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We show that conventional Higgs compositeness conditions can be achieved by the running of large
Higgs-Yukawa couplings involving right-handed neutrinos that become active at ∼1013–1014 GeV.
Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark
matter sector, we can obtain a Higgs boson composed of neutrinos. This is a “next-to-minimal” dynamical
electroweak symmetry breaking scheme.

I. INTRODUCTION

Many years ago, it was proposed that the top quark
Higgs-Yukawa (HY) coupling yt might be large and
governed by a quasi-infrared-fixed-point behavior of the
renormalization group [1,2]. This implied, using the min-
imal ingredients of the Standard Model, a top quark mass of
order 220–240 GeV for the case of a Landau pole in yt at a
scale Λ of order the GUT-to-Planck scale. In light of the
observed 173 GeV top quark mass, the fixed point
prediction is seen to be within 25% of experiment. This
suggests that small corrections from new physics might
bring the prediction into a more precise concordance with
experiment.
One of the main interpretations of the quasi-infrared

fixed point was the compositeness of the Higgs boson. In its
simplest form, the Higgs boson was considered to be a
bound state containing a top and antitop quark [3–6]. This
was amenable to a treatment in a large-Nc Nambu–Jona-
Lasinio (NJL) model [7] defined by a four-fermion inter-
action at a scale Λ, with a large coupling constant, and a
strong attractive 0þ channel. The theory requires drastic
fine-tuning of quadratic loop contributions, which is
equivalent to a fine-tuning of the scale-invariant NJL
coupling constant (and may require a novel insight into
scale symmetry, such as [8]). By tuning the NJL coupling
close to criticality, the Higgs boson mass becomes small,
creating an infrared hierarchy between the compositeness
scale Λ and the electroweak scale embodied in mh. Tuning
the coupling slightly supercritical yields a vacuum insta-
bility, and the Higgs boson acquires its vacuum expectation
value (VEV).
Once the infrared hierarchy has been tuned, the remain-

ing structure of the theory is controlled by renormalization
group (RG) running of couplings [5]. The RG treatment
indicates that a t̄t composite Higgs boson requires (i) a
Landau pole at scale Λ in the running top HY coupling

constant ytðμÞ, (ii) the Higgs-quartic coupling λH must also
have a Landau pole, and (iii) compositeness conditions
must be met, such as λHðμÞ=g4t ðμÞ → 0 and λHðμÞ=g2t ðμÞ →
ðconstantÞ as μ → Λ, [5]. This predicts a Higgs boson mass
of order ∼250 GeV with a heavy top quark of order
∼220 GeV, predictions that come within a factor of 2 of
reality.
While the t̄t minimal composite Higgs model is ruled

out, it remains of interest to ask, “can we rescue a NJL RG
composite Higgs boson scenario with new physics?” and if
so, “what are the minimal requirements of new physics
needed to maintain a composite Higgs boson scenario?” In
the present paper, we address this issue and revisit a
composite Higgs boson model based upon an attractive
idea of Martin [9] (this has also been considered in a
supersymmetry context by Leontaris et al. [10]). Martin
pointed out that the top quark HY is sensitive to right-
handed neutrinos νiR that become active in loops above the
large Majorana mass scale, M. The right-handed neutrinos
are assumed to have HY couplings yiν ≥ Oð1Þ and also
have a Majorana mass of order M ∼ 1013, thus, leading to
the neutrino seesaw model at low energies [11]. Turning on
the neutrino loops will generally pull a large ytðmtÞ to a
Landau pole at a scale of orderΛ ∼ 1015–1019 GeV, and the
large top quark mass becomes intertwined with neutrino
physics above M. The strong dynamics that forms the
bound state Higgs boson for us is the dominant large
coupling, yiν.
Martin’s model preserved some of the features of the t̄t

composite Higgs model but extends the Higgs composite-
ness structure to become an entanglement of neutrinos and
top quark. Martin’s model considered one large neutrino
HY interaction, while we will presently consider Nf ¼ 3

right-handed neutrinos with degenerate HY couplings to
the corresponding left-handed doublets, yν. Hence, our
present model becomes a large-Nf fermion bubble NJL
model as we approach the compositeness scale Λ. The yiν
become active above the scaleM and are chosen to be large
enough to have Landau poles at the scale Λ.
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The top quark HY coupling is pulled up by the large yiν to
a Landau pole, but we find that the ratio of ytðμÞ=yνðμÞ →
ðconstantÞ as μ → Λ. This implies that the top quark
couples to the dynamics that forms the Higgs boson at
the scale Λ, which we treat as a Nambu–Jona-Lasinio
model, but this is merely a comparatively weak extension
of the dynamics to give mass to the top (and presumably, all
other quarks and leptons). The Higgs doublet (Higgs scalar)
in our scheme is primarily composed of

