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Abstract

We discuss the generation of parametric X-rays in the new photoinjector at the
FAST (Fermilab Accelerator Science and Technology) facility in Fermilab. These ex-
periments will be conducted in addition to channeling X-ray radiation experiments.
The low emittance electron beam makes this facility a promising source for creating
brilliant X-rays. We discuss the theoretical model and present detailed calculations of
the intensity spectrum, energy and angular widths and spectral brilliance under differ-
ent conditions. We also report on expected results with parametric X-rays generated
while under channeling conditions.

1 Introduction

Energetic charged particles traveling through a crystal can produce X-rays by several mech-
anisms. Incoherent bremsstrahlung and transition radiation give rise to a continuous spec-
trum while channeling radiation (CR) and parametric X-ray (PXR) radiation produce quasi-
monochromatic discrete X-ray spectra. One of the main advantages of using crystals is that
CR and PXR produce hard X-rays with much lower energy electrons compared to, for ex-
ample, synchrotron radiation produced X-rays in circular rings, . It takes a 3 GeV electron
beam (assuming a bend field of 1 T) to generate X-rays with a critical energy of 10keV
via synchrotron radiation while 10 MeV electrons have sufficed with channeling and para-
metric radiation at the same energy. Hard X-ray generation using crystals and 50 MeV
electrons is one of the planned set of experiments at Fermilab’s L-band photoinjector in the
FAST facility (formerly called ASTA) [1, 2], currently being commissioned . The major
goal of these experiments is to demonstrate that such a photoinjector with a low emittance
electron beam can serve as a model for a brilliant compact X-ray source when scaled to a
higher gradient X-band photoinjector.

The detailed characteristics of CR expected at FAST was discussed in [3]. In this pa-
per we will consider the spectral brilliance of PXR under various conditions at FAST. The
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PXR mechanism was first discussed several decades ago pkp&rimentally measured
first with electrons in 1985 [6] and since then observed atyralnoratories; several re-
views are now available [7, 8]. PXR has also been observed #00 GeV protons using
a bent crystal at CERN’s SPS accelerator [9]. The charatiesiof PXR differ from CR
in several ways. In CR emission, the X-ray energy spectrasisrete at electron ener-
gies below 100 MeV and the frequencies depend on the padiwegy, while in PXR
they are independent of particle energy at relativisticipiarspeeds. PXR can be gener-
ated at large angles from the particle’s direction whicliedéntiates it from both CR and
bremsstrahlung making the background contribution sicpguifily less than the signal. The
PXR spectral lines are also more monochromatic than CR, ttthus at least an order
of magnitude smaller. The disadvantage of PXR is that thequhgield is about two to
three orders of magnitude smaller than that of CR. On therdthed, PXR can be gen-
erated simultaneously with CR generation thus potentalywing multiple X-ray beams
with different spectra and in different directions. Thestaf requirements for PXR and CR
production are similar, namely high thermal conductivibyy photon absorption length,
high dielectric susceptibility and large lattice spacihgthis article we will consider the
spectral brilliance from a PXR source under different ctinds. In general, the brilliance
will be several orders of magnitude lower than that from thghiest X-ray sources such as
XFELSs or inverse Compton scattering. However, compareldsd sources, a PXR source
can deliver X-rays suitable for industrial and medical agilons with significantly lower
cost, complexity and size. The special feature of the phggoior at FAST for generating
brilliant X-rays using crystals is that low emittances cangenerated by shaping the laser
spot size on the cathode and even lower emittances have beenea with field emission
(FE) nanotip cathodes [11]. In addition, the photocathadkFE cathodes operate at GHz
frequencies, so the high repetition rate allows for low budlcarge required for these low
emittances.

In Section 2, we discuss the PXR spectrum, notably the phertergy and the spectral
distribution dependence on the crystal geometry. In Se@jove present calculations of
the energy width with contributions from geometrical effeand multiple Coulomb scat-
tering, while in Section 4 we consider angular broadening ianSection 5 the spectral
brilliance. Section 6 contains specific calculations far ghotoinjector at FAST,; this in-
cludes cases with the use of the present goniometer holdengri/stal, the options with
a new goniometer, and finally PXR emission under channelarglitions. We conclude
with a summary of results in Section 7.

2 Characteristicsof the PXR spectrum

PXR emission occurs when the virtual photons accompanyiegharged particle scatter
off the atomic electrons in the crystal and interfere carddively along certain directions.
The incoming virtual photon’s wave-vectky and the outgoing real photon’s wave vector
k; are related by the Bragg condition for momentum transfer

ki =k; +mg (1)
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whereg is the reciprocal lattice vector of the scattering planesraims an integer. Writing
Ki=wB/v,k; = wQ/(c/+/€), and taking the scalar product of the above equation ith
ylelds the outgoing PXR photon energy as
E—hw=m_ 9B @)
1/B - VeB-Q

Herev = [?Bc is the velocity vector of the particlqé is the unit velocity vector. For
electron energies in the range of tens of MeV, we can appraté~ 1. Q is the unit
vector along the direction of the emitted photon anid the real part of the permittivity. If
the first order spectrum is obtained by reflection from a plaitle Miller indices (h, k1),
multiples of this frequency occur from reflections off planeéth indices(mh, mk, ml) with
m > 1. The above equation can also be derived by requiring tleapttase difference
between photons reflected from adjacent lattice planes betager multiple of 2r. At
X-ray energies, the frequency dependent real part of tHeadiec function can be written
ase(w) ~ 1— (wp/w)? The plasma frequenagy, for most crystals is in the range 10-90
eV while X rays have keV range energies. Approximatig 1, the first orderh= 1)
PXR energy can be written as

gsin(6g+a)  6,=26;,a=0 g
. — Com
2sirt((6y+a)/2) 25sin6g

3)

where 8y is the angle of the crystal plane with the beam directimns the angle of the
electron with the central electron beam direction, &gds the observation angle of the
emitted radiation with the beam direction. This shows thatghoton energy is indepen-
dent of beam energy and can be changed by rotating the cryistatespect to the beam
direction.

