

CorrTHθi,θj =
CovTHθi,θj

σTH(θi)σTH(θj)
(12)

from Eqs. (7,8). We refer to this as the “mixed” approach.
The methodology we use to model our covariance matrix is fur-

ther justified by the results presented in a companion paper (Giannan-
tonio et al. 2015), where we present a discussion of various estimators
for the covariance matrix of auto-correlations. As naively expected, it
is found that the JK method performs better than theory errors for di-
agonal correlations (i.e. variance) when both are compared to a covari-
ance matrix derived from an N-body simulation. But under-performs
compared to theory ones for the off-diagonal elements. In Appendix
B we show that on large scales both the JK and theory approaches
yield similar results for the variance, and for derived best-fit biases.

3 THE DES SCIENCE VERIFICATION (SVA-1)
PHOTOMETRIC SAMPLE

3.1 The Science Verification dataset

The Science Verification (SV) observations, taken over 78 nights
in 2012 and 2013, provided science-quality data for more than 250
deg2 at close to the nominal depth of the survey. The SV data foot-
print was chosen to contain areas already covered by several deep
spectroscopic galaxy surveys, including VVDS (Le Fèvre et al. 2005),
zCOSMOS (Lilly et al. 2007), and ACES (Cooper et al. 2012), which
together provide a calibration sample for the DES photometric red-
shifts (Sánchez et al. 2014). In addition to these, two large contiguous
regions (termed SPT-E and SPT-W, due to their partial coverage of the
South Pole Telescope (Carlstrom et al. 2011) fields) were observed.

3.2 Image processing: the DESDM pipeline

The raw images taken each night by DECam are sent for process-
ing to the National Center for Supercomputer Applications (NCSA2,
Urbana-Champaign, United States) using the DES Data Management
(DESDM) pipeline described in Sevilla et al. (2011) and Mohr et al.
(2012). We briefly describe the process below.

2 http://www.ncsa.illinois.edu/
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Figure 1. Footprint of the SVA1 Gold catalog. In this analysis, we only use
data from the largest compact footprint occupying the lower-right, known as
‘SPT-E’.

These single-epoch images are ’detrended’ by applying bias and
flat-fields corrections. Then, cross-talk, pupil, illumination, fringing
and non-linearity corrections are carried out. Bad pixels are flagged
and traced in a map while satellite trails, cosmic rays and saturation ef-
fects from bright stars are detected and flagged. The astrometric cali-
bration is performed using SCAMP (Bertin 2006), fitting the best local-
to-celestial reference system transformation using the single-epoch
image positions of bright sources. One then relates them to reference
celestial positions, correcting for distortions from the large field-of-
view. Nightly absolute calibration is performed using reference stars
which are observed every night, to obtain a photometric solution for
that period including the zero point, a color, and airmass terms for
each CCD.

The resulting reduced images are then re-mapped into a uniform
pixel grid in which the coaddition of said images is performed. The
purpose of this process is to obtain increased depth.

Lastly, the catalog creation stage uses the SExtractor (Bertin
& Arnouts 1996) software , which detects objects on the coadded im-
ages for each band and stores them as unique single object entries
at a database at NCSA. During this procedure, the coadded astro-
metric and photometric information is measured and stored as well.
The astrometry is accurate to 0.2′′. A global photometric relative cal-
ibration step is performed for this dataset using the exposure overlap
across different fields, which provides repeated observations of the
same stars so a minimization procedure can be performed (Glaze-
brook et al. 1994). Observations from PreCAM (Kuehn et al. 2013)
provide a grid of standards to which this relative calibration can be
anchored to in order to minimize large scale variations3. Finally, ob-
servations of spectrophotometric standards ties this photometry to the
absolute AB system (Tucker et al. 2007). This final data set represents
the “coadd” catalog.

3.3 The Gold catalog

The coadd catalog produced by DESDM of the SV dataset was ana-
lyzed and tested resulting in the generation of the SVA1 Gold catalog
(Rykoff et al., in prep.) The footprint of the catalog in equatorial co-
ordinates is shown in Fig.1.

The basic additions of this value added catalog include:

3 This calibration is improved using the Stellar Locus correction described
below.

• Incorporating satellite trail and other artifact information to mask out
specific areas;
• Removing areas where the colors are severely affected by stray light

in the images and areas with a small exposure count (at the borders of
the footprint);
• Removing the area below declination of−61◦ to avoid the increased

stellar contamination in our galaxy catalog due to the Large Magel-
lanic Cloud (LMC), as well as the area dominated by the nearby star
R Doradus.
• Applying an additional Stellar Locus correction (High et al. (2009))

to tighten the calibration even further, ensuring the agreement of stel-
lar colors with respect to those of reference stars. After this correction,
magnitudes are calibrated to 2 per cent accuracy, with a 1 per cent ac-
curacy in colors (Rykoff et al. in prep.).

After this selection, about 244 deg2 remain in the catalog.

3.3.1 Survey mask

Concurrently with the generation of the catalog, another pipeline
builds a nominal MANGLE4 mask (Swanson et al. 2008) that takes
into account the DECam CCD pointings and properties of the sky
during each night. Artifacts such as airplane or satellite trails, cosmic
rays, etc., and areas near bright stars are masked out. An estimation of
the depth for the remaining regions is calculated as the magnitude at
which an object is measured with signal-to-noise of 10 in a 2 arcsecs
aperture. This aperture-based depth must be converted into a total-
magnitude depth corresponding to SExtractor’s MAG AUTO mea-
surements used in the galaxy selection. This conversion, described in
Rykoff et al. (in prep.), takes into account properties of the data such
as the seeing, which affects the relationship between a fixed aperture
and a total magnitude measurement. The resulting 10σ depth map is
then translated to an averaged weighted pixelized map of resolution
given by Nside = 4096 (an angular scale of 0.74 arcmin2) using the
HEALPix software (Górski et al. 2005). These maps will be a key
component of our final masks (see below). See also the appendix of
Suchyta et al. (2015) for a description of how the mask is constructed.

4 THE LSS BENCH-MARK SAMPLE

From the SVA1 Gold catalog described above we select a sample of
galaxies that enables robust clustering measurements by applying fur-
ther magnitude and color cuts and restricting our analysis to the largest
contiguous area overlapping the SPT-E field5,

60 < ra [deg] < 95

−60 < dec [deg] < −40 (13)

We then focused on an flux limited sample defined by

18 < i < 22.5, (14)

where i refers to the SExtractor’s MAG AUTO quantity. In Sec. 4.3
we discuss that this sample is complete in regions of the survey deeper
than i = 22.5 magnitudes. Therefore we will only consider such re-
gions as our baseline footprint, covering an area of 116.2 deg2. Within
this footprint we have 2, 333, 294 objects in the bench-mark LSS sam-
ple with number density ng = 5.6 arcmin−2.

4 http://space.mit.edu/˜molly/mangle/
5 Note that we are being very conservative with potential contamination from
the LMC by removing one extra stripe at −61 < dec [deg] < −60.
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Figure 2. Star-galaxy separator distribution of true stars and galaxies vs. mag-
nitude from a combined spectroscopic (Sánchez et al. 2014) and space imaging
sample (Leauthaud et al. 2007). Color contour corresponds to the true galaxy
locus whereas true stars are depicted as dots. Magnitude cuts for the sample
used in this work are shown as vertical lines, together with the selection of stars
and galaxies using the WAVG SPREAD MODEL classifier in horizontal lines.

We also perform the following additional color cuts

−1 < g − r < 3

−1 < r − i < 2

−1 < i− z < 2, (15)

in order to remove outliers in color space. While MAG AUTO mea-
sures galaxy properties independently for each band, MAG DETMODEL

applies a consistent morphological model across all bands, yielding
more accurate galaxy colors. We therefore use MAG DETMODEL when
making the above color cuts on the sample.

4.1 Star-galaxy separation

The selection of galaxies (as opposed to stars) from the Gold cat-
alog is achieved using a star-galaxy classifier that relies on the
SExtractor SPREAD MODEL parameter (Desai et al. 2012; Sou-
magnac et al. 2013) which measures the light concentration of each
object using a linear discriminant analysis at the pixel level. This value
is calculated for all single epoch images contributing to the final coad-
ded object and the classifier is built using a weighted average expres-
sion of the individual SPREAD MODEL values. The final value is then
termed WAVG SPREAD MODEL. The star-galaxy separation is done
selecting objects with,

WAVG SPREAD MODEL > 0.003 (16)

In order to assess the efficacy of this cut, we use DES obser-
vations over the COSMOS field, in which we can make use of the
measurements from the ACS instrument of the Hubble Space Tele-
scope in that area as a source of ’truth’ information for morphological
separation of stars and galaxies (Leauthaud et al. 2007), and also the
DES observations that overlap with the spectroscopic samples that
were used in Sánchez et al. (2014) (which provide truth information
based on the spectra). The distribution of WAVG SPREAD MODEL as
a function of i-band magnitude for these objects is shown in Fig. 2.
This data allow us to determine a contamination level of 1.5% from
stars, with a cut efficiency in the galaxy sample of 96% (for DES ob-

Photo-z bin NBPZ NTPZ

0.2 < z < 0.4 684, 416 441, 791
0.4 < z < 0.6 759, 015 721, 696

0.6 < z < 0.8 494, 469 586, 510
0.8 < z < 1.0 270, 077 361, 937

1.0 < z < 1.2 55, 954 93, 958

Table 1. The number of galaxies in each of our photo-z bins, when using the
template based method BPZ (NBPZ) and when using the machine learning
method TPZ (NTPZ).

jects with i < 22.5). The impact of stellar contamination on clustering
measurements is discussed in Section 6.3.

4.2 Photometric redshift estimation and redshift binning

A priori, different photo-z codes will lead to different estimates of
galaxy redshifts, which then will propagate into theory predictions
and eventually into the fitted parameters. There exist two main ap-
proaches for photometric redshift estimation: template fitting methods
and machine learning ones. Each of these approaches have their ad-
vantages and disadvantages, in particular they depend differently on
how the spectroscopic set is used, which can be used for training a
machine learning approach or to derive fitting priors on the template-
based one. Their differences also depend on the distribution of the
magnitude errors, the survey depth, the observing conditions and the
galaxy population among others.