P
iL̄iLν

i
R,

(
P

iν̄iν
i), where LiL ¼ ðνi;liÞL is the left-handed lepton

doublet and summing over Nf ¼ 3 generations. The top
quark HY coupling is then only a spectator to this physics.
A second and important demand of a NJL-composite

Higgs model is the behavior of the running of the Higgs-
quartic coupling, λH. It is shown in Ref. [5] that λH will
have a Landau pole at the scale Λ, but λHðμÞ=y4t ðμÞ → 0

and λHðμÞ=y2t ðμÞ → ðconstantÞ as μ → Λ. Engineering this
is a more challenging issue than that of the Landau poles in
the Yukawa couplings, as we are confronted by the small
value of λH in the Standard Model and the apparent RG
behavior λH → 0 for scale of order ∼1012 GeV. For general
gauge Yukawa theories containing a scalar bilinear, the
divergent behavior is readily obtainable [12], but for the
single doublet of the Standard Model, this is not easily
constructed.
There is, however, a simple remedy available to us here:

the Higgs portal interaction. The main point is that if there
exists new physics coupled to the Higgs via a portal
interaction, e.g., a sterile dark matter boson, then the
Higgs-Yukawa coupling that we observe λ is actually only
effective and is replaced typically by a larger value near the
TeV scale due to the mixing via the portal interaction [13].
We presently exploit this mechanism.
We note that many authors have considered various

neutrino-composite Higgs boson schemes, many in the
context of a fourth generation and some with overlap to our
present case [14]. We turn presently to a Nambu–Jona-
Lasinio schematic model of our mechanism.

II. NJL MODEL

The effective UV model we have in mind is a variation
on the Nambu–Jona-Lasinio model [7] and top condensa-
tion models [3–5]. We adapt this to a neutrino condensate
with the four-fermion interaction Lagrangian:

L0 ¼ g2

Λ2
ðL̄Liν

i
RÞðν̄RjLj

LÞ þ
h2

Λ2
ðL̄Liν

i
RÞðt̄RaTa

LÞ þ H:c:;

ð1Þ

where Li
L ¼ ðνi;liÞL (νRi) are left-handed lepton doublets

(right-handed neutrino singlets), and TL (tR) is the top
quark doublet (singlet), ði; j;…Þ are generation indices
running to Nf ¼ 3, and ða; b;…Þ are color indices running
to Nc ¼ 3. The dominant large coupling constant in our

scheme is g and h < g=Nf. We will have additional smaller
couplings involving the other quarks associated with light
fermion mass generation and flavor physics, as well as
charge conjugated terms like ðL̄Liν

i
RÞgjkðν̄RjLLkÞC. These

generate the charged lepton and quark masses and mixing
angles, which we presently ignore.
We follow [5] and factorize the NJL interactions to write

L0
Λ ¼ gL̄iLHνiR þ g0T̄aLHtaR − Λ2H†H: ð2Þ

Here we define g0 ¼ h2=g, and we have introduced an
auxiliary field H that regenerates Eq. (1) by H equation of
motion. This is the Lagrangian at the scale Λ, where the
auxiliary field H will become the dynamical Higgs boson
bound state at lower energies. We have ignored terms of
order g02 which are generated when H is integrated out to
recover Eq. (1).
We now use the RG to run the Lagrangian down to the

Majorana mass scaleM of the right-handed neutrinos using
only fermion loops. The result is formally

L0
M ¼ ZHjDHj2 − ~M2H†H þ

~λH
2
ðH†HÞ2

þ ½gL̄iLHνiR þ g0T̄aLHtaR þ ν̄CRiMijν
j
R þ H:c:�; ð3Þ

where the Majorana mass matrix Mij is now incorporated
by hand. The Higgs boson has acquired a logarithmic
kinetic term and a quartic interaction due to the fermion
loops, and the Higgs mass has run quadratically:

ZH ¼ ð4πÞ−2ðg2Nf þ g02NcÞ lnðΛ2=M2Þ;
~M2 ¼ Λ2 − ð4πÞ−2ð2g2Nf þ 2g02NcÞðΛ2 −M2Þ;
~λH ¼ ð4πÞ−2ð2g4Nf þ 2g04NcÞ lnðΛ2=M2Þ: ð4Þ