The expression for the angular intensity distribution glted from a kinematic theory
can be written as [12, 13, 14]

BN Tw, s g Xe(@)? [ 62c0S 265+ 6
dodeds, ~ amc M TG e ez gz ez | 00 @)
feo(.0) = Lal 51— expl— ) ©)

2
Xe(®) = 1S(0) pF(g)] S0 exlo 1) F(0)- [ rp(r)exiir-g) @
1
9ph—¢+(%>2 (7)

Here 6y, 6, are the angular deviations from the direction of speculiecton @, = 26)
in the planes parallel and perpendicular respectively éodiffraction plane,a; is the
fine structure constant,; is the photon absorption length in the crystals the crystal
thickness. xq is the frequency dependent part of the Fourier transfornhefdielectric
susceptibility and depends on the plasma frequegg;the atomic numbez of the crystal
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and onS(g),F(g). S(g) is the crystal structure function, the sum is evaluated theatom
locationr in a unit cell. For FCC cubic crystals like diamond and siic8(g) # 0 only if
the Miller indices(h,k,I) of the reflection plane are either all odd or all even. If they a
all even,h+k+1 must be divisible by four. For an amorphous mate8i@) = 0, hence
there is no PXR emissiorf:(g) is the atomic scattering form factor which is the Fourier
transform ofp, the density distribution of the atomic electrons. The Delyaller factor

e M(9) accounts for thermal vibrations and is close to unity at reemperature.

Among the assumptions made in deriving this result are timattam is relativistic
(y > 1), deviations of the photons from the Bragg specular reflecangle are small
(6x, 6y < 1) and the crystal thicknesss larger than the photon formation length.

The angular factor, the term in square brackets on the ragd side of Eq. (4) contains
the dependence on the angls6, the beam energy and on the X-ray frequenay. The
two terms in the numerator of the angular factor describectiwributions from the two
polarizations. If the observation anglé2= /2, the horizontal contribution vanishes
and the observed spectrum is completely vertically podariat all angles, 6,. When
projected onto one of the two angles the angular distributan be either single peaked
or double peaked, depending on the value of the orthogomaéarmhe extrema of the

angular distribution irfy are at6y = 0, i\/egh + Bf(l— 2seé26;) while those inB, are

at 6y = o,i\/ethr 62(1—2co%26;). When there is a single peak, the maximum is at
zero, while with double peaks, the maxima are closﬁﬁgh and there is a local minimum
at zero angle.

The angular distribution depends on the beam energy ordygrthe angl@ph which
occurs in the angular factor. At low beam energies suchytkat(w/wyp), we haved,, ~

1/y and the intensity increases @ This can also be seen by a power series expansion of
the angular factor in terms of the parametgfw,/ wy)

9)?c05229,3—|—9}?_(6)(200522954—9)?))/1 . 2 Y
e ar@+gr |\ ar e e way
3
+ Yyt ol( T —)®) ®)

(1+y2(62+ 9y2>2(<w/wp> (w/ap)

The denominatof1 + y?(62 + 6)?) is of order unity over the useful range of angtks6,.

As the beam energy increases, the angular factor and thdaangtensity distribution
reaches a maximum around= w/wph, levels off and then decreases slowly at higher
beam energy. This behavior can be seen in Fig. 1 in which thee\d the angular factor
at 6, = 0,6, =1/y s plotted. In the lower of the two curves wheyganges from zero
to larger tharnw/wy the intensity levels off, while in the upper curve< w/wy, over the
entire range, so the intensity grows monotonically

The atomic structure functioR(g) and consequently the susceptibility are calculated
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Figure 1: Dependence of the angular factor with the eledeem’s relativistic factoy
for two values ofw/wp with w, = 38eV. The lower valuev/wy corresponds to an X-ray
energy of 5.7 keV and the higher value to a X-ray energy of ¥9ke

from the expressions
F(9)=fo(8)+(F +if"), fo(s) =Y aexd—bs]+c, s=4mg
|

)\zreNC rn )\zre / o
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The coefficient§a;, b;,c) are the Cromer-Mann coefficients [15] while the frequency de
pendent form factor$f/, f”) can be obtained from a database maintained by NIST [16].
Herere is the classical electron radius; is the number of atoms in the unit cel, is the
volume of the unit cellZ is the atomic number of the crystal afig, is the crystal structure
factor for the plane with indicegh, k,1). The photon attenuation length at a wavelenygth
can be found fronty = A /(2mIm(X,)]|)-