A direct comparison of clustering observables and derived quan-
tities such as bias between these two approaches is a good way of
assessing the impact of photometric redshift estimation on cluster-
ing measurements. To our knowledge this test has not been done in
clustering analyses in the literature. In this paper, we employ two
different algorithms to estimate photometric redshift: BPZ (Bayesian
Photometric Redshifts), a well known template-fitting based method
(Benı́tez 2000; Coe et al. 2006) and TPZ (Carrasco Kind & Brunner
2013, 2014), a high-performing machine learning algorithm for DES
data.

4.2.1 Template Fitting method

BPZ6 compares the broad-band galaxy spectral energy distribution to
a set of galaxy templates until a best fit is obtained, which determines
both the galaxy spectral type and its photometric redshift. The details
and capabilities of BPZ on early DES data are presented in Sánchez
et al. (2014), where it shows the best performance among template-
based codes. The primary set of templates used contains the Coleman,
Wu & Weedman (1980) templates, two starburst templates from Kin-
ney et al. (1996) and two younger starburst simple stellar population
templates from Bruzual & Charlot (2003), added to BPZ in Coe et al.
(2006). We calibrate the Bayesian prior by fitting the empirical func-
tion Π(z, t|m0) proposed in Benı́tez (2000), using a spectroscopic
sample matched to DES galaxies and weighted to mimic the photo-
metric properties of the DES-SV sample used in this work.

4.2.2 Machine Learning method

TPZ7 (Carrasco Kind & Brunner 2013, 2014) is a machine learn-
ing algorithm that uses prediction trees and random forest techniques

6 http://www.stsci.edu/∼dcoe/BPZ/
7 http://lcdm.astro.illinois.edu/research/TPZ.html
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to produce robust photometric redshift probability density functions
(PDFs) together with ancillary information for a given galaxy sample.
The prediction tree is built by asking a sequence of questions that re-
cursively split the input data taken from the spectroscopic sample, fre-
quently into two branches, until a terminal leaf is created that meets a
stopping criterion (e.g., a minimum leaf size or a variance threshold).
By perturbing the data using their magnitude errors and by taking
bootstrapping samples, many (600 in this case) uncorrelated trees can
be created whose results are aggregated to construct each individual
photo-z PDF.

Sánchez et al. (2014) contains detailed information about the ap-
plication of TPZ and BPZ to DES Science Verification data includ-
ing the derivation of photometric redshifts used in this paper. It also
presents a comparison of these two algorithms to numerous other ex-
isting photo-z methods. They both proved to be among the best per-
forming codes in the tests presented in that work, motivating their
use in further science analyses using DES-SV data. The 68th per-
centile widths (corresponding to the scatter in the photo-z solution)
were found to be 0.078 for TPZ and 0.097 for BPZ, with 3σ outlier
fractions being 2 per cent for both algorithms, for detailed metrics see
Sánchez et al. (2014).

4.2.3 Redshift binning

Because we wish to study the evolution of galaxy clustering with red-
shift, we split our sample in five photo-z bins of width ∆z = 0.2,
from zphot = 0.2 up to zphot = 1.2. For this analysis we use two pho-
tometric redshift estimation algorithms which provide photo-z prob-
ability density functions (PDF). One is a standard template-fitting
based code, BPZ, which we take as our default photo-z algorithm.
For robustness and cross-validation we also use a machine learning
based algorithm, TPZ. Both are discussed in more detail in Sec. 4.2.
The number of galaxies in each photo-z bin is given in Table 1.

In Fig. 3 we show the estimated “true” redshift distribution cor-
responding to each of these five bins for BPZ and TPZ; we will use
these in Eq. 2 to make model predictions for the clustering analy-
sis. These were computed by stacking the individual photo-z PDFs
of each galaxy in the binned sample. The accuracy of this approach
in DES-SV data is discussed in Sánchez et al. (2014) and its perfor-
mance in simulated data in a companion paper, Leistedt et al. (2015).

As can be seen by inspecting Table 1, there are some large dif-
ferences in the numbers of galaxies within the same zphot bin but
using different photo-z algorithms. These differences can be under-
stood when also considering the reconstructed n(z) of each sample.
For instance, in the 0.2 < zphot < 0.4 bin, the distribution is con-
siderably wider for BPZ. Thus, the bin has more objects in it, as ob-
jects that are truly at higher redshift (and occupy a larger volume) are
mis-estimated to occupy the low redshift bin. Therefore, despite their
differences, we expect each set of galaxies to effectively probe the
mean clustering properties of the galaxies at the effective redshift of
the sample, when properly analyzed within the context of the dn/dz.

4.3 Survey depth and baseline angular mask

Within any given redshift range, minimization of the expected un-
certainty on clustering measurements is a trade-off between area and
number of objects (see, e.g., Crocce, Cabré & Gaztañaga 2011). A
fainter flux-limited sample maximizes the number density of observed
galaxies, but one should discard areas where this limit is not met in
order to secure the completeness of the sample. The available SV area
decreases by approximately 20 deg2 for limiting magnitudes in the
range 20 < MAG AUTO < 22.5 but exhibits a sharp decrease of deeper
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Figure 3. Redshift distributions obtained from stacking the photo-z PDF of
objects selected in five top-hat photo-z bins using either the template based
estimation (BPZ, top panel) or the machine learning one (TPZ, bottom panel).

regions. For example, from the approximately 150 deg2 SV area over-
lapping SPT-E region, only about 80 deg2 have a limiting magnitude
of i = 23.

Thus, we set the flux-limit of i = 22.5 for the definition of the
sample and consider only the regions with i-band limiting magnitude
MAG AUTO > 22.5 in our clustering analysis 8. The resulting angu-
lar footprint, after combining with the survey mask of Sec. 3.3.1, is
shown in Fig. 4. It occupies a contiguous area of 116.2 deg2. We con-
sider this footprint as our baseline mask which will be used for all
subsequent clustering measurements in this work. But we note that
further masking may be due in some photo-z bins to mitigate system-
atic effects, this will be the subject of Sec. 6.

We also note that our area and sample are very close to the ones
used in the CHFTLS analysis of Coupon et al. (2012); with an area
of 133 deg2 to a limiting depth of i = 22.5. However our footprint is
contiguous, which makes the impact of the integral constraint on large
scales negligible as opposed to measurements in the four separated
fields of CFHTLS. The sample we analyze is the largest contiguous
area demonstrated to have a reliable i-band depth of 22.5 for extra-

8 We have checked that the mean number density of objects in the sample
does not change any longer if we restrict to deeper areas.
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Figure 4. The distribution of LSS bench-mark sample galaxies over the angular footprint defined by regions with survey limiting magnitude in the i-band > 22.5.
The sample is selected to be flux limited to i 6 22.5 and has a mean density of 5.6 arcmin−2. All the regions considered provide at least S/N 10 measurements
for objects at i-band = 22.5. This choice balances concerns between using the maximum depth and area possible, as described in the text. The x-axis (y-axis)
corresponds to right ascension (declination) measured in degrees.

galactic sources, despite being less than 3% of the size of the final
DES footprint.

5 POTENTIAL SOURCES OF SYSTEMATICS AND MAP
PROJECTIONS

Quantities that may modulate the detection efficiency of galaxies and
produce spurious galaxy correlations have been recorded and mapped
so that any systematic effects can be empirically studied. The maps
used in this paper are presented below.

Galaxy catalogs can be affected by the time-dependent fluctu-
ations in the observing conditions of the survey. These fluctuations
affect the depth in non-trivial ways because they occur in the single-
epoch images, which are coadded and post-processed before extract-
ing the galaxy properties. In other words, the transfer function be-
tween the raw images and final catalogs is a complicated function of
the input single-epoch images and the coadding and source-extraction
pipelines, also coupled to the galaxy density field and astrophysical
foregrounds.

A significant effort is dedicated in DES to understanding the
transfer function from intrinsic to observed quantities (see, e.g., the
BCC-UFig framework, Chang et al. 2014 and also the Balrog
framework, Suchyta et al. 2015), which will be critical to precisely
identify sources of systematics and eliminate them in the cosmologi-
cal analyses. Such techniques can in principle be used to account for
the observational effects that cause fluctuations in the observed galaxy
density. These methods are still maturing (though see Suchyta et al.
2015 for a working example of applying such techniques to LSS mea-

surements), however, and thus for the DES-SV data we instead test the
observed galaxy density against a large number of maps of potential
sources of systematics (e.g., the mean seeing). These maps are then
used to run null-tests and correct for systematic shifts in the cluster-
ing measurements, as detailed in subsequent sections. This requires
one to project the properties of the single-epoch images onto the sky,
accounting for the geometrical overlap and also weighting due to the
coadding procedure. This projection is fully detailed in Leistedt et al.
(2015), where the full set of maps, their potential applications, and
a pedagogical example using catalogs extracted from the BCC-UFig
simulated images are presented.

For this paper, we consider single-epoch properties that are
known to affect the depth and therefore might affect the clustering
measurements. Each of these observational properties is mapped on
the sky into high-resolution (Nside = 4096) HEALPix format maps,
and we reduce the full set of values in each pixel into a weighted
mean using inverse-variance weights (as in the coadd and mangle
pipelines). The four quantities used in this work, computed in the
grizY bands, are (see Leistedt et al. 2015 for a full description):

• FWHM: the mean seeing (in pixel units), measured as the full width
at half maximum of the flux profile.
• airmass: the mean airmass.
• skybrite: the mean sky brightness.
• skysigma: the mean sky background noise derived as flux variance

per amplifier in each CCD chip9.

9 In principle, the sky brightness and the mean sky background should be

c© 0000 RAS, MNRAS 000, 1–23



8 M. Crocce et al.

Figure 5. Maps of potential sources of systematic errors that can lead to spatial variations in the number of observed galaxies (through depth fluctuations or sample
contamination) or degrade the data quality itself (impacting the determination of magnitudes, colors or photo-z). The values at each pixel are computed as single
statistical estimators of the single-epoch values for the images contributing to that map pixel.

We will consider only the mean quantities; in the future it might
be important to test against maps of the variance of these properties
as well. In addition to the above maps, we consider the following:

• Galactic dust extinction: As described above, the data
are calibrated using the technique of stellar locus regression, which in
addition to correcting for instrumental and atmospheric effects also
removes reddening due to Galactic extinction. To test for residual
effects of Galactic dust on the photometry, we include the Schlegel,
Finkbeiner & Davis (1998) dust map as a potential systematic,
pixelized with HEALPix resolution Nside=4096.