The quantities appearing in Eq. (3) are, of course,
unrenormalized. The renormalized couplings at the present
level of approximation are

yν ¼
gffiffiffiffiffiffi
ZH

p ; yt ¼
g0ffiffiffiffiffiffi
ZH

p ; λH ¼
~λH
Z2
H
; ð5Þ

and we see that in the large-ðNf; NcÞ limit, the ratio y2ν=y2t
is a constant.
For simplicity, we take the Majorana mass matrix to be

diagonal, M ¼ diagðM1;M2;M3Þ. In the large-M=vweak
limit, where vweak ∼ 175 GeV, the masses of the three
light neutrino states are given by the seesaw mechanism:

mi
ν ¼

y2νv2weak
Mi

: ð6Þ

Assuming that yν is ∼Oð1Þ and ∼eV masses for the light
neutrinos, we expect Mi ∼ 1013 GeV. Thus, in the RG



evolution of the system, loops containing right-handed
neutrinos occur only above the scales Mi. As an approxi-
mation, take the threshold of the νiR in loops to be at a
common Majorana mass scale M.
Note that the renormalized λH ¼ ~λH=Z2

H has the limits
λH=y4ν → 0 and λH=y2ν → ðconstantÞ as μ → Λ. The extent
to which the top quark participates in the binding of the
Higgs boson relative to the neutrinos is determined by
g02Nc=g2Nf which we assume is of order 1=Nf, and, thus,
the dominant coupling at the UV scale is g2. While we
could keep the order g02 terms in the factorization of Eq. (3),
this would make a weakly bound state doublet H0 com-
posed mainly of t̄t, but since g02 is subcritical, this state
would remain a heavy dormant doublet with m2 ∼ Λ2.
Below the Majorana mass scale M, the neutrinos

decouple, and the only significant running in the fermion
loop approximation is the top quark. The electroweak scale
is tuned by the choice of critical couplings. The quadratic
running to a zero mass Higgs boson ~M2 ¼ 0 defines the
critical coupling:

g2Nf þ g02Nc ¼ 8π2
�
1þM2

Λ2

�
: ð7Þ

The criticality, we assume, is due principally to the
large value of g2 and is only slightly modified by the
top quark. We then choose g2 slightly supercritical to
produce the phenomenological tachyonic Higgs potential,
~M2 ¼ −M2

HZHðΛ=MHÞ.
The NJL model is schematic and must itself be an

approximation to some new dynamics in the UV. This
structure suggests a new gauge interaction which leads to
Eq. (1) upon Fierz rearrangement, in analogy to top color
models [15] as

g2

Λ2
L̄Liν

i
Rν̄RjL

j
L ¼ −

g2

Λ2
L̄L

λA

2
γμLLν̄R

λA

2
γμνR þ � � � ; ð8Þ

where the Gell-Mann matrices λA now act on the flavor
indices. The g0 term then requires some extension of the
theory. A model such as this assigns an SUð3Þ gauge group
to lepton family number, and, therefore, gauge charges to
the νRi, i.e., the νRi are no longer sterile. This would imply
that the Majorana mass matrix must be generated by a VEV
associated, e.g., with additional SUð3Þ scalar fields. With
νRi in the triplet representation, this requires f3̄g and/or f6g
scalar condensates and would dictate the neutrino mass and
mixing angle structure. Construction of this kind of model
will be done elsewhere.

III. YUKAWA SECTOR

The above discussion is the Wilsonian renormalization
group approach. To improve the calculation, we turn to the
full RG equations which are used below the scale Λ,

together with the matching conditions dictated by the
fermion bubble approximation [5]. The full RG equations
(for Nf ¼ 3, these are a slight modification of Ref. [9]) take
the form

ð4πÞ2 βyt
yt

¼ 9

2
y2t − 8g23 þ 3θMðμ −MÞy2ν −

9

4
g22 −

17

12
g21;

ð4πÞ2 βyν
yν

¼ θMðμ −MÞ
�
9

2
y2ν þ 3y2t −

9

4
g22 −

3

4
g21

�
;

ð4πÞ2 βg1
g1

¼ 41

6
g21; ð4πÞ2 βg2

g2
¼ −

19

6
g22;