We now discuss the geometric factige, in Eq.(4). The unit vectors, ¥, Q are defined
and shown in Fig.2. The figure on the left in Figure 2 shows teeten velocity vector
v, the normaln to the crystal surface, and the norngaio the crystal planes. The figure
on the right in Figure 2 shows the direction of the detectoestral axix2, and the angles
between the vectors. Itis clear that in order for the crysiaie to be a reflecting plane, the
anglert/2 — 85 betweeng and-v and also the angle betweeng and2 must satisfy 0<
(r/2—6g,9,{) < /2 where( is the angle betweegandn. Bragg geometry corresponds
to { = 0 while in Laue geometry = 11/2. If 6 is the angle of the detector relative to the
velocity vectorv, then we have

0= g_wD—eB), f-9=—sin6g+{), A-Q=sin(6,—6—7)

The geometric factofge, in the intensity expression can then be written as

B sin(GD—QB—O t
o =l g O L sing, 6,201

(10)
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Figure 2: Left: A general crystal geometry for an arbitrarjentation of the reflecting
plane. Reciprocal lattice vectgr normal to the crystal planay: normal to the crystal
surface. Bragg geometry corresponds to the crystal planehwiasg||n, Laue geometry
to g L n. Right: The different angles betweegnn, v: electron velocity vector, anf:
direction of the detector’s central axis

Note that if 6, = 65 + {, the geometric factofge, = O because the photons travel along
the larger transverse dimensions of the crystal and will betlyabsorbed in the crystal.

We mention here that a refinement to the kinematical thedheislynamical diffraction
theory [17, 18, 19] which takes into account the couplinguMeein the photon fields with
wave vectorsk; andk; +g via interaction with the crystal. This coupling gives rige t
additional PXR photons emitted in the forward directionlimse proximity to the electron
beam. This forward PXR was observed in experiments at theMaboratory [20] but care
was required to extract this PXR emission signal as tramsradiation and bremsstrahlung
are also emitted in the same direction. We will not discussfttward PXR emission here
as it does not offer the relatively background free propeftl?XR emission at the Bragg
angle.

3 Energy spectrum broadening

The intensity spectrum given by Eq.(7) predicts a deltationcspectrum at integer multi-
plesmwg of the Bragg frequency. In practice, there are several nrésins which broaden
the frequency of each line in the spectral distribution. Wedks the important sources
and present analytical results for their contributiond®energy width and compare them
to previous experimental results.

3.1 Geometric effects

From Eq.(3), it follows that the photon energy depends oratigge of the incident electron
and the photon direction. The incident angle will have adirgsipread due to the beam
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Figure 3: Effect of the beam spot size (a) and crystal thiskr{b) on the angular photon
spread. In (a), the beam spot diameter is representeg &yds; is its projection on the
detector. In (b), the crystal thicknesd jghe effective thickness traversed by the electrons
ist.;; andty the projection on the detector.

divergence while the photon angle hitting the detector cavela spread due to several
effects including the finite beam spot size on the crystdiaser the detector size and the
crystal thickness.

Writing the spread in electron incident angle in the diffraic plane asAay and the
photon angle a, = 265 + 6, we have from Eq.(3) to first order oy

AE 1
(f)div = mexﬂax (11)

We setAay = a)'( the beam divergence in the diffraction plane &ge- Ax,, /RwhereAx,
is the width of the detector aridlis the distance from the crystal to the detector.

Again from Eq.(3), it follows that the energy spread is retato the photon angular
spread as

(AE) A6,

E P tan6g

The impact of the finite beam size A, can be seen in Fig.3a. A finite size on the crystal
surface projects to a spot size on the reflecting planes froimmhaphotons with a spread
of angles can reach the detector. kgbe the beam spot diameter on the crystal gitis
projection on the crystal’s reflecting plane. The angle tledity vectorvmakes with the
crystal surface i + ¢, hence it follows from the figure that

(12)

L B s, _ sin(6g+ <)
S = %sin(Gs + ), Sp_cos(n/Z—GB)’ ~ 5= sinf,

On reflection from the crystal plane, the sgggprojects to a size, = spsin(6, — 6g). The



angular spread in the photon angles resulting from the bézeniss

Sp _ Oxsinfg+¢ sin

(Abp)gze = R~ R Sin6g (6p —6g) (13)

where we have replaceg by the rms beam size.

The impact of the finite crystal thickness is seen in Fig.3e &ffective crystal thick-
nesst,; projects to a length on the detectgr=t;; sin6y, = tsinf,/sin(6; + {) where
t is the crystal thickness. Hence the angular spread in phertgies due to the crystal
thickness is .
_ty t singy
cysd T R T Rsin(6g+ )

Finally the detector size results in an angular sprée},) ;o = Ay /R

(A6p) (14)

Adding the independent sources of beam angle spread andrphagle spread in
guadrature, the energy spread due to these geometricsafect
1/2

. in26,
-+ 00f 8 { (axsin(By + 2))2 + (122 + (0

E _ E (Axdaa)/(
E R

2sirf 6,
(15)
Here we have sefl; = 285, the direction for specular reflection. For typical beam and
crystal parameters, the dominant contributions are froenbam spot size and the de-
tector width while the contributions from the beam divergeerand crystal thickness are
significantly smaller.