• USNO: Contamination of our galaxy sample by stars will affect the
measured clustering; stellar density increases towards the galactic
plane, following a gradient that causes significant clustering signal
on large scales (Crocce et al. 2011; Ross et al. 2011a; Ho et al. 2012).
Furthermore, because the footprint used in this work neighbors the
Large Magellanic Cloud, stellar contamination may introduce more
complicated spurious clustering. To investigate this effect, we include
a map of stellar density across the field, as measured by the USNO-B1
catalog (Monet et al. 2003). We take USNO stars with B magnitude
brighter than 20; deeper than this limit the depth of the USNO
catalog varies across the field. Although this catalog is brighter
than our sample, we expect the stars in our sample to trace the same

strongly correlated. We test against both as a validation that this process has
worked properly.

galactic density distribution as those in the USNO catalog. Due to low
statistics we use a coarser map HEALPix resolution of Nside=256.10

• depth mask: As described in section 4.3, we cut our sample at a
magnitude of MAG AUTO < 22.5 and use a footprint where the data
provides > 10σ measurements at that depth. We include the depth
map as a potential systematic in order to probe possible inaccuracy of
the map and incompleteness at the faint end of the sample.

• chi2 psf fit: The coadded image on which we base our
photometry can have complicated structure, as the number of input
images varies across the field and each input image has a unique PSF.
It is therefore difficult for the photometric reduction to characterize
the image and its PSF across an entire coadd unit. Poor characteri-
zation of the coadd image quality at the location of a star will cause
the star to be poorly fit by the PSF model. In locations of a poor PSF
fit to stars, galaxy photometry will also be adversely affected by the
inaccuracy of the estimate of the object’s size. We therefore use a
map of the average χ2 of objects’ fits to the PSF model to test against
this potential source of systematic uncertainty. We only consider very
bright objects, with 16 < i < 18, to ensure that the large majority of
them are stars.

10 We also tested results against a sample of fainter DES detected stars and
found no significant differences.
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• chi2 detmodel fit: MAG DETMODEL magnitudes are mea-
sured by fitting a Sérsic profile, convolved with the PSF model, to the
object image. Poor MAG DETMODEL fits over a region of data would
indicate photometric systematic errors in the same manner as poor
PSF fits, as described above. We therefore also test our data against a
map of the average χ2 of the detmodel magnitude fits; we expect
this map to be somewhat degenerate with the chi2 psf fit map.

We show some of the most relevant maps in Fig. 5.

6 MITIGATING SYSTEMATIC EFFECTS IN ANGULAR
CLUSTERING

In this section we give a detailed explanation of our general procedure
to address the impact of potential systematic effects due to varying
observing conditions, stellar contamination, or any other source of
spurious density fluctuations across our footprint. We assume that all
potential sources of systematics are encoded in the maps described in
Section 5.

Let us first describe our step-by-step procedure in broad terms
with more details and results given in subsequent sections,

[1] Galaxy Density vs. Potential Systematics : Our first step
is to study the galaxy number density in each tomographic bin as
a function of the value of each potential systematic variable. If the
galaxy density is independent of the value of the given potential
systematic we do not consider it as impacting our data. Otherwise
we try to either mask it or correct for its impact in the clustering
measurement, as shown below.

[2] Bad Regions Masking : The relation between galaxy density
vs. potential systematics can take several forms. If this relation is
such that the galaxy density is constant as function of the potential
systematic and changes sharply after some threshold value, we mask
the regions of such anomalous dependence (such as bad seeing, or
high airmass) to minimize its effect. This defines a veto mask that we
then use in all subsequent clustering analysis. The quality of the data
is such that we typically mask only small fractions of the footprint.
We will only mask data worse than a given quantity, as when the data
quality is worse, we naturally expect photo-zs, star/galaxy separation,
object detection, etc., to all perform worse and thus be more likely to
cause spurious fluctuations in the observed galaxy density.

[3] Clustering corrections using Cross-correlations : If the
relation between galaxy density vs. potential systematic is smooth
and close to linear (after imposing the veto mask discussed above) we
use cross-correlation between galaxies maps and the observational
maps to correct our measurements.

[4] Stellar Contamination : As described in Section 4.1, we
estimate 1.5% of the SV galaxy sample is comprised of mis-classified
stars. The clustering of stars over the SV footprint is close to zero,
implying that the main effect of the contamination is to proportionally
remove power from the w(θ) measurements. We estimate the stellar
contamination in each tomographic bin and derive how to correct
our clustering measurements given such contamination in Section 6.3.

6.1 Galaxy Density vs. Potential Systematics

Our first step is to study how the galaxy density depends on each
potential systematic variable, if at all. The starting point for these
measurements is pixelized maps of the distribution of galaxies and

of the potential systematics. We divide the range of the values of each
potential systematic variable into roughly ten bins. For the sky area
corresponding to each bin, we calculate the mean galaxy number den-
sity normalized by the mean across the whole footprint. In Fig. 6 we
show the resulting normalized galaxy density as a function of the dif-
ferent potential systematic variables. After examining all z bins, we
only show the relevant cases. Error bars are computed using the jack-
knife method by splitting the footprint into 100 regions. Hence er-
rors in Fig. 6 might be under-estimated due to a limited sampling of
large-scale fluctuations. Furthermore, note that extreme values of the
potential systematics are typically not sampled in most JK regions. In
such cases (i.e. the first and/or last points in each panel of Fig. 6) we
choose to estimate error bars as Poisson sampling noise.

We perform this procedure in every redshift bin, and define an
angular mask due to systematics per bin. These are:

• 0.2 < z < 0.4: The top left panel of Fig. 6 shows the relation
of galaxies selected in this bin with BPZ as a function of FWHM
in g-band and z-band. For high values of seeing we see a clear
drop of galaxy density and therefore choose to remove these areas.
We cut regions with g-band FWHM > 1.34 arcsecs (1.09 of the
mean g-band FWHM) which removes 13% of the area. Similarly,
we remove area with z-band FWHM > 1.24 arcsecs (1.12 of the
mean z-band FWHM) which removes a further 6%. In all 19% of
our nominal footprint is masked for the BPZ sample at this photo-z
bin. In the top left and right panels of Fig. 7 we show histograms of
FWHM shading the portion removed by this selection (at the same
time, Fig. 5 shows the maps for FWHM in all bands, providing an
idea of which regions are removed). The same procedure but using
galaxies selected with TPZ yields the top right panel of Fig. 6. In this
case we remove i-band FWHM > 1.28 arcsecs (1.11 of the mean
i-band FWHM). Note that there is also a dependence with z-band
FWHM. However after the regions with worst i-band FWHM are
removed, this dependence disappears. This is shown by the triangular
symbols with dashed error-bars . Hence for TPZ we only mask bad
i-band FWHM regions removing ∼ 11% of the original footprint.
The distribution of i-band FWHM is shown in the bottom right panel
of Fig. 7, where the masked out part has been shaded.

• 0.4 < z < 0.6: For this bin only the g-band FWHM affects the
galaxy density in a way suitable for masking. It does so in a very
similar manner for both photo-z samples, as shown in the bottom left
panel of Fig. 6. Hence we define a common veto mask for BPZ and
TPZ removing regions with g-band FWHM > 1.34 arcsecs (1.09 of
the mean g-band FWHM). This removes 13% of the area. According
to Fig. 7 the threshold value could be smaller because the relation
turns around at ∼ 1.28 arcsecs. We have checked that this extra
masking does not change the final clustering results, but it implies
removing about 30% of the area. Hence we cut g-band FWHM
> 1.34 arcsecs what should account for the bulk of the effect. Note
that after removing this region there is a clear dependence of galaxy
density increasing with g-band FWHM. This residual is exactly the
type that can be addressed by means of cross-correlations between
galaxies and potential systematics, as detailed in Sec. 6.2.

• 1.0 < z < 1.2: For the highest redshift bin we again define one
additional mask for BPZ and one for TPZ based on Fig. 6 bottom
right panel. For BPZ we remove regions with r-band FWHM > 1.28
arcsecs (1.08 of the mean r−band FWHM) which amounts to 6% of
the original footprint (leaving 109.2 deg2). For TPZ we cut regions
with i-band FWHM > 1.28 arcsec (1.1 of the mean i-band FWHM
and 10% of the area). Above these threshold values the density of
galaxies drops sharply compared to the mean.

For the bins at intermediate redshifts (0.6 < z < 0.8 and
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Figure 6. Galaxy density (normalized to the mean over the footrpint) as a function of the value of different potential sources of systematic errors, in regions where
those galaxies reside. This is displayed for our two photo-z estimators and different tomographic bins. We only show those cases where the density of galaxies drops
steadily after some threshold value indicating regions that may lead to systematic effects. To minimize them we mask these regions on top of our nominal mask (as a
function of photo-z bin). Values masked out in each case are indicated by the inset boxes in blue/red. Cases where this relation is roughly linear (e.g. 0.4 < z < 0.6

after high g-band FWHM values are masked) induce a change to the clustering measurements that can be corrected for using the cross-correlations between the
maps for galaxy distribution and the ones for systematic effects (see Sec. 6.2)

.

0.8 < z < 1.0) we find no dependence of the data with the poten-
tial systematics. Thus, we do not correct the clustering or introduce
additional cuts to the nominal footprint when analyzing these bins.

6.2 Galaxy-Systematics cross correlations

Once regions with bad observing conditions that translate into an
anomalous drop of the density of galaxies have been identified and
masked out we devote our attention to correcting more subtle de-
pendencies where the density varies roughly proportionally with the
strength of the systematic. For this we follow and extend the work
of Ross et al. (2011a); Ho et al. (2012). We start by assuming that
fluctuations in the potential sources of systematic effects δisys will in-
duce spurious fluctuations into the observed galaxy number density
δobs = ng/n̄g , such that

δobs = δtrue +
∑
i

αi δ
i
sys (17)

where δtrue are the true underlying fluctuations we want to recover
and i refers to any of the maps described in Section 5. By definition
we assume that true galaxy fluctuations do not correlate with the ones
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Figure 7. Distribution of FWHM weighted co-added values in different bands
across our footprint. The shaded parts of the histograms correspond to regions
where large decrement of galaxy density in different photo-z bins is found. To
avoid a systematic effect they were removed from the corresponding clustering
analysis. See Sec. 6.1 for further details.
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induced by the systematics11,

〈δobs δ
j
sys〉 =

∑
i

αi 〈δisysδ
j
sys〉. (18)

If we define,

wcross,j ≡ 〈δobs δ
j
sys〉,

wauto,ij ≡ 〈δisys δ
j
sys〉, (19)

then Eq. (18) can be written as,

wcross,j =
∑
i

αi wauto,ij , (20)

and the solution is a matrix inversion,

~α = ~wcross · (wauto)−1. (21)

Hence if we have 6 systematic maps we have to invert a 6x6 matrix
for each θ-bin (notice that we are a priori assuming that α is spatially
independent to factor it out of the correlations). From Eq. (17) one
can work out the auto correlation of true fluctuations

w(θ)true = w(θ)obs −
∑
i

∑
j

αiαj〈δisysδ
j
sys〉 (22)

= w(θ)obs − ~α · ~wcross, (23)

which reduces to the standard case,

w(θ)true = w(θ)obs − w2
cross/wauto (24)

for just one systematic.
Note that our starting assumption in Eq. (17) of a roughly linear

relation between δobs and δsys can be tested and confirmed with the
one-dimensional relation of galaxy density as a function of potential
systematics as done in Sec. 6.1. If strong non-linear dependencies are
found then Eq. (17) will not apply and the corrections induced will
bias the measurements. For this reason, it is important to mask the
regions (e.g., high g-band seeing) where the relationships are most
clearly non-linear, as is done in the previous section.