ð4πÞ2 βg3
g3

¼ −7g23; ð9Þ

where g1; g2, and g3 are the gauge couplings of the Uð1ÞY ,
SUð2ÞL, and SUð3Þc symmetries, respectively, yt is the top
HY coupling, and yν the HY coupling of the lepton
doublets to right-handed neutrinos. We have introduced
a step function θM ¼ θðμ −MÞ, where θðxÞ ¼ 1; x ≥ 0 and
θðxÞ ¼ 0; x < 0. The step function models the threshold of
the turning on of the right-handed neutrinos at the scale of
the Majorana mass matrix.
In Fig. 1, we demonstrate the running of the HY

coupling for the top quark and the neutrino as described.
We use the initial conditions for the gauge couplings
g1ðmZÞ ¼ 0.36, g2ðmZÞ ¼ 0.65, g3ðmZÞ ¼ 1.16, for the
HY couplings ytðmtÞ ¼ 0.99 and yνðMÞ ¼ 1, and for
the masses mZ ¼ 91.2 GeV, mt ¼ 173.2 GeV, and
M ¼ 1013 GeV.
The evolution in Fig. 1 clearly indicates the existence

of a Landau pole for the HY couplings at a scale
Λ ∼ 1020 GeV, in accord with what one would expect if
the Higgs is a fermion pair condensate.
The Landau pole of the neutrino HY coupling is seen to

pull the top HY towards a Landau pole at Λ. The neutrino
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FIG. 1 (color online). The RG evolutions of the top (solid) and
neutrino (dashed) HY couplings with contributions from right-
handed neutrinos for renormalization scales above the neutrino
Majorana mass; μ > M ¼ 1013 GeV.



HY coupling is always significantly larger than the top
coupling for the scales where the perturbative result
is valid. For the displayed example, we find the ratio
yν=yt ≥ 3 for the region very close to the Landau pole.
To verify the consistency of this behavior of the top

quark, consider the region below, but near, Λ. Here the RG
equations for top and neutrino HY couplings can be
approximated in the large-ðNf; NcÞ limit by

ð4πÞ2 d ln yt
d ln μ

≈ ð4πÞ2 d ln yν
d ln μ

≈ Nfy2ν þ Ncy2t ; ð10Þ

hence,

ð4πÞ2 d lnðyt=yνÞ
d ln μ

¼ 0: ð11Þ

This implies that yνðμÞ=ytðμÞ → ðconstantÞ as we approach
the scale Λ. The ratio yt=yν ∼ g0=g, so the role of the top
quark is only that of a spectator.
In this simplified setup, inserting an experimental

neutrino mass in (6) yields yνðMÞ as a function of M.
For a chosen M, this value may be used as an initial
condition in the RG equation for yν, and the scale Λmay be
read off from the solution to the RG equations. A simple
analytic estimate is given by setting to zero all couplings
except yν, in which case one finds for the one loop solution

Λ ¼ M exp

�ð4πvweakÞ2
9mexp

ν M

�
: ð12Þ

Here v is again the Higgs VEV, and mexp
ν is the

experimentally measured neutrino mass. The estimate
(12) is in good agreement with the full numerical solution
due to the fact that the neutrino coupling itself is what
drives the divergence at Λ. The relation (12) also gives a
lower bound on the possible compositeness scale Λmin for
any neutrino mass given by

Λmin ≃ 1.5 ×

�
mexp

ν

eV

�−1
× 1015 GeV: ð13Þ

We perform the numerical analysis as before using the
RG equations above and obtain the scale associated with
the Landau pole for different values of M given a specific
mass of the light neutrino states in the eV range. In Fig. 2,
we show numerical results concerning the relation between
the Majorana mass and the Λ scale for different values of
the neutrino mass. The perturbative nature of our analysis
does not allow us to extrapolate to infinite coupling values,
so we instead take the naive estimate of the Λ scale to be
defined by yνðΛÞ ¼ 30. We stress that this analysis is meant
to provide a demonstration of principles rather than high
precision results.

Two distinct behaviors are exhibited in Fig. 2: For
smaller values of the Majorana mass, the scale Λ is very
sensitive to the choice of neutrino and Majorana mass. This
is due to the fact that yνðmtÞ is quite small for these values,
and more RG time is needed to run to the Landau pole. For
larger values of the masses, yνðmtÞ also grows large in
accordance with (6), and the Landau pole is shifted closer
to the scale where the neutrino coupling becomes active in
the RG equations.

IV. SCALAR SECTOR

In the minimal version of a single composite Higgs
boson, the physical Higgs mass prediction is larger than the
observed ∼125 GeV. The Higgs mass is controlled by the
electroweak VEV vweak and the quartic coupling. The Higgs
compositeness conditions predict a Landau pole for the
quartic scalar coupling at the compositeness scale Λ [5].
However, the quartic coupling constant in the Standard
Model is to be too low to match these conditions, and
indeed, appears to decrease with scale potentially, becom-
ing negative at ∼1012 GeV [16].
To achieve compositeness of the Higgs boson, we

employ a simple modification by which the observed
Higgs-quartic coupling λ becomes only a low energy
effective coupling, while the true quartic coupling λH is
larger and can have the requisite Landau pole. The actual
quartic coupling needs only be about 2× the observed λ to
achieve this but requires additional physics at the
∼1 TeV scale.