3.2 Multiple Scattering

The contribution of multiple Coulomb scattering can be wgtiedlly calculated from the
differential angular spectrum. Using Eq.(4), it followstlhe differential angular spectrum
per unit length is given by

67 cos' 265 + 6
62+ 67 + 65,]°

3 o
N % 2 e M) xq(w) 2 (16)

= — EXP———=
dzd6cd6, 4rmcsin? 6 |h-V] P Lalfi-Q

The spread in angle, 8, changes as the electron beam propagates through the clystal
to multiple scattering. Assuming the multiple scatterimggess to be Gaussian, the angles
are sampled from distributions

1 62
= ——— exp— 5]
\V/ 2110, 20y
and a similar expression for the distributiorfip Hereay, o, are the rms beam divergences

which increase witlz as the beam propagates through the crystal. Writing thialibiam
divergences ago, O')/, o), thez dependent divergences are

f(6x)

/! /!

0,(2) = [(0,0)* + (oys(2) 32
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and similarly fora{,. Herea, s is the rms multiple scattering angle in tkéirection. This
can be found from the expression [21]

() = 1;’;6 /><er 1+ 0.038log ><er )] (17)

wherez is the path length traversed in the crydfalis the electron beam energy in MeV
andX ., is the radiation length.

The multiple scattering weighted distribution functiongpis then
dN d3N
(E)MS—/dz/dq’x/deyf(@()m(%@,@x@y)

Iy —

" @2 ]93c052265+6§
——eXp— =%
0y(2) 20,27 [67+ 67 + 65]°

(18)

Here.e7 includes all factors which do not dependn#, 6,. Within the integrandi(6x +
@) denotes that the photon energy is evaluated at the &fgle¢). From this weighted
distribution, the average and rms width of the energy spettran be found as

) JEON _ JE(AN/d8), 6,
JdN J(dN/d6)),<d6x
UE,MS: (E?)— (E)? (19)

We will use EQ.(19) to estimate the energy width due to midtgcattering instead of a
Monte-Carlo simulation that is often used.

There is another contribution to the linewidth from the mhabsorption in the crystal.
Assuming a point source electron beam and no imperfectiomsudtiple scattering, the
photon wave train emitted by the beam has an intrinsic engrdth given by [22]

Xo. hc
AE .= heo — = 20
Intrinsic 2sif;  2sirfBgla (20)
wherey,, is the imaginary part of the mean dielectric susceptibilitie intrinsic width
has a minimum value for backward emission wifkgr= 71/2. This contribution is typically
orders of magnitude smaller than the other contributioesudised above.

The expressions for the energy width have been checkedsagagasured values from
a couple of earlier experiments, one at a low beam energy8dié&V [23] and the other
with beam energy of 56 MeV [24], close to the FAST beam enerfggloMeV. Since
multiple scattering is more important at lower energy, cangon with the low energy
result are a good check of the width from multiple scattewuinge the second case will be
a good check of the geometrical width. Table 1 shows the tesfithe comparison. The
geometrical linewidth was calculated using Eq.(15) andihétiple scattering contribution
using Eqs.(18) and (19). The two were then added in quadratuyield the theoretical
value shown in Table 1.



Crystal | Geometrical Multiple Scattering| Intrinsic | Theory(total)| Experiment
[eV] [eV] [eV] [eV] [eV]

C (111) 35.9 34.8 2.1x10°% 49.4 51

Si (220) 524.9 61.3 2.8x10°% 529 540+ 120

Si (400) 97.1 9.7 2.1x10°3 98 134+ 56

Table 1: Comparison of theoretical energy widths with ekpental values after removing
the effects of the detector energy resolution. First rowpdtiments with 6.8 MeV elec-
trons and a diamond crystal [23]. Second and third rows: Exymats with 50-60 MeV

electrons and silicon crystals [24, 25]. These values &entérom Table 36 in [24]. The
theoretical estimates include geometrical, multiple tecatg and intrinsic contributions
added in quadrature.

4 Angular spectrum broadening

The measured angular intensity distribution representsaatution of the intrinsic PXR
intensity with the Gaussian response of the detector angegmlution, the beam diver-
gence and multiple scattering. Hence the measured inyassif the form

(6,8, = ~—-C

 2mno] o)

d?N Ox

&N (6, B,— ) expi— (X )2 (— Y _)24q,dq
dgg, VY V207 <

d6x6y conv v20]
(21)

whereA.. is a constant to ensure photon number conservation afteotivelution,d?N /d 646,
is the angular distribution without convolution, and theat@ngular resolutions, ayT are
given by

0
T D,u /
Oy = \/(?)2 + (au>2+ (0|(/|5)2
whereu = (x,y), dp, , is the detector resolutiofR is the distance of the detector from the

crystal,a(J is the beam divergence at the crysizaﬂ,|S is the effective multiple scattering
angle averaged over the path lengtlcosg.

(22)

In the absence of the broadening due to the convolutionnthasic angular width of he
PXR spectral distribution is given @Yy ¢ ~ 6,,. In crystals with thicknesses comparable
to the attenuation length, the broadening due to multiptedng is significant and the
characteristic double peaked angular distribution isaegd by a broadened single peak
distribution with the center filled in.