In addition, note that our approach does account for the correla-
tion among the potential systematics themselves. Nevertheless, solv-
ing for an arbitrarily large number of maps might still induce over-
corrections and biases due to the inversion in Eq. (23) and the noise
of the measurements particularly on large-scales.

Further below we explain our quantitative criteria based on cross-
correlations to choose which maps impact the galaxy sample and need
to be corrected for. Then we follow a combined approach in which we
also cross check against the density relations as in Sec. 6.1 for those
systematics that pass the criteria that a linear relation exists.

To use a quantitative criterion to select the most relevant sys-
tematics maps, we cross-correlate them with the galaxy distribution
maps at each redshift bin after applying the masking described in Sec-
tion 6.1. For each potential systematic we calculate the correction to
the galaxy correlation according to Eq. (24), w2

cross/wauto, ignoring
cross-correlations among systematics to begin with. This correction
is determined for each angular bin θ. Using JK resampling over the
footprint, we calculate an error on the correction. Then, if the correc-
tion is inconsistent with zero at a 1σ level12, the systematic is deemed

11 This means we must be careful in choosing systematics: e.g. photomet-
ric redshift error is typically smallest for luminous red galaxies, which cluster
strongly; we therefore must not use a map of redshift error (or, similarly, mag-
nitude error which correlates with galaxy luminosity) as a systematic. Other-
wise the correlation can be strong, see for example Martı́ et al. (2014).
12 We use 10 logarithmically distributed angular bins in 0.12 − 4 deg. The
1σ limit corresponds to χ2 > 11.53, where the χ2 is computed using the
covariance of the w2

cross/wauto estimates in the JK regions.

ì
ì

ì ì ì

ì

ì

ì

ì

ì

ò
ò ò ò ò ò

ò ò
ò

ò

à à à à
à

à

à

à

à

à

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

ææ

àà

òò

ìì

0.20 0.50 1.00 2.00 5.00

0.05

0.10

0.20

0.50

1.00

2.00

5.00

Θ @degD

1
0
0

´
Ω

HΘL

Galaxy Auto

FWHMi Auto

FWHMi ´ Gal

ΩHΘL Correction

Figure 8. Different two-point correlations entering the clustering correction in
the bin 0.2 < z < 0.4 for the BPZ sample due to spatial variations in i-band
FWHM over the DES footprint. See Sec. 6.2 for details.

significant and taken into account in further analysis; otherwise, it is
neglected.

Figure 8 shows as an example the correlation between the cen-
tral redshift bin, 0.2 < z < 0.4 for the BPZ sample and the FWHM
map in the i band. The figure shows the auto-correlation of the galaxy
sample, the auto-correlation of the FWHM map, the cross-correlation
between the data and the systematic, and the corresponding correc-
tion that should be applied to the data (ignoring covariance with any
other systematic effects), see Eq. (24). The correction is significantly
non-zero, and therefore we consider the i-band FWHM map to be a
relevant systematic in our analysis.

For the BPZ photo-z catalog the systematics that correlate sig-
nificantly with the data set are:

• 0.2 < z < 0.4 : i-band r-band and z-band FWHM, r-band Skybrite
and dust extinction (5 maps)
• 0.4 < z < 0.6 : g-band and r-band FWHM (2 maps)
• 0.6 < z < 0.8 : None
• 0.8 < z < 1.0 : None
• 1.0 < z < 1.2 : None after r-band FWHM masking

For the TPZ photo-z catalog the systematics that correlate sig-
nificantly with the data set are:

• 0.2 < z < 0.4 : r-band FWHM, r-band and z-band Skybrite (3
maps)
• 0.4 < z < 0.6 : r-band FWHM (1 map)
• 0.6 < z < 0.8 : None
• 0.8 < z < 1.0 : None
• 1.0 < z < 1.2 : None after i-band FWHM masking

Despite the fact that the limiting depth is the same in all of the
redshift bins we use, we find slight variations in the type and degree
of systematic contamination as a function of redshift. The corrections
arise mainly at low redshifts, hence they might be due to a correlation
between the observing conditions and the determination of photomet-
ric redshifts (the DES filter systems does not contain u-band, which
degrades the low redshift photo-z). Nonetheless, the significance of
the corrections is never beyond 2σ at any given angular scale which
signals that the data is not very impacted by systematics and our re-
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Figure 9. The purity of the DES galaxy sample in the COSMOS field in each
of the BPZ tomographic redshift bins we use, determined using the default cut
on WAVG SPREAD MODEL> 0.003. The stellar contamination is at most 2%.

sults not dominated by these corrections. This is discussed in more
detail in Sec. 7 and Tables 2 and 3.

6.3 Stellar Contamination

Stellar contamination will affect the measured clustering signal, even
if the cross-correlation between the galaxies and stars is negligible.
This is due to the fact that rather than modulate the selection function
of galaxies, stellar contamination introduces a separate population. In
the limit where the stars are un-clustered and the stellar contamination
is constant the observed galaxy density is, δo = (1 − fstar)δgal and
thus

wgal =
wo

(1− fstar)2
, (25)

i.e., the measured clustering is diluted by the square of the purity of
the galaxy sample.

We derive a general expression for the clustering of a galaxy pop-
ulation, given some stellar contamination (full details are shown in
Appendix D)

wgal = (1 + fstar)
2

(
wo − f2

starwstar,S −
f4

star

(1 + fstar)2

)
, (26)

where in this formalism, the number density of contaminating stars is
allowed to be a function of not just the total density of stars, but also
the survey observing conditions.

The cross-correlation tests presented in previous sections did not
find stellar contamination to be a significant systematic contaminant.
This suggests that the term in Eq. 26 proportional to wstar,S is con-
sistent with zero. However, the terms (1 + fstar)

2wo − f4
star remain,

and thus any stellar contamination must be accounted for.
We estimate the stellar contamination in each photometric red-

shift bin by using DES observations in the COSMOS field. This re-
gion contains space-based observations which identify matching DES
sources as point-like or not (as detailed in Section 4.1). Figure 9 shows
the purity of the DES sample in the COSMOS field and its uncertainty,
that we estimate in each redshift bin for the classifier discussed in
Sec. 4.1. The uncertainty includes the statistical Poisson variance, the
error due to sample variance fluctuations of the galaxy sample, which
impacts the purity too, and the fluctuations of the stellar sample in the
SPTE area. These are large due to the presence of the Large Magel-
lanic Cloud, and are included when extrapolating to the SPTE field.
This extrapolation to the DES SPTE area is done by finding the den-
sity of highly probable stars in the COSMOS field with a 19 < i < 21

cut and |WAVG SPREAD MODEL)| < 0.001 and we find that the av-
erage density is the same as that found in the DES SPTE area when
applying the same cuts, to within 10% (below our error bars due to
intrinsic fluctuations of the galaxy and stellar samples). We apply the
correction given by Eq. (26) to the w(θ) measurements and propagate
this uncertainty into measurements of the galaxy bias. The correction
to the bias is largest in the 0.6 < z < 0.8 bin, but is at most 2%.

7 RESULTS

We now discuss different aspects of our angular clustering measure-
ments in the tomographic bins, in particular the corrections for sys-
tematics discussed above. Let us first note that in what follows we
define the best-fit bias b and 1σ error σb in the standard way, i.e.,
given

χ2(b) =
∑
θ,θ′

(ŵ(θ)− b2 wT (θ))Cov−1(θ, θ′)(ŵ(θ′)− b2 wT (θ′))

(27)
we first find its minimum to define b and then vary it around this
value such that ∆χ2 = 1 with ∆χ2 ≡ χ2(b + σb) − χ2(b). The
sum runs through a range of scales that will be specified accordingly
while the covariance has been defined in Sec. 2.3 as the “mixed” ap-
proach, see Eq. (11). In Appendix B we discuss the best-fit bias re-
sults when different ways of estimating the covariance are considered.
Note that we do not perform joint fits including multiple redshift bins,
hence Eq. (27) does not include the covariance between different red-
shift bins. The b2 wT refers to the modeling of Eq. (2), where wT
is the underlying dark-matter clustering multiplied by a linear bias b
to yield the model galaxy-galaxy correlation function. If wT is com-
puted starting from the linear theory power spectrum, we call this
model “linear growth”. If instead this is computed with the nonlin-
ear prescription Halofit (Takahashi et al. 2012), but still maintain-
ing a linear bias, we refer to it as the “linear bias” model. On large
scales Halofit reduces to linear theory, while on small scales the
effects of non-linear growth increase the model correlation above its
linear value. The smallest scale at which wT from Halofit equals
wT from linear theory will be referred to as “scale of linear growth”.
These are reported in the caption of Table 2 for each of the five photo-
z bins.

Tables 2 and 3 show the result of fitting a “linear growth” model
to the clustering measurements before any systematic correction is
applied (second column, labeled “baseline mask”), after a subsequent
masking of regions with the worst observing conditions, as discussed
in Sec. 6.1 (third column, labeled “+ bad regions masking”) and lastly,
after the remaining correlation with relevant maps is corrected for as
detailed in Sec. 6.2 (fourth column, “Gal-Syst cross correlations”).
Table 2 corresponds to the BPZ photo-z catalog, while Table 3 to the
TPZ one.