We extend the scalar sector to include a complex singlet
[13] S, and the new Higgs potential becomes

V ¼ λH
2
ðH†H − v2Þ2 þ λS

2
ðS†S − u2Þ2

þ λHSðH†H − v2ÞðS†S − u2Þ; ð14Þ

where we have assigned the vacuum expectation values

FIG. 2 (color online). Numerical results displaying the relation
between the Majorana mass and the scale associated with the
Landau pole for the neutrino HY coupling for different values of
the neutrino mass.



hH†Hi ¼ v2; hS†Si ¼ u2: ð15Þ

The VEVs (15) are the global minima of the potential when
λH; λS > 0, and λHλS > λ2HS.
Expanding about the minimum of Eq. (15), one finds the

mass matrix for the massive scalars to be

∂2V
∂ϕiϕj

¼ 2

�
λHv2 λHSvu

λHSvu λSu2

�
;

where ϕi refers to the direction of the VEV in H and S.
The eigenvalues are

m2
� ¼ λHv2 þ λSu2 � κ;

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHv2 − λSu2Þ2 þ 4λHSv2u2

p
. In the limit

where λHv2 ≪ λSu2, the lightest state mostly resides within
H, and the mass can be approximated by

m2
H ¼ m2

− ¼ 2

�
λH −

λ2HS

λS

�
v2 þO

�
λHv2

λSu2

�
: ð16Þ

The effective quartic coupling measured from the Higgs
mass is now

λ ¼ λH −
λ2HS

λS
; ð17Þ

which is intrinsically smaller than the coupling λH. Thus,
the composite picture with a suitable Landau pole in λH is
now possible.

A. Singlet scalar extension

We now analyze the RG evolution of the full theory with
an eye to the Landau pole in ΛH. Assuming S is an
electroweak SUð2Þ singlet, and Uð1ÞY sterile, the RG
equations for the scalar sector are given by

βλH ¼ ð12y2t þ 12θMyν − 3g21 − 9g22ÞλH − 12ðy4t þ θMy4νÞ

þ 3

4
g41 þ

3

2
g21g

2
2 þ

9

4
g22 þ 12λ2H þ 2θuλ

2
HS; ð18Þ

βλHS
¼

�
6y2t þ 12θMyν −

3

2
g21 −

9

2
g22 þ 6λH

�
λHS

þ 4θuðλS þ λHSÞλHS; ð19Þ

βλS ¼ 4λ2HS þ 10θuλ
2
S; ð20Þ

where we have included the Heaviside function θu ¼
θðμ − uÞ to adjust for the fact that loops involving the S
states are not taken into account scales below the VEV
hSi ¼ u, which generates the mass for the S state.
To accommodate the composite scenario as first

described in [5], both the quartic coupling and the HY

coupling for the condensating fermions must diverge at a
scale Λ. Furthermore, the nature with which the scalar
becomes propagating at lower energy scales sets the
requirement

lim
μ→Λ

λH=y4ν ¼ 0; ð21Þ

and we expect the common divergence to yield

lim
μ→Λ

λH=y2ν ¼ Oð1Þ: ð22Þ

In Fig. 3, we demonstrate the evolution of the quartic
coupling for a specific choice of initial conditions. We
choose a mass for the active neutrino mexp

ν ¼ 1 eV, which
yields a divergence of yν around Λ ¼ 1018 GeV, under the
assumption that M ¼ 5 × 1013 GeV. At the scale where
yνðμÞ ¼ 10, we then define the initial conditions for the
quartic couplings λHðμÞ ¼ 98, in accordance with (22), and
the somewhat arbitrary choices λHSðμÞ ¼ 23, λSðμÞ ¼ 1.7.
The assumed value for u ¼ 1 TeV. The IR phenomenology
features a large value for the Higgs-quartic coupling
λH ∼ 0.7, while the effective coupling is considerably
smaller λ ∼ 0.28 corresponding to a Higgs mass
mH ∼ 130 GeV.
The RG system involves some degree of tuning to ensure

the proper behavior of the two new quartic couplings.
Specifically, we must tune λS to be small to ensure a large
correction in λ as seen in (16) while λHS is also tuned, such
that λH > λHS > λS is satisfied for all RG scales in order to
ensure a valid value of λ at small scales.