Other sources of angular broadening are the higher ordectiefhs from planes with
spacings which are integer sub-multiples of the primary@larhese higher order reflec-
tions produce higher photon energies with lower yield lemda broadened distribution
when recorded on a detector which sums over all photon ergergi
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5 Spectral Brilliance

The spectral brilliance of the photon beam is defined as th&eu of photons emitted per
second per unit area of the photon beam per unit solid anglenerelative bandwidth

d*N

B= dtdAdQdw/ w

(23)

Expressed in conventional light source units, the averpgetsl brilliance can be written
in terms of the averaged beam parameters and differentilanintensity spectrum per
electron in a 0.1% bandwidth

N 1w Ey
~ hdwdQ e (0y)
a1 dN 1
_EAEV/EVE<0_62

Bav 51073 (24)

) x 101> photongs— (mm—mrad?—0.1%BW (25)

wherelyy is the average electron beam currdgy,is the energy of the X-ray line anal,

is the X-ray beam spot size. In the second ldi/dQ is the angular yield in units of
photons/(el-sr), and we set the photon spot size to therefebeam spot size in the crystal,
I.e. 0y = Oe. HereAE, includes only the contributions to the spectral width frdva trystal
but not that from the detector resolution.

Due to multiple scattering within the crystal, the electbmam divergence, beam size
and emittance will grow as the electrons move through thstaty Writing & as the
normalized electron emittance, the emittance growth asetifon of the distance traversed
zis /

Ay (2) = YBx(0ws(2)? (26)
where 3y is the optical beta function at the crystal in thexis, If the initial beam size
at the crystal iso, ; and the normalized emittance at the crystal entrancg js then

Bx = Y(0%0/€x - The beam divergence grows asz) = \/(aé(o))ZJr (oys(2))? and the
average of the inverse beam size squared follows from
1 y, 1 y let 1 1
(=) =7 )= dz ;
N (Z) theff 0 [£N70+ VBX<UM5<Z))2]

(27)
a&’ B

This averaged expression will be used in Eq.(25) for theamesbrilliance. If the initial
beam divergence and beam emittance are small compareditantrease through the
crystal, and neglecting the logarithmic correction to thdtiple scattering angle , we have
(0e(2),00(2) O v/Zand the emittance grows &g(z) 0 z

Since the brilliance scales linearly with the electron entrbout inversely as the square
of the electron spot size, it is advantageous to geneate @bsaspot size as feasible even
at the cost of reducing the beam current. Since the emittgwoves with crystal thickness
faster than the yield does, the maximum brilliance will alsquire the use of thin crystals,
as will be shown later with numerical examples.
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Parameter Value Units
Beam energy 50 Me\
Bunch charge 20 pC
Length of a macropulse 1 msg
Number of bunches/macropulse 2000
Macropulse repetition rate 5 Hz
Bunch frequency 2 MHz
Interval between bunches 0.33 us
Bunch length 3 ps
Crystal, thickness Diamond, 168 um

Table 2: Bunch and macropulse parameters in FAST

6 PXRinFAST

In the FAST beamline, a goniometer on loan from the HZDR figgitlescribed in [26], is
presently available. It has two ports through which radiatan be extracted - one along
the beam axis which will be used for channeling radiation amother at 90to the beam
axis which can be used to extract PXR. This determines thist the detector angle at
90 degrees, the Bragg angle must be 45 degrees in order toageieXR with sufficient
intensity.

The goniometer already has a diamond crystal inside witLitiace cut parallel to the
(1,1,0) plane to generate channeling radiation from trags@l It has a thickness of 168
and this will be the assumed value for most calculationsnteddchere. In order to limit
heating the crystal by the beam, we will assume low curreetratpn with an average
beam current of 200nA and a bunch charge of 20pC. At such ehailges, low transverse
emittance of the order of 100 nm can be obtained by suitalapisly the laser spot on the
cathode [27] or alternatively with field emission cathodgs]] The main parameters of
FAST and the crystal are shown in Table 2. We chd@sel m as the crystal to detector
distance and the active size of the detector plate to be 2ocomx 2

Table 3 shows the PXR photon energies, the angular yieldl@dnergy width from
reflection off three of the possible low order planes with aM&V electron beam. The
yields include the effect of attenuation in air from the ¢aydo the detector. The recip-
rocal lattice spacingy between adjacent planes with indicgsk,l) is found fromg =
(2m/a)vh? + k2 +12 wherea is the length of a unit cell. Consequently both the energy and
absolute linewidths increase with increasing order. Tlé&lgiare higher for the (2,2,0) and
the (4,0,0) planes primarily due to the higher susceptyojy. Table 4 shows linewidth
contributions from geometric effects and multiple scatggfor each of the planes. The
two effects are comparable in these cases.

Figure 4 shows the two dimensional contour plots of the aarguitensity spectrum
projected on th& 6y, 6,) axes without and with convolution. The broadening effeces a
clearly visible as the two distinct peaks in the left figurerggeinto a single wider maxima
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Plane | X-ray energy| L,c | Ly, | Attenuation Yield AE

[keV] [crh] [cm] in air [photons/el-sr] [eV]
(1,1,2) 4.26 0.0097| 12.72| 3.8x10°*% 3.7x10° 59
(2,2,0) 6.95 0.043 | 57.2 0.17 9.9x10°° 93
(4,0,0) 9.83 0.120 | 144.9 0.50 8.8x107° 131

Table 3: Photon yields and linewidths at a Bragg angle 6f 45servation angle of 90

in FAST from PXR off some planes. Bragg geometry in all casegstal thickness =
0.168mm. The relative energy width in all cases is about 1P® yiield value includes the
effect of attenuation over a 1m long path in air from the al/g&i the detector.