The corrections for systematic effects lower the clustering am-
plitudes and hence the derived best-fit biases. They are mainly im-
portant for low redshift, in particular the 0.2 < z < 0.4 bin. Here
the BPZ best-fit bias goes down by δb/σb ∼ 3, while for TPZ the
change is δb/σb ∼ 1.6. For the 0.4 < z < 0.6 bin the change in
bias is O(σb). These two redshift ranges are important for the com-
bination of galaxy-galaxy clustering with weak lensing observables,
which typically use lens samples at low-z. Hence these corrections are
likely to be necessary to produce an unbiased cosmological analysis
using such a combination of probes, e.g., a spuriously large clustering
amplitude could translate to a spuriously high measurement of σ8. At
higher redshifts, which we expect to be more suitable for future BAO
studies due to larger volumes and better photo-z performance, we do
not find significant observational systematic biases affecting our mea-
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Figure 10. Angular auto-correlation functions,w(θ), in photo-z bins of the BPZ estimator for our flux limited sample (i < 22.5) spanning a broad range in redshift,
from z ∼ 0.2 to 1.2. Blue circles correspond to the measurements after correcting our sample for systematics as discussed in Sec. 6, while red squares is before such
corrections (only shown when relevant). Solid lines correspond to a linear bias model applied to the non-linear matter w(θ) computed with Halofit. The best-fit
bias displayed was obtained from fitting the range of scales shown in each case (main panels). Dashed lines correspond to linear theory, with the same value of the
bias. Note how the simple “linear bias” model describes the clustering towards scales considerably smaller than the linear regime shown by dashed lines. The inset
panels show the performance of the best-fit “linear bias” model towards smaller scales than the ones used in the fit (main panels), see text for a detailed discussion.

BPZ (template method): best-fit bias and 1σ error

Photo-z Baseline + Bad Area + Gal-Syst χ2/

Bin Mask Masking Cross-Corr d.o.f.

0.2 < z < 0.4 1.28± 0.07 1.20± 0.07 1.05± 0.07 2.5/7

0.4 < z < 0.6 1.25± 0.05 1.26± 0.05 1.23± 0.05 8.3/8

0.6 < z < 0.8 1.35± 0.04 − − 2.3/9
0.8 < z < 1.0 1.54± 0.02 − − 10.3/10
1.0 < z < 1.2 2.20± 0.07 2.17± 0.09 − 3.6/10

Table 2. Impact of the different corrections for observational systematic ef-
fects on the derived best-fit bias b for the tomographic bins selected with our
template method. The baseline mask is described in Sec. 4.3 and corresponds
to all regions where our sample is complete (i.e. 10σ depth i >= 22.5).
The third column corresponds to an additional masking of regions with high
values of potential systematic variables such as seeing, where we observe
large decrements in galaxy density (as described in Sec. 6.1). The fourth col-
umn refers to further corrections to w(θ) after these masks, in cases where
the data still correlates with maps for potential systematics (as discussed in
Sec. 6.2). The fifth column reports the χ2/d.o.f after all corrections ap-
plied. Empty entries refer to cases where such corrections were not necessary.
These values were obtained after fitting the “linear growth” model for scales
θ > θmin = (0.26, 0.18, 0.12, 0.08, 0.06) deg., from first to last z -bin.

surements, at least for the range of angular scales probed in with our
current data.

Figure 10 shows the angular correlation function measurements

TPZ (machine learning method)

Photo-z Baseline + Bad Area + Gal-Syst χ2/

Bin Mask Masking Cross-Corr d.o.f.

0.2 < z < 0.4 1.18± 0.07 1.13± 0.08 1.07± 0.08 2.1/7

0.4 < z < 0.6 1.29± 0.04 1.30± 0.04 1.24± 0.04 6.7/8

0.6 < z < 0.8 1.34± 0.05 − − 14.5/9
0.8 < z < 1.0 1.56± 0.03 − − 3.7/10
1.0 < z < 1.2 1.97± 0.09 1.96± 0.06 − 4.5/10

Table 3. Same as Table 2 but for the tomographic bins selected with the ma-
chine learning method. Different algorithms for photometric redshift estima-
tion use different data quantities (most notably, template based ones use mag-
nitude errors while most machine learning do not). Thus one expects a different
response to potential systematics.

in the five consecutive photo-z bins in which we have split our sample
(for the BPZ sample). Blue circles show our measurements after ap-
plying all of the corrections for observational systematic effects that
we have detailed, while the square red symbols show the measure-
ments before any correction. As is clear from Fig. 10 these corrections
do not affect the small scale clustering, and are most important at low
redshifts. The dashed curve in each panel corresponds to a linear the-
ory model (“linear growth”), while the solid curve uses the non-linear
Halofit prescription (“linear bias”). Each model curve is for the
bias given in Table 2, fit over the range of angular scales indicated in
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Figure 11. Comparison of the large-scale bias measured in a DES-SV flux limited sample (i < 22.5) to equivalent measurements from CFHTLS derived from
Coupon et al. (2012). We present DES results for two different photometric redshift catalogs, one obtained using a template method (BPZ), another with a machine
learning approach (TPZ). The overall agreement between the two DES samples as a function of redshift is better that 2 per cent for z < 1. At z > 1 is difference is
not statistically significant (∼ 2σ). This represents a non-trivial test for DES-SV photometric redshift estimation. Our results are also in good agreement with those
from CFHTLS, with χ2/d.o.f = 4/5 for TPZ and 8.7/5 for BPZ, representing a cross-validation of data quality and sample selection.

its the caption. In Sec. 7.3 we discuss the angular range of validity of
a linear bias prescription based on Halofit, therefore in Fig. 10 we
have chosen to display the clustering measurements to scales that go
beyond the linear regime.

There is good qualitative agreement between the linear bias
model and the observed clustering at the scales shown in the main
panels of Fig. 10 (we discuss this more in quantitative terms below
in Sec. 7.3). This result is interesting because it implies that, at least
for projected clustering in angular coordinates, the scale of non-linear
biasing is different from the one of non-linear dark matter clustering.
The latter is currently better understood, so in general terms this result
is relevant. We will come back to it in Sec. 7.3.

We further note that at large scales (θ & 2◦) all the correlations
tend to zero. This is a signal that systematic effects are under control,
as systematic variations tend to introduce spurious large-scale power
(Ross et al. 2011a; Ho et al. 2012; Leistedt et al. 2013)).

In the inset panels of Fig. 10, we show the clustering measure-
ments at smaller angular scales and using a log scaling for w(θ).
The model curves are merely extrapolations using the best-fit bias
recovered on larger-scales (main panels). Qualitatively, this simple
model does not depart strongly from the measurements. The data at
these scales will be used to constrain the halo occupation distribution
of DES SV galaxies in Sobreira et al. (in prep.). However, the gen-
eral agreement signals that a more elaborate non-linear bias prescrip-
tion based on perturbation theory (Fry & Gaztanaga 1993; McDonald
2006; Chan, Scoccimarro & Sheth 2012) might be adequate to de-
scribe the data in this high signal-to-noise regime. Such study is left
for future work. Instead, in Sec. 7.3 we will show that the current data
size and quality of DES-SV is able to distinguish the breakdown of a
“linear bias” prescription in detail.

Lastly we note that we have chosen not to show the clustering
for the TPZ sample in a manner analogous to Fig. 10, as the results
look almost identical at the qualitative level.

7.1 Bias Evolution and Comparison to CFHTLS

The DES science verification data used in this paper (and in a series of
papers accompanying it) is in several regards similar to that collected
by the CFHTLS collaboration, for example in depth, photometry and
area. CFHTLS has, to this point in time, been regarded as the state of
the art for deep wide area photometric data. Hence in this section we
compare our clustering measurements to those presented by Coupon
et al. (2012).

Galaxies in Coupon et al. (2012) are selected according to SEX-
tractor MAG AUTO magnitudes of i < 22.5, and thus comprise a
very similar sample to the one presented in this paper. To facilitate
the comparison further we have chosen our photo-z bins similarly to
those in the clustering study of Coupon et al. (2012). Although pho-
tometric redshifts in CFHTLS were estimated using a different tem-
plate method, LePhare (Ilbert et al. (2006), Coupon et al. (2009)) we
have used a very similar set of templates to obtain our DES BPZ data
(Sánchez et al. 2014). The comparison to a neural network photo-z
catalog such as TPZ is novel in this regard.

The apparent magnitude sample i < 22.5 in Coupon et al. (2012)
was then split and reported as several volume limited absolute mag-
nitude “threshold” samples in each photo-z bin. Therefore in each
redshift bin, our sample (also selected by i < 22.5) corresponds to
the faintest absolute magnitude sample in Coupon et al. (2012), except
for the fact that Coupon et al. (2012) imposed cuts to make the sample
volume limited, where we have not. For example, for 0.4 < z < 0.6
there is a group of galaxies brighter than i = 22.5 but fainter than
Mr − 5 log h = −18.8 (see their Fig. 4). These galaxies are in our
sample but not in the Mr − 5 log10 h < −18.8 sample of Coupon
et al. (2012). In Appendix C we estimate the impact of these differ-
ences in selection when comparing b(z) results. We find the differ-
ences are most relevant at high z, where the galaxies in the samples
have luminosity thresholds, L, such that db/dL is large.

The bias evolution reported by Coupon et al. (2012), accounting
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Figure 12. Full set of two-point cross-correlation functions between all of the
BPZ redshift bins we use. The theory curves represent a Planck fiducial model,
with linear bias values fitted to the auto-correlations displayed in Fig. 10 over
scales θ > 0.2 deg. Cases where this produces a match to the observed cross-
correlations demonstrates the robustness of the dn/dz estimation.

for the differences in sample selection as described in Appendix C,
is shown by a filled light-red region in Fig. 11 (where the width cor-
responds to the statistical errors bars reported by CFHTLS) 13. The
green squares with error bars correspond to our bias measurements
for the BPZ sample presented in the previous section and in Table
2, while the blue squares correspond to our TPZ sample as reported
in Table 3 (both for the cases where all corrections for observational
systematics have been applied).

Overall, the match in the recovered bias as a function of redshift
between our apparent magnitude sample and the corresponding one
by CFHTLS is good, with a slight tension at the highest bin for BPZ.
Note however that for CHFTLS the error bars depicted in Fig. 11 are
statistical only (as reported by Coupon et al. (2012)), while in our
case we include effects such as the reduction of effective area due
to further masking of bad observing regions, or the impact of stellar
contamination. If we define

χ2 =

5∑
bin j=1

(b
(j)
DES − b

(j)
CFHTLS)2/(σ

(j)
b )2 (28)

and add the errors in quadrature, σ2
b = σ2

b,DES + σ2
b,CFHTLS we

find that χ2(BPZ) = 8.7 while χ2(TPZ) = 4 for five degrees
of freedom in each case. Assuming that the DES and CFHTLS data
are drawn from the same underlying Gaussian distribution, greater χ2

would be expected in 55 per cent of cases for the TPZ comparison
and 12 per cent of cases for the BPZ comparison. This means that the
agreement is better than 1σ for TPZ and better than 2σ for BPZ.