This model should merely serve as a proof of concept
displaying the possibility that the UV behavior of the
Higgs-quartic coupling can include a Landau pole. In this
setup, we have looked at the simplest possible scalar

FIG. 3 (color online). The RG evolution for the quartic
couplings for a specific choice of initial conditions at the UV
scale. The IR phenomenology features a large quartic for the
Higgs, while the effective coupling leads to a light Higgs mass
mH ∼ 130 GeV.



extension of the Standard Model with the standard Higgs
mechanism in play for both scalars. The issues of tuned
scalar couplings may then be alleviated if a different
mechanism for symmetry breaking or a more complex
scalar sector is considered. For a large class of more general
gauge Yukawa theories, a composite limit due to four-
fermion interactions at high energies is easily obtainable, as
shown in [12], while we will focus on the simplest
alternative solutions below.

V. ALTERNATIVE SCALAR EXTENSIONS

As we have introduced a tuning between the dimension-
less coupling constants of the scalar sector in addition to the
usual tuning for the Higgs mass parameter, it would be
beneficial to find a mechanism to stabilize the IR phe-
nomenology towards changes in the initial UV conditions.
We expect that this might be found by connecting the
symmetry breaking mechanisms for the scalar sector.
In the previous example, the role of the “portal" coupling

λHS was to supply a correction to the quartic Higgs
coupling in the effective coupling by connecting the two
scalar sectors, while the symmetry breaking mechanism is
that of the standard Higgs boson for both the H and S
scalars.

A. Negative portal coupling

We can expand the role of the portal coupling by letting
the portal interaction communicate symmetry breaking in
the dark S sector to the Standard Model. Setting λHS < 0
and assuming hSi ≠ 0 can trigger spontaneous symmetry
breaking in the Standard Model, even if the mass term for
the Higgs m2

H ≥ 0, since the portal interaction will add a
negative squared mass contribution for H. If the portal
coupling is very small, then there can be a large hierarchy
between the VEVs of S and H, and the validity of Eq. (16)
is guaranteed.
The change from a positive portal coupling to a negative

one can, thus, change the nature of the symmetry breaking
for the Higgs particle. It allows for other values of the Higgs
mass parameter, and, specifically, one can choose m2

H ¼ 0
and still obtain a second order phase transition due to the
portal interaction. The actual analysis of this alternative
model is, however, almost identical to the original, since the
stability constraint and mass prediction only involve λ2HS.
The measured Higgs mass is still obtainable together with a
Landau pole for λH, albeit tuning between the scalar
couplings is needed.

B. Communicated Coleman-Weinberg (CW)
symmetry breaking

Common to the scalar sectors discussed so far has been
the feature that a mass scale has been inserted by hand into
the potential either for both scalars or for one of them. This
enables the generation of a vast interval of possible scalar

masses but intrinsically means that these are very sensitive
to the input parameters. An alternative way to generate
mass scales is the dynamical one, where the mass scales
arise directly from the RG evolution. We will show in the
following that Landau poles in the quartic couplings, in
accordance with a composite picture, may also accommo-
date spontaneous symmetry breaking due to the CW
mechanism as demonstrated for elementary scalars in [17].
It is central to the success of this model that we now

consider a dark1 scalar doublet S gauged under a new
SUð2ÞX group.2 Since we want all mass scales to be
generated dynamically, the potential is given as

V ¼ λH
2
ðH†HÞ2 þ λHSðH†HÞðS†SÞ þ λS

2
ðS†SÞ2; ð23Þ

where we will investigate the cases where λHS < 0. Just as
before, the requirement for stability of the potential is

λH > 0; λS > 0; λHλS > λ2HS: ð24Þ
Spontaneous symmetry breaking then occurs dynamically
in this setup via the Coleman-Weinberg mechanism when
the RG evolution brings the system of coupling constants
into violation of the stability conditions (24).
The driving force behind the symmetry breaking in this

setup is the new gauge coupling gx related to the SUð2ÞX
gauge symmetry. As this coupling becomes large at some
scale due to asymptotic freedom, the quartic coupling λS
will be driven negative in the IR, due to the form of its beta
function which is positive for any nonzero value of the
couplings:

βλS ¼ 4λ2HS þ 12λ2S þ
9

4
g4x − 9g2xλS: ð25Þ

Denoting by s� the scale at which λS ¼ 0 and performing
the approximation close to this scale that λS ≃ βλS lnð ss�Þ,
the estimated value for the VEV of S coming from the
associated Coleman-Weinberg symmetry breaking mecha-
nism is given by

hSi ¼ u ¼ s�e−1=4: ð26Þ
In return, the negative portal coupling λHS induces a VEV
for H:

hHi ¼ v ¼ u

ffiffiffiffiffiffiffiffiffiffiffi
−λHS

λH

s
: ð27Þ

At this minimum, the mass matrix takes the form

1Similar models with a portal coupling to another scalar sector
are often used to probe dark matter phenomenology.