Plane| Geometrical Width (eV) Multiple-Scattering(eV) Total (eV)
(111) 42.8 39.3 59.1
(220) 69.5 62.0 93.2
(400) 98.3 86.7 131.1

Table 4: Contributions to the energy width from geometrfe@t and multiple scattering.

in the right figure.

For each primary plane, PXR emission also occurs from highsder planes at higher
energies and lower intensities. For the (1,1,1) plane, éx¢ alowed higher order plane is
the (3,3,3) plane, sincg(g) = 0 for the (2,2,2) plane. The photon energy from the (3,3,3)
plane is 12.8 keV with significantly reduced attenuationimaad resulting in a angular
yield at the detector about two orders of magnitude highen that from the (1,1,1) plane.
For the (220) plane, second order reflections from (440) lloeed with photon energy of
13.9keV. The (440) plane has an angular yield about a thialenthan the (220) plane
even after including smaller attenuation at the higher ganeiFor the (400) plane, the
second order reflection from the (800) plane produces 19.ft®tons and an angular
yield about 10% that of the first order yield. The broadenifthe angular distributions
from the higher order reflections in these cases is found todignificant.

Figure 5 shows the impact of the crystal thickness on the langield and spectral
brilliance for two different planes. The thickness is shoelative to the photon attenuation
length, this length is larger for the (400) plane becaushefigher photon energy. For the
same absolute thickness, the angular yield with the (220)epis larger, as seen in Table 3
for a single thickness but the angular yield for the sameivelarystal thickness is higher
with the (400) plane because the absolute thickness isrlalgeéboth cases, the angular
yield appears to saturate at a thickness of about,1.Phe spectral brilliance for the same
relative crystal thickness is larger with the (2,2,0) plareause the average emittance over
the crystal is smaller with a smaller absolute thicknes$olit cases, the brilliance reaches
a maximum around (0.2 - 013). These plots show that the optimum crystal thickness
depends on whether the photon yield or the spectral bridéas the object of interest.
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Figure 5: Left: Yield per electron per steradian as a fumctibthe crystal thickness relative
to the photon attenuation length in the crystal for two défe planes: (220) and (400).
Photon attenuation lengths in the crystal are: 481 at 6.9keV, and 1198n at 9.8keV.

Right: Spectral brilliance as a function of the relativestay thickness for the two planes.
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Figure 6: Schematic of the new goniometer with the five ladbelerts. The X-ray energies
expected from these ports with different planes, see Taldeebalso shown. Note: Ports
3 and 5 are not in the horizontal plane but aré #bthe horizontal. There is an exit port
under port 5 and in the horizontal plane but not shown here.

6.1 New Goniometer

The initial set of experiments will be conducted with the gometer described above with
the two ports. There is another goniometer under constmuethich will have a total of

five ports through which X-rays could be extracted. A schénwdtthis new goniometer

is shown in Figure 6. These ports will offer the opportunifygenerating PXR at differ-

ent Bragg angles and hence different energies, yields aactrap brilliance from those

considered in the previous subsection.

The angle of the port determines the direction of the photoisgion and hence the vec-
tor Q. We write the unit vector along the detector axi€as (w,, w,, w,)/ /w2 + wl + 2.

If the PXR plane has Miller indicegd, k, 1), the unit normag tan be one of-(h, k1) /vh2 + k2 +12.
The conditions for reflection require that bath(=V) > 0 andg™ Q > 0. The first of these
results in choosing the sign gfwhile the second determines if a chosen detector angle is
suitable for observing reflected photons. Together the twaditions ensure that the in-
cident beam and the reflected photons are on the same side wfkcting plane. For a
given plane with a norma, the Bragg angle is determined frofg = arcsifj—v- §]. For
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Port Plane 111 Plane 220
Energy Ang. Yield Energy Ang. Yield
[keV] [x10~° phot/e-sr] [keV] [x10~° phot/e -sr]
1 4.3 0.037 6.9 9.9
2 3.3 3.4x107° 5.4 1.2
3 3.2 1.5x10°° 5.3 0.096
4 7.1 76.9 11.6 90.5
5 7.9 142 12.8 108.3
Port Plane 311 Plane 400
Energy [keV] Ang. Yield Energy [keV] Ang. Yield
[keV] [%107° phot/e -sr ] [keV] [%107° phot/e -sr ]
1 8.1 5.3 9.8 8.8
2 6.4 1.6 7.7 4.8
3 6.2 14 7.5 4.6
4 13.6 26.5 16.4 34.7
5 15.1 41.3 18.2 40.8

Table 5: X-ray energies at the different ports for differ@XR reflection planes. Bragg
geometry is assumed in all cases.

the goniometer ports shown in Figure 6, the angle vectoiisdaeétector locations are

G, =(1,0,0), O, = (sin(1371/18),0,c0g131/18)), Q= (0. \ifz,_%),
&, = (sin(5m/18),0,cog5m/18)), O = (0, \ifz _\i@

Energies and angular yields at the different ports fromedéfiit PXR planes are shown in
Table 5.