We stress that the agreement for the bias evolution between the
two photo-z catalogs is non-obvious because different photo-z codes

13 We have re-scaled the CFHTLS measurements that assumed at z = 0
σ8 = 0.8 to our cosmology σ8 = 0.83

Figure 13. Same as Fig. 12 for the photometric catalog derived with TPZ.

could, in principle, select different types of galaxies in different red-
shift bins (note that the algorithms implemented in BPZ and TPZ are
very different). This might explain the difference at the last z-bin if
BPZ were selecting a rarer population with a higher bias. However
we note that if the two samples were independent, the disagreement
would be 2.1σ, and thus not remarkable. For z < 1.0, the two tech-
niques return samples with bias values that agree to better than 2 per
cent, suggesting that at these redshifts, systematic uncertainties asso-
ciated with the photo-zs in this redshift range are well-controlled.

The increase in bias with redshift found in Fig. 11 is primarily
a consequence of the effective luminosity threshold, as this threshold
naturally increases with redshift for a flux limited sample. Only the
high luminosity galaxies will be observed at high z, and they are more
biased. This effect accentuates for z & 0.8 as the majority of galaxies
come from the exponential tail of the luminosity function. The b(z)
shown in Fig. 11 is therefore not physical in the sense that the sample
is changing with redshift. In Appendix A we show that this evolution
of galaxy bias as a function of redshift is also recovered in simulations
based on Halo Occupation Distribution techniques to populate halos
with galaxies.

7.2 Consistency from cross-correlations of photo-z bins

As a further test of potential systematics and photo-z we show in
Figs. 12 and 13 the full set of cross-correlation measurements be-
tween photo-z bins for the BPZ and TPZ samples, respectively (see
Christodoulou et al. (2012) for a related analysis using SDSS data).
These measurements were done using a cumulative mask, for each
photo-z estimator, combining the ones derived for each photo-z bin
in Sec. 6.1.

For bins that are well-separated in redshift, we observe that their
cross-correlations are consistent with zero, as expected from the red-
shift distributions in Fig. 3. One notable exception is the measured
cross-correlation between bins 0.2 < z < 0.4 and 1.0 < z < 1.2 for
BPZ, which is significantly negative. Understanding the cause of this
is left for future work.
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Solid lines in Figs. 12 and 13 correspond to our fiducial model,
given by Eq. (2), for wij provided with the redshift distributions in
photo-z bin i and j. They use a bias b =

√
bibj where bi and bj are

the the best fit “linear growth” model bias from the auto-correlations.
This is therefore a fully predictive model given the auto-correlations,
and a test for outliers and the reconstructed dn/dz.

In Tables 4 and 5 we compare the predicted
√
bibj with bias

values determined by directly fitting the cross-correlation functions
over the same range of scales (θ > 0.2 deg), which we call bij14. We
estimate the error on the bias prediction

√
bibj by a direct propagation

of the error on the auto-correlation biases, σbi and σbj ,

σ√
bibj

= (
√
bibj/2)(σbi/bi + σbj/bj). (29)

The fourth column displays the absolute difference between
√
bibj

and bij divided by their error combined in quadrature. In the 20 total
cases tested (considering both photo-z methods), we find only one
case where ∆b/σb is greater than 2.21σ (BPZ bin 3×5) and only two
cases where they are greater than 1.45σ (the additional case is TPZ
bin 1×2). Considered in total, the cross-correlation results agree with
the auto-correlation results at roughly the expected statistical level.

The picture recovered from Figs. 12 and 13 and Tables 4 and 5 is
that outliers are not causing obvious inconsistencies in our analysis,
and that to a large extent our estimated redshift distributions are cor-
rect. However, future DES data will require more work to assess the
level of systematic uncertainty associated with photo−z estimation.

7.3 On the Scale of Linear Bias

In Sec. 7 and Fig. 10 we showed that on large angular scales the clus-
tering recovered in our data agrees well with the standard linear theory
prescription: b2 wDM,Lin(θ) for all photo-z bins. We further noted
that at smaller scales the assumption of linear bias appeared to still
hold provided the description of the underlying dark matter cluster-
ing accounted for non-linear growth of structure (for which we used
Halofit from Takahashi et al. 2012). In this section we explore in
quantitative terms the scale at which this assumption leads to a signif-
icant data-theory discrepancy15.

We define the transition from linear to non-linear dark mat-
ter clustering as the minimum scale such that wDM,Halofit =
wDM,Lin. Given our photo-z bins this occurs at θLinear Growth ∼
(0.26, 0.16, 0.11, 0.09, 0.08) deg. for bins one to five. This corre-
sponds to roughly 4 Mpch−1 of comoving separation across redshift
given our cosmological model. The best-fit biases and χ2 on linear
scales (θ > θLinear Growth) are provided in Table 2.

To state at what point the “linear bias” model becomes notably
worse than the “linear growth” model we perform the following test.
We first find the χ2 using the data vector and covariance matrix for the
angular bins where θ > θLinear Growth and the “linear growth” model.
Then we add new data to the fit by decreasing the minimum angular
scale considered, θmin < θLinear Growth, and using a “linear bias”
model we determine the difference in χ2 values between the extended
data vector and the “linear growth” one. A large ∆χ2 (depending on
the extra data-points, ∆(d.o.f.)) implies that a model with a single
bias parameter is no longer a good description of the extended data
vector. In quantitative terms, we define θmin such that,

∆χ2 −∆(d.o.f) = 4 (30)

14 Note that we use the same range of scales here for all redshift bins, so that
a fair comparison is possible for all cross-correlations. The biases thus differ
slightly than those that would be inferred from Table 2.
15 In this section, we focus on the BPZ data for concreteness but the conclu-
sions reached in this section do not significantly depend on this choice.

BPZ cross-correlations

Bin i × j bij
√
bibj ∆b/σb

1×2 0.98± 0.07 1.10± 0.05 1.45

1×3 0.00± 1.23 1.12± 0.05 0.91
1×4 0.01± 4.86 1.19± 0.05 0.24

1×5 0.00± 3.99 1.44± 0.07 0.36

2×3 1.25± 0.14 1.26± 0.05 0.04

2×4 0.00± 1.64 1.33± 0.05 0.81

2×5 0.04± 5.74 1.61± 0.08 0.27

3×4 1.22± 0.13 1.36± 0.06 0.97
3×5 3.27± 0.43 1.65± 0.08 3.74

4×5 1.96± 0.12 1.75± 0.08 1.39

Table 4. Comparison of best-fit biases bij obtained from fitting the two-point
cross-correlation functions between photo-z bins i and j (displayed in Fig. 12)
vs. the prediction for such signal from the best-fit to auto-correlations in z-bin i
and z-bin j, given by

√
bibj . The fourth column shows the absolute difference

∆b = |bij −
√
bibj | divided by their error combined in quadrature.

TPZ cross-correlations

Bin i × j bij
√
bibj ∆b/σb

1×2 1.35± 0.08 1.13± 0.05 2.21

1×3 0.00± 1.91 1.12± 0.05 0.58
1×4 0.00± 1.79 1.24± 0.06 0.69

1×5 0.00± 3.28 1.36± 0.07 0.41

2×3 1.01± 0.21 1.25± 0.05 1.11

2×4 0.00± 1.40 1.39± 0.06 0.99

2×5 0.00± 2.35 1.53± 0.08 0.64

3×4 1.11± 0.20 1.37± 0.06 1.27

3×5 0.00± 2.14 1.51± 0.07 0.70

4×5 1.61± 0.15 1.68± 0.08 0.39

Table 5. Same as Table 4, but for the TPZ cross correlations displayed in
Fig. 13.

as the point where a 2σ preference for an improved (but unknown)
model for the bias as a function of scale exists. We thus define the
largest angular scale at which this condition is met as our measure-
ment of θLinear Bias. In what follows, we refer to the results of this
test as the results of the ‘χ2 test’.

The results of the χ2 test are shown in Fig. 14 for all z -bins. We
find θLinear Bias ∼ (0.06, 0.05, 0.04, 0.037, 0.007) deg. for bins one
to five. We consider the accuracy at which we detect the breakdown
of the “linear bias” scheme as half16 the precision in the measurement
of the correlation function at θLinear Bias. For our current SV sample
this is ∼ 2.5% for the central photo-z bins, and ∼ 4% for bins one
and five.

In Fig. 15 (top panel) we plot the resulting θLinear Bias as a func-
tion of redshift (solid purple curve) and compare it to θLinear Growth

(dashed orange curve). The scale where the “linear bias” model fails
is approximately three times smaller than the scale where non-linear
growth becomes important, except for the 1.0 < z < 1.2 bin, where

16 Because w(θ) ∝ b2
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Figure 14. We estimate the smallest scale θmin at which a linear bias model
is still a good description of the clustering by computing the χ2 difference
between a fit extending to θmin and a fit only on large linear scales. A ∆χ2 ∼
4 + ∆(dof) roughly corresponds to 2σ evidence that the linear bias model
fails to describe the data.

we find a factor of 10. The bottom panel of Fig. 15 shows the same in-
formation but translated to co-moving separations at the centre of each
redshift bin, assuming our fiducial cosmological model. The scale of
linear growth is roughly constant with redshift, ∼ 4h−1 Mpc, while
the scale of linear bias is ∼ 1h−1 Mpc (except in the last bin).

In Fig 16 we present, as a cross-check, the resulting best-fit bias
as a function of the θmin tested when obtaining the χ2 test results.
The dashed line in each panel shows the “linear growth” bias from
Tables and 1 and 2. As we extend the fit down to smaller θmin we
recover smaller error-bars, as expected. Further, the measured bias
values remain consistent with the dashed line, until approximately the
scale of Linear Bias determined using the χ2 test. We find that in all
redshift bins, the measured bias begins to be clearly under-estimated
compared to the asymptotic large-scale value (this would be consis-
tent with a negative 2nd-order bias parameter in the local Eulerian
bias model) at close to the θmin determined using the χ2 test.
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Figure 15. Top Panel: the evolution of the scale down to which the linear
bias model (with non-linear dark matter) reproduces our angular clustering
measurements, compared to the evolution of the linear bias + linear dark matter
clustering. The former is valid to considerably smaller scales. Bottom Panel:
Same information but translated into co-moving distances at the given redshift.