2The critical property of the gauge group is asymptotic
freedom, so any other gauge group with this property could
have been used.



v2
�

2λH −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λHλHS

p

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λHλHS

p
λHS − βλS

λH
λHS

�
: ð28Þ

Assuming that v2 ≪ u2, which is to say −λHS
λH

≪ 1, we may

expand the eigenvalues to the leading order in λHS
λH

and
obtain

m2
1 ¼ 2λ2; m2

2 ¼ −
βλSλH
λHS

v2; ð29Þ

where the indices 1 and 2 relate to the state composed of

mostly H and S, respectively, and λ ¼ λH − λ2HS
βλS
. This

naturally resembles (16), and we see once again how the
effective quartic coupling is smaller than the true coupling
for the Higgs.
So far, the setup seems to resemble the simple one given

in the previous chapter. The key difference is that while a
high degree of tuning was needed for the initial conditions
in the simple setup to guarantee the correct hierarchy at
smaller scales, this is no longer the case, since the dynamics
at these scales is controlled mainly by the evolution of the
new gauge coupling.
Our probes of the parameter space for this theory will

follow the lines of logic from the previous section:
Assuming a certain neutrino mass mν and Majorana mass
M, the scale of compositeness scale Λ is determined
uniquely. We will then impose the constraint (22), which
fixes the quartic couplings at this scale.3 The last remaining
free parameter is the new gauge coupling gX, which will be
fixed at the mass of the Z boson. The only free parameters
in our analysis are, thus, the two masses associated to the
neutrino sector and the value gxðmZÞ.
The RG equations for the remaining quartic coupling and

the new gauge coupling are given to one loop by

βλH ¼ ð12y2t þ 12θMyν − 3g21 − 9g22ÞλH − 12ðy4t þ θMy4νÞ

þ 3

4
g41 þ

3

2
g21g

2
2 þ

9

4
g22 þ 12λ2H þ 2θuλ

2
HS; ð30Þ

βλHS
¼

�
6y2t þ 6θMyν −

3

2
g21 −

9

2
g22 þ 6λH

�
λHS

þ
�
6λS −

9

2
g2X

�
λHS þ 4λ2HS; ð31Þ

βgX ¼ −
43

6
g3X: ð32Þ

A numerical evaluation of the running of the couplings as
described above will yield the VEVs of H and S as well as
the masses of the respective eigenstates, through (26), (27),
and (29), when the couplings are evaluated at the scale of
symmetry breaking s�.

A sample RG evolution yielding v≃ 175 GeV and
mH ≃ 125 GeV is shown in Fig. 4, where the increase
of the gauge coupling gX in the IR is displayed alongside
the decrease of the dark quartic λS, which is the source of
the symmetry breaking. We warn the reader that the value
for hSi ¼ u≃ 227 GeV, such that v2=u2 ∼ 0.6 such that
the approximation used in (29) may be invalid, and a more
complete analysis should be performed. Once again, we
postpone this for other work, while aiming for a qualitative
description for now.
For the RG evolution shown above, all quartic values are

fixed to be equal at the compositeness scale, and the tuning
between is no longer needed. Instead, having settled on a
specific neutrino mass, only the Majorana mass M and
gXðmZÞ require balancing in order to get the correct
phenomenology in the Higgs sector. Keeping gXðmZÞ fixed
while varying M with respect to the sample calculation
above yields the Higgs VEV and mass depicted in Fig. 5.
Interestingly, the Higgs mass seems to be stabilized around
∼130 GeV for a range of different Majorana masses, while
the VEV has a stronger dependence on M.
Varying gXðmZÞ, one sees that in order to get values of v

and mH close to the correct values, one has to remain within
the interval gXðmZÞ ∈ ½5; 6� withM ∼ 4 × 1014 GeV for the
chosen value of mν ¼ 0.3 eV. Thus, the tuning problems
within the parameters of the theory have been greatly
reduced, and the interesting region of parameter space has

FIG. 4 (color online). The RG evolution for the quartic
couplings in the communicated CW setup. Choosing the active
neutrino mass and Majorana mass determines the compositeness
scale, where the quartics are given values such that λH ¼ jλHSj ¼
λS ≈ y2ν at this scale. The final assumption is that gXðmZÞ ¼ 5.5,
which determines the IR behavior and symmetry breaking
pattern. The evolution shown above yields v≃ 174 GeV and
mH ≃ 126 GeV.