Table 6 shows the spectral brilliance expected from ports#¥5a the ones correspond-

Port Plane 111 Plane 220
Energy| t/La | Sp. Br. [x10°] || Energy| t/La | Sp. Br. [x1(7]
4 7.1 0.36 55 11.6 | 0.09 2.2
5 7.9 0.26 5.7 12.8 | 0.07 2.1
Port Plane 311 Plane 400
Energy| t/La | Sp. Br. [x10°] || Energy| t/La | Sp. Br. [x1(7]
4 13.6 | 0.06 0.59 16.4 | 0.04 0.59
5 15.1 | 0.05 0.57 18.2 | 0.03 0.56

Table 6: PXR photon energy, crystal thicknesslative to attenuation lengthy, and spec-
tral brilliance (Sp. Br.) in units of photons/s-(mm-mr&d).1% BW] at ports 4 and 5 for
different planes. The crystal thickness was 0.168mm in eash.

16



ing to the smallest Bragg angles and highest yields. Witletistal thickness kept constant
at 0.168 mm, the spectral brilliance is highest for the (Idldhe at these ports. The X-ray
energy is between 7-8 keV and the ratio of the crystal thiskrte attenuation length is

close to the optimal value of around 0.2, seen in Figure 5tt@higher order planes, the
PXR energy increases but the spectral brilliance decredsgsecially for planes (3,1,1)

and (4,0,0) the brilliance drops by an order of magnitude ganed to the (1,1,1) plane.

This is partly due to the small relative thickness and ingirgathe crystal thickness would

also increase the brilliance, but not significantly. Theicb®f plane would then be de-

termined by whether higher energy or higher brilliance igsemtesirable. A higher energy

beam, e.g. 100MeV, would increase the yield and also thkenitle because the emittance
growth due to multiple scattering would also be smaller.

6.2 PXR while channeling

It was pointed out [28] that if a beam is channeled within sstalyand emits channeling
radiation, it may also emit PXR emission from reflection affiplementary planes which
intersect the channeling planes. It has subsequently besameed at the SAGA light source
linac with 255 MeV electron beams [29]. Here we consider ttuspect of detecting PXR
emission under channeling conditions while using the priegeniometer. As mentioned
previously, this goniometer has a second port attddhe beam axis which could be used
for detection of PXR. These requirements impose conssgraintthe possible PXR planes
and the orientation of the crystal which we now consider.

Choosing the(110) plane as the channeling plane, the unit normal to this plane i
M= (1,1,0)/v/2. This vector must be normal to the velocity vector whichlddee of
the formv'= (a, —a,c)/v/2a2+ c2 where(a,c) are arbitrary real numbers. We will con-
sider two choices below, one witla, c) = (—1,0) and another witl{a,c) = (0,1). If the
PXR plane ig111), the unit normal to the PXR planegs= (1, —1,1)/+/3 and the Bragg
anglefy is determined by the condition $g = |§-V| = |(2a+¢)/(1/3(2a8%+c?))|. The
choicev'= (—1,1,0)/+/2 yields 8; = arcsir(,/2/3) = 54.7° while choosing the vector
¥ = (0,0,1) yields 8 = arcsin(,/1/3) = 35.3°. A smaller Bragg angle leads to a higher
PXR photon energy, so we chooge-10,0,1). In practice, with a given electron beam
direction, these choices will correspond to different otaions of the crystal with respect
to the beam velocity. For particles at other angles in therbéigtribution, the requirement
for channeling is that the velocity vector has an angle ssnttllan the critical anglé, i.e.

8 = arcsinm-v) < 6.

If we assume that the crystal has been cut so that the susfaegdllel to the channeling
plane, then the unit normal to the surface, defined @€ Fig. 2) is identical to the vector
mdefined above, i.en = M= (1,1,0)/v/2.

6.2.1 Crystal rotation

If the crystal is aligned with so that the channeling planpagallel to the velocity vector,
then the Bragg angle with a chosen PXR plane may not be apatepgo observe the
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Figure 7: Sketch of the (110) channeling plane, maf, 1) plane which is one of the
possible PXR planes, the electron beam direction and tleettn of the PXR photons
from this reflection plane.

PXR photons at 90 degrees to the beam. However, a rotatidreafri/stal about an axis
orthogonal to the channeling plane can create the desiraggBangle while maintaining
the channeling condition. If the rotation matrix about tleemal to the channeling plame ~
is written asR(y) wherey is the rotation angle, then the rotated normal to the PXReplan
is §r = R(¢)§. The requirement on this angigis that the velocity has the desired Bragg
angle with the new normag, i.e.

sin6g = gr- (—V) = R(Y)G- (-V) (28)

The rotation matrix about an arbitrarily chosen unit vegtee (py, Ly, L) is the so-called
Rodrigues matrix [30] given by

COSY+ UZS  —zSINY + LxilyS ply SINY + 1S
R(Y) = | USInY+ pxpyS  cosy + u&S — Uk Sing + py ;S (29)
— Uy SINY + [ lzS [heSINY + [y l,S cosy + p2S

where S = 2sirf(y//2). When the channeling plane is (110), the rotation axig is
(1,1,0)/+/2. The desired angle of rotatiahis found from Eq.(28) witlf; = 11/4.