These results are interesting because they imply that forthcom-
ing DES studies might be able to incorporate higher signal-to-noise
data into cosmological analyses that use the full shape of the correla-
tion function information with a simple bias model. We do stress that
a more thorough analysis would involve allowing for a more complex
model with non-linear and/or non-local bias terms and then investi-
gate how the best-fit value for the linear order term in such scheme
compares to the linear model results we present. This is however be-
yond the scope of the present paper and we postpone it to future work.

8 CONCLUSIONS

We present the first large-scale clustering analysis of a galaxy sample
selected from the Science Verification Data of the Dark Energy Sur-
vey. The sample is selected as an apparent magnitude limited sample
i < 22.5, with no color selection except for very conservative cuts
to remove color outliers. The sample extends from zphot = 0.2 to
zphot = 1.2. We performed our analysis in five tomographic bins of
width ∆zphot = 0.2.

This paper has three main foci:

(i) We perform a detailed analysis and amelioration of potential
observational systematic effects. We use a set of maps for different
variables that can modulate galaxy detection efficiency, which
include varying observing conditions, stellar density, and Galactic
dust. We analyze which of them are affecting our sample by means
of angular cross correlations and a measurement of galaxy density
as a function of the value of the potential systematic variable across
the footprint. We then apply cuts to minimize these systematic
correlations, with a small loss of statistical power. We then show
how these two approaches complement and validate each other.
These methods can be widely applied to future clustering studies, in-

c© 0000 RAS, MNRAS 000, 1–23



18 M. Crocce et al.

æ

æ

æ

æ

æ
æ æ æ æ

0.05 0.10
0.8

0.9

1.0

1.1

1.2

Θmin @degD

b
ia

s
0.2 < zphot < 0.4

Linear Bias Linear Growth

æ æ
æ

æ

æ
æ æ

æ

æ

0.05 0.10

1.0

1.1

1.2

1.3

1.4

Θmin @degD

b
ia

s

0.4 < zphot < 0.6

Linear GrowthLinear Bias

æ

æ

æ
æ

æ

æ

æ
ææ

æ

0.05 0.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

Θmin @degD

b
ia

s

0.6 < zphot < 0.8

Linear GrowthLinear Bias

æ

æ

ææ

æ

æ
æ

æ
æ

0.05 0.10

1.40

1.45

1.50

1.55

1.60

Θmin @degD

b
ia

s

Linear GrowthLinear Bias

0.8 < zphot < 1.0

æ

æ

æ æ æ
æ

æ
æ æ æ æ

æ

0.01 0.1
1.9
2.0
2.1
2.2
2.3
2.4

Θmin @degD

b
ia

s

Linear GrowthLinear Bias

1.0 < zphot < 1.2

Figure 16. Best fit bias as a function of the minimum angular scale included in
the fit. The inset label “Linear Growth” indicates the range of scales where a
model with linear bias and linear matter clustering (hence “linear growth”)
applies in our data. The “Linear Bias” label corresponds to a model using
nonlinear matter clustering (Halofit by Takahashi et al. (2012)) but keeping
the bias linear.

cluding our detailed accounting of the effects of stellar contamination.

(ii) We evaluate the clustering in the five redshift bins comparing
it against simple linear theory models. We find good agreement with
these models and between the results we obtain from two separate
photo-z methods (one template based, the other machine learning) of
determining DES photometric redshifts. Both sets of measurements
are also consistent with bias measurements, determined at the same
redshifts for the same i < 22.5 flux limit, obtained by the CHFTLS
survey. We measure the cross-correlation between these redshift bins
as a test of the photo-z reconstruction, finding the cross-correlation
matching predictions from the autocorrelation signal at the expected
statistical level.

(iii) We explore the regime of validity of our simple models that

involve either linear / non-linear dark matter clustering, and a linear
bias term. We find that, in angular clustering, the scale at which a lin-
ear bias model is not consistent with our data is considerably smaller
than the scale at which non-linear growth in the clustering of dark
matter (as predicted by Halofit 2012) becomes important com-
pared to the linear theory predictions. These results are relevant for
probes that aim to combine weak lensing with large scale structure, as
they suggest a linear bias model could be sufficient to scales as small
as 1h−1Mpc.

The data we analyze is approximately 1/30th the size of the of
final DES data set17. In the near future the methods presented here
will be used and extended to larger DES samples suitable to measure
the Baryon Acoustic Oscillation scale, constrain the shape of the mat-
ter power spectrum and measure the growth of structure. As part of
this future analysis, we will use additional tools to robustly assess sta-
tistical and systematic uncertainties. We will make greater use of the
Balrog tool presented in Suchyta et al. (2015), which will enable
both a larger data sample and a more comprehensive assessment of
systematic variations. Most importantly, we will use detailed mock
catalogues and simulated data to provide robust and accurate covari-
ance matrix estimates. These simulations will also be used to assess
the systematic uncertainty introduced by the various systematic miti-
gation techniques and uncertainties in the photo-zs. Further, we will
consider the impact of time-dependent variations in the data quality
comprising the co-add. The work presented in this paper will help
inform the creation of these simulations and we will continue to re-
fine and apply the tools we have presented throughout this paper. In
this sense, the methods and results we present represents a first step
towards the goal of constraining cosmology with DES LSS measure-
ments.
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MNRAS, 419, 1689
Carrasco Kind M., Brunner R. J., 2013, MNRAS, 432, 1483
Carrasco Kind M., Brunner R. J., 2014, MNRAS, 442, 3380
Carretero J., Castander F. J., Gaztañaga E., Crocce M., Fosalba P.,
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Figure 17. Top panel shows the evolution of galaxy bias with redshift in a flux
limited sample (i < 22.5) similar to the one defined in this paper but selected
from our MICECATv2.0 mock galaxy catalog. We display bias derived from
galaxy auto-correlations bA =

√
wgg/wmm and galaxy-matter cross corre-

lation bX = wgm/wmm. The evolution is similar to the one in the DES-SV
data. Bottom panel shows the ratio of the two estimates, i.e. the stochasticity
coefficient r = bA/bX , which we found close to unity in the redshift range
relevant for DES data.
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APPENDIX

A Testing the bias evolution against MICE bench-sample

Here we test the evolution of bias for our flux-limited sample us-
ing the MICECATv2.0, simulation which is an updated version from
the MICECATv1.0 catalog (see Fosalba et al. (2015a), Crocce et al.
(2013), Fosalba et al. (2015b), Carretero et al. (2015)) extended to
lower mass halos and therefore less luminous galaxies. This version is
complete to i ' 24 at all redshifts. Magnitudes are assigned to galax-
ies following a combination of Halo Occupation Distribution (HOD)
and subhalo abundance matching (SHAM) prescriptions tuned to fit
the local (z ∼ 0) galaxy luminosity function and clustering as a func-
tion of luminosity and color (see Carretero et al. (2015)). To account
for evolution in galaxy luminosity on top of the one induced by halo
mass evolution, we transform the galaxy magnitudes using:

ievol = i− 0.8[atan(1.5z)− 0.1489], (31)

which gives similar counts to those in COSMOS and other galaxy
surveys (Castander et al, in prep.). We then restrict the sample to
ievol < 22.5 to compare to the DES SV bench-mark sample.

The top panel of Fig. 17 shows a comparison of the linear bias
measured in MICECATv2.0 against the one in our BPZ and TPZ sam-
ples shown in Fig. 11. In the case of MICECATv2.0 we estimate the
bias as bA =

√
wgg/wmm, where wgg is the measured galaxy angu-

lar correlation function andwmm the corresponding measured matter-
matter correlation in the same redshift bin. This is done using true

redshifts to avoid redshift space distortions, which can have a large
effect when using narrow redshift bins as in Fig. 17 (Eriksen & Gaz-
tanaga 2014) but are negligible (given scales and errors) for ∆z = 0.2
bins used in this paper (Crocce, Cabré & Gaztañaga 2011; Ross et al.
2011b). The MICECATv2.0 bias is fitted from the ratio in the range
0.2 < θ < 2.0 deg. The solid line is the bias measured from cross-
correlating galaxies and mass directly, bX = wgm/wmm. The shaded
region tries to reproduce the expected sampling and shot-noise errors
for DES SV in bA. It corresponds to ∆bA = (∆wgg/wmm)/(2bA),
where matter is kept fixed and the error in the galaxy-galaxy correla-
tion ∆wgg is scaled to 116 deg2 and ∆z ' 0.2, from the scatter in
24 JK regions over a larger 30x30 deg2 simulation patch. The smaller
error bars include sample variance cancelation between matter and
galaxy fluctuations (i.e. the scatter in bX from different regions). The
dotted line shows a cubic fit in simulations to bX and errors. The evo-
lution with redshift is very similar to the one in the LSS bench-mark
sample, in particular the fast rise at high redshift. At z < 0.5 DES-SV
data seems to be 1σ lower than simulations. Larger areas are needed to
decide if this is a significant discrepancy. The bottom panel of Fig. 17
shows the stochasticity coefficient: r ≡ wgm/

√
wggwmm = bX/bA.

The error bars are scaled from the dispersion in r from JK regions:
thus, they include sample variance cancelation and correspond to the
30x30 deg. patch used for this test. There seems to be some significant
detection of r at the smallest redshifts, but this is most likely a reflec-
tion of the poor performance of JK errors for the smallest volumes.
At z > 0.3 we find r to be in the range r ' 0.98 − 1.00, which is
consistent with unity when errors are scaled to the SV area. This is
relevant for analyses using probes that cross correlate the bench-mark
galaxy sample defined here with other data sets such as CMB lensing
(Giannantonio et al. 2015) or weak lensing maps.

Note that the bias is displayed in units of (σ8/0.83) to account
for the difference in the MICE value of σ8 = 0.80 and the one used in
this paper (σ = 0.83). There is quite a good agreement in the values
of b(z) without need of any other adjustment. This illustrates the fact
that the steep rise of bias at z > 1 is in fact expected using simple
HOD and luminosity evolution models.