3We will assume that all quartic couplings are large at this
scale, which would be true in a theory where all scalars are
composite in the sense we have described here. This is not a
necessary assumption, and it may be relaxed if one wishes to
consider elementary scalar dark matter extensions.



been discovered. For the higher neutrino mass mν ¼ 1 eV,
the relevant values ofM are centered atM∼ 1.2× 1014 GeV,
while for the lower mass mν ¼ 0.1 eV, realistic Higgs
phenomenology requires M ∼ 1.2 × 1015 GeV, while the
value of gXðmZÞ is kept constant.
Along with the values for the Higgs mass and VEV, we

obtain values for the mass of the other scalar statems ¼ m2

from (29) along with the mass for the dark matter candidate
MX ¼ gX � u=2, which are also shown in Fig. 5. For the
choice of parameters corresponding to the values for the
Higgs observables marked with a grey line, we obtain
mS ∼ 190 GeV and MX ∼ 300 GeV. The predictions for
these dark matter observables are fairly independent of the
choice of neutrino and Majorana mass in the setup.
The phenomenology of the model presented here is by

construction virtually identical to the one of its elementary
counterpart, as reviewed in [17]. The main effect of
imposing the composite picture is that the absolute value
for the portal coupling λHS is larger in our setup.

VI. SUMMARY AND CONCLUSIONS

Our main goal in the present paper is to see how difficult
it is to maintain the idea of a composite Higgs boson in the
sense of Refs. [3–5], in light of modern Standard Model
constraints. While the composite models fine-tune the scale
vweak, they are in rough concordance with the values of the
Higgs boson and top quark masses as seen in nature, and
offer potential predictivity.
Nature appears at face value to resist the idea of a strong,

dynamical fermion condensate as the origin of the Higgs
mechanism, given the apparent highly perturbative and
critical behavior of the quartic coupling λ. It is, nonetheless,
readily possible to construct a model that can yield

the compositeness conditions at large scale
Λ ∼ 1015–1019 GeV. Our main ingredient is the portal
interaction that demotes λ to an effective low energy
coupling, while the high energy theory is controlled by
λH. We find a typical result that λH ∼ 2 × λ. This is
sufficient to completely redefine the UV behavior of the
theory. λH can easily have a Landau pole and satisfy the
Higgs boson compositeness conditions [5]. Here we use a
portal interaction near the TeV scale, which is popular in a
large number of scale-invariant Higgs theories [13].
The constituents of the composite Higgs boson must

couple with large Yukawa interactions to the Higgs doublet,
and these couplings must also have a Landau pole at the
scale Λ. The top quark in the large-Nc fermion loop
approximation in the Standard Model has too weak a
Higgs-Yukawa coupling to produce the Landau pole. This
is easier to solve than the λ problem, and one can imagine a
number of alternative theoretical fixes for it.
Presently, however, we essentially abandon the top quark

as the constituent of the Higgs and have followed Martin [9]
to adopt the neutrinos as the Higgs boson constituents. In the
neutrino seesaw model [11], the Higgs will necessarily have
Yukawa couplings to the conventional left-handed lepton
doublets and right-handed neutrino singlets, ∼yνψ̄LνR ·H þ
H:c: These Yukawa couplings are not seen as d ¼ 4
operators in the low energy theory below the scale M of
the right-handed neutrinomasses; rather, we observe only the
d ¼ 5 “Weinberg operators,” ∼y2νðψ̄LHÞcHψL=M þ H:c:
Above the scale of the Majorana mass M, the d ¼ 4

operators materialize, and the Yukawa couplings yν begin
to run. We assume that neutrino mixing is driven byM and
assume degeneracy of three large Higgs-Yukawas, yiν.
Thus, our Higgs boson is engineered in a “large-
Nflavor ¼ 3-fermion bubble approximation.” The yν have
a Landau pole and can match the compositeness conditions
for the Higgs. The top quark Yukawa is also pulled up to the
Landau pole but remains a spectator to the new dynamics
that forms the Higgs bound state.
The model has some nice features, lending a physical

role to the right-handed neutrinos and demanding some
new strong dynamics at Λ [e.g., a gauged SUð3Þ neutrino
flavor?]. New dynamics near the weak scale is relevant for
this. As a proof of principle, there remains much to do to
survey viable schemes and explore their phenomenological
consequences.
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FIG. 5 (color online). Values of the Higgs VEV (v) and mass
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dashes indicate the point where correct Higgs phenomenology is
realized.
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