B Statistical error estimation

In Sec. 2.3 we introduced our approach to estimate the covariance
matrix between angular clustering measurements, see Eq. (11). This
combined a theory modeling for the off-diagonal elements with a
Jackknife (JK) approach for the variance. The JK approach is intrinsi-
cally limited by the fact that typically (given the size of our footprint
and data) is not possible to extract many statistically independent sam-
ples to construct a reliable full covariance. However it does account
better than theory estimations for issues such as small scale mask ef-
fects, boundaries, non-linerities and/or contamination or systematics
in the data. On the other hand, the theory estimation yields off diag-
onal elements that have no noise compared to their JK counter-parts.
In this appendix we explore this choice in more detail.

A first test is to compare the error estimates on w(θ) measure-
ments (i.e. the variance) that we obtain using the JK approach with
the theory ones. For the theory estimate we used the best-fit bias over
linear-scales, the exact footprint size and the exact shot-noise mea-
sured in the data (i.e. number density of objects in the photo-z bin
after masking). The JK one employs 40 equal size JK regions, and we
tested that the results that we now present do not depend on variations
in this set-up (we have explored nJK from 20 to 100). In Fig. 18 we
show how these two estimates compare to each other. On large-scales
(θ & 0.1 deg at low z, and θ & 0.01 deg at high z) they match each
other well, except for the 0.8 < z < 1.0 where the theory yields
∼ 20%− 25% higher errors in the range 0.1 deg < θ < 1 deg .
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Photo-z Bin Jack-knife Cov. Theory Cov. Mix Cov.

0.2 < z < 0.4 1.05± 0.07 1.04± 0.08 1.05± 0.07
0.4 < z < 0.6 1.22± 0.04 1.23± 0.06 1.23± 0.05

0.6 < z < 0.8 1.37± 0.03 1.36± 0.04 1.36± 0.04
0.8 < z < 1.0 1.55± 0.02 1.54± 0.04 1.54± 0.02

1.0 < z < 1.2 2.16± 0.12 2.16± 0.12 2.17± 0.09

Table 6. Dependence of best-fit bias on different methods to estimate the co-
variance matrix (see text for details). The bias is obtained from fitting the auto-
correlations in Fig. 11 over a linear range of scales This paper uses the mixed
approach for its main results.

A second test is to derive the best-fit bias using three possi-
ble methods for constructing the covariance matrix, a full theory ap-
proach, the JK method, or the combined one that we use in Sec. 2.3.
This is shown in Table 6. The best-fit biases are not affected by the
choice of covariance, while the 1σ errors vary, but not so much as to
affect any of our conclusions. At smaller scales, the JK uncertainties
are significantly larger than the theoretical ones; this is likely due to
both non-linear and small-scale mask effects.

C Galaxy Bias in CFHTLS

Galaxies in Coupon et al. (2012) are first selected according to
SExtractor MAG AUTO magnitudes of i < 22.5, similar to the
sample presented in this paper. Their flux limited sample was then
split in several volume limited absolute magnitude ”threshold” sam-
ples in each photo-z bin. Therefore in each redshift bin, our sample
corresponds to the faintest absolute magnitude sample in Coupon et al.
(2012), except for the fact that our sample is not volume limited.

For example over the redshift range 0.4 < z < 0.6 the faintest
volume limited sample is defined as brighter than Mr − 5 log h =
−18.8 because this is the absolute magnitude corresponding to ap-
parent magnitude i < 22.5 for the farthest galaxies at z = 0.6. At
z = 0.4 the absolute magnitude corresponding to i < 22.5 is one
magnitude fainter, Mr − 5 log h = −17.8. Therefore as one spans
the whole redshift range of the sample from z = 0.4 to z = 0.6 there
is a set of galaxies brighter than Mr − 5 log h = −17.8 but fainter
than Mr − 5 log h = −18.8, that do not enter the volume limited
sample in 0.4 < z < 0.6 but do enter the flux limited one. And this
holds for all photo-z bins: there is always one magnitude difference
between the faintest absolute magnitude from the lowest to the highest
redshift of each photo-z bin (Coupon et al. 2012).

To directly compare our bias measurements to those in Coupon
et al. (2012) we need to know how bias depends on luminosity to then
estimate the contribution to the bias of this “extra” set of galaxies, as

bflux lim, bin N =

∫ 1

0

bvol lim(< Mr + x) dx (32)

where Mr is the magnitude threshold defining the faintest sample for
the photo-z bin N. Here x = 1 would correspond to the lowest redshift
bound of such bin, while x = 0 the highest.

At low redshift the difference discussed above does not impact
the derived bias strongly because these galaxies are faint enough that
have biases close to one and are in a regime of very weak dependence
with luminosity. However as we move to higher redshifts, the faintest
samples move to Mr − 5 log10 h . −21 where bias evolves strongly
with luminosity (e.g. see Fig. 18 in Coupon et al. (2012)).

To account for this effect so as to properly compare our bias re-
sults to those of CFHTLS we did as follows. We collected all the
best-fit biases reported by Coupon et al. (2012) in their Table B.1.
This is shown in Fig. 19. We have found that these measurements
are very well fit by a simple linear relation with r-band luminosity
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Figure 18. Comparison of Jackknife resampling errors (points) and theoreti-
cally derived ones (lines) for our five tomographic bins (BPZ photo-z). For the
former we used 40 equal size regions. The theory estimation uses the best-fit
bias, the projected number density and the area of the footprint (and its based
on the nonlinear matter power spectra). The agreement is very good on scales
(θ & 1 deg at low-z and θ & 0.1 deg at high-z), while on smaller scales the
structure of the data as captured by the JK resampling yields larger variance.

b(Mr) = b0(z) + a0Lr with constant a0 = 0.13/Lz=0.1
? . This

result is in fact very similar to the one discussed by Coupon et al.
(2012), although we do not normalize by the characteristic luminos-
ity at the given redshift. We then fit b0 at every photo-z bin, includ-
ing 1.0 < z < 1.2 where only one data-point is given by Coupon
et al. (2012). We find b0 = (1.08, 1.18, 1.25, 1.35, 1.4) at photo-z
bins centered at (0.3, 0.5, 0.7, 0.9, 1.1). These results are displayed
in Fig. 19.

Once provided with a fit for b(< Mr) we computed the bias
conversion as in Eq. (32). Results are detailed in Table 7. The fourth
column displays the values that we use in Sec. 7 and Fig. 11. Because
the effect is not strong and the bias range not large, the results from an
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Figure 19. Fit to the bias as a function of luminosity presented by Coupon et
al. (2012) for the 5 bins also used throughout our paper (starting from 0.2 <

z < 0.4 at the bottom). The evolution can be simply described as depending
linearly with luminosity (see inset label).

Photo-z Bin Mr − 5 log h bvol lim(< Mr) bflux lim(< Mr)

0.2 < z < 0.4 -17.8 1.08± 0.01 1.09

0.4 < z < 0.6 -18.8 1.23± 0.01 1.22

0.6 < z < 0.8 -19.8 1.40± 0.01 1.35
0.8 < z < 1.0 -20.8 1.74± 0.03 1.59

1.0 < z < 1.2 -21.8 2.33+0.05
−0.06 2.00

Table 7. Translation of the biases defined by Coupon et al. (2012) where sam-
ples are defined in terms of volume limited quantities to our case where we
have a flux-limited sample across the full redshift range (the parent catalog in
both cases is similar, i − band MAG AUTO < 22.5). Here Mr is the absolute
magnitude corresponding to the faintest sample in each photo-z bin as defined
by Coupon et al. (2012), bvol lim are the bias values reported in their Table
B.1., and bflux lim the ones directly comparable to our results.

integration as in Eq. (32) are equivalent to simply computing the bias
for samples shifted half by a magnitude (i.e. bflux lim(< −17.8+0.5)
for 0.2 < z < 0.4, then bflux lim(< −18.8 + 0.5) for 0.4 < z < 0.6
and so on).

D Stellar Contamination

Building from the results of, e.g., Myers et al. (2006); Ross et al.
(2011a); Ho et al. (2012), we derive the effect that stellar contami-
nation has on the measured clustering of a galaxy sample. We assume
the observed number of galaxies in some location, No, is a function
of the true number of galaxies, the number of stars,Nst, that could be
mis-classified as a galaxy, and some function of the survey conditions,
S. If the only source that modulates the observed number of galaxies
is stellar contamination, then

No = Ngal +NstF (S), (33)

where NstF (S) is the number of stars mis-classified as galaxies at a
particular location. The fractional stellar contamination, fst, over the
footprint is

fst =
〈Nstf(S)〉
〈No〉

(34)

and

〈No〉 = (1 + fst)〈Ngal〉. (35)

Given the over-density

δ = N/〈N〉 − 1, (36)

we have

δo =
1

1 + fst

Ngal
〈Ngal〉

+
1

1 + fst

NstF (S)

〈Ngal〉
− 1, (37)

which can be re-written in terms of the galaxy over-density

δo =
δgal − fst

1 + fst
+

1

1 + fst

NstF (S)

〈Ngal〉
. (38)

and then the over-density of the stellar contamination, δst,S =
NstF (S)
〈NstF (S)〉 − 1

δo =
δgal − fst

1 + fst
+ fst(δst,S + 1) =

δgal
1 + fst

+ fstδst,S +
f2
st

1 + fst
,

(39)
after recognizing that 〈Nst,SF (S)〉

(1+fst)〈Ngal〉
= fst.

The measured angular correlation function, wo = 〈δoδo〉, is

wo =
wgal

(1 + fst)2
+ f2

stwst,S +
f4
st

(1 + fst)2
, (40)

(assuming no true correlation between galaxies and stars). Therefore

wgal = (1 + fst)
2

(
wo − f2

stwst,S −
f4
st

(1 + fst)2

)
(41)

The above requires no approximations, but is limited to the spe-
cific case of contamination. One must be able to estimate wst,S , but
we expect this can be approximated as wst in many cases. Further, es-
timating the stellar contamination as a function of survey conditions
can be done empirically and using forward-modeling tools (the po-
tential exists when using similar tools as, e.g., Leistedt et al. (2015);
Suchyta et al. (2015)).

This paper has been typeset from a TEX/ LATEX file prepared by the
author.
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30Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians
Universität München, Scheinerstr. 1, 81679 München, Germany
31Department of Physics, The Ohio State University, Columbus, OH
43210, USA
32Australian Astronomical Observatory, North Ryde, NSW 2113, Aus-
tralia
33George P. and Cynthia Woods Mitchell Institute for Fundamental
Physics and Astronomy, and Department of Physics and Astronomy,
Texas A&M University, College Station, TX 77843, USA
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