Applying this to different possible PXR planes will ensunatthe rotated light vector
lies in the(x,y) plane. A further rotation about theaxis (i.e along the beam direction) may
be necessary to direct the light out along xtexis. When the emitted light as viewed at an
angle Dy to the beam, the reflected light vector prior to any rotatisr@ = v — 2(6.v)§
while that after rotation i€ = ¥ — 2(G - V) G-
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Plane | Angley[deg] | Angle ¢[deg] | E4[keV]
(1,1,1) 9.74 45 4.26
(1,1,1) -9.74 135 4.26
(2,0.2) 0 180 6.95
(2,0,2) 0 0 6.95
(0,2,2) 0 -90 6.95
(0,0,4) 45 135 9.83

Table 7: PXR planes, the angles of rotatipgrabout the normal to the channeling plane
(1,1,0) andp, angle of rotation about the beam direction so that the P¥Rt Iis directed

out of the port along the positivedirection at 90 degrees to the beam axis. The energy
of the PXR light is also shown. Other low-order planes nowshare those for which no
rotation will direct the X-ray beam in the desired direction

As an example, consider the plaﬁ_ka 1,1) for PXR production. Choosing the normal
to this plane ag = (1,—1,—1)/v/3, we have

1 1 A 1
b - (—V) = — (cosy +v2siny) = — = P =9.74,Q, = —(1,-1,0
In this case, a rotation by = 9.74° about the normal to the channeling plane and a further
rotation by = 45° about the beam axis will direct the PXR light out of the podrej the
positivex axis.

Table 7 shows some of the low order planes, the angles ofontgt and ¢, and the
energies of the emitted X-rays into the detector. This tablevs that th€2,0,2) plane
would be the simplest as it does not require any rotationettystal while it is oriented
for channeling. Another reason for choosing this planeaswith rotation, the path length
of the beam while channeling will be different compared te timrotated case and could
affect the channeling yield.

The angle{ between the unit normal fo the surface and the unit normgltd the
channeling plane will change depending on the channeliaggthosen. We assume here
as above that the crystal is cut parallel to the channeliagepo than = (1,1,0)/+/2. The
angle between the two is given lgdy= arccosn- §), thus for the(2,0,2) PXR plane, this
angle is 60.

6.2.2 Yield and spectral brilliance

The above analysis has shown that with the crystal oriemmtechianneling along the (1,1,0)
plane, PXR emission from the (22),plane can be obtained at®O the beam direction
without any crystal rotation. In the subsequent discussi@will primarily consider PXR
from this plane.

When beam energies are under 100 MeV, the channeling radspiectrum consists of
a few well defined lines and is best understood as arising fransitions between bound
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states of the transverse potential. We consider planametiag and thec direction to be
orthogonal to the channeling plane. The quantum mechasiatds are then found from
solutions of the one dimensional Schrodinger equation,

h2 92

Piiygg+VWWM@=EﬂM© (30)

HereV(x) is the one dimensional continuum potential obtained by ayieg the three
dimensional atomic potential along the orthogonal diteiy, z).

Parametric X-rays emitted under channeling conditionsREXare considered to be
those in which the electrons stay within the same transvemsegy band, i.e with only
intra-band transitions. PXR emitted while electrons ti@ms between different energy
bands is labeled as diffracted channeling radiation (DGH)leas apparently not yet been
experimentally observed. We will only consider the yielonfr PXRC here.

The angular spectrum of PXRC is related to that of PXR by [31]

d?N d?N 9
— = PalF 31
dex®|PXRC dexey|PXR; | Fnl (31)
where the sum over the statesanges over the total number of bound stdNgsHere we
also include the effects of a finite beam divergence, so waelBfithe initial probability
of occupation of stata by averaging over the beam divergence. It is given by

__ 1 1 _ %o W2 2
B = oo oA 5l [ ek (00, (32

Herea/ is the beam divergence in the channeling plahgs the inter-planar separatiok,
is the |n|t|aI momentum wavenumber of the incident partiglg, is the angle of incidence
with respect to the channeling plane aqu,quC is the wave function in theth state with

transverse wavenumbky. where—g/2 < K. < g,. Since this wave function also depends
upon the band wavenumbKg. in the Brillouin zone, the averag(eKC on the right hand
side represents an average over the wavenumbers in theustitone.

The form factor,, describes the impact of the channeling wave functions oRPXie
yield and is defined as [28]

Fan = <L[Jn‘ exq_i kXX] ‘ lﬂn>

whereky is the transverse component of the photon wave vector. Wehemafore define
the averaged form factor squared as

dp/2
(Fn(8%) = 1 1 i 09~ By WP @)

dp/2

Here6y is the angle of photon emission in the horizontal plane wepect to the direction
of specular reflection and we average over the Brillouin zzmbefore.
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Figure 8: The differential yield as a function of the photanigsion angledy (left) and

6y (right) without channeling and with channeling for thredues of the initial beam di-
vergence. The channeling plane was (1,1,0) and the PXR plas€2, 02) Convolution

broadening was included in all cases.

The quantum mechanical calculations were done with a Madtieennotebook used at
the ELBE facility to study channeling [32] and significantiyrrected and modified for use
at FAST, as described in [3]. The transverse function is edpd in a Fourier series using
the lattice periodicity as

z VhexplingX| (34)
N=—co0
The Fourier coefficientg, are obtained from the Doyle-Turner coefficie(a8™,bPT) [33]
as
21 2 DT

Vi =— v, 20 zé@f'z exp[—m( ng)?| (35)

HereV, is the volume of the unit cell, is the Bohr radius?j are the coordinates of the

jth atom in the unit cell an¥(g) = %gz<u2) is the Debye-Waller factor (mentioned earlier
with Eq.(7) in Section 2) describing thermal vibrationstwitean squared amplitude?),
assumed to be the same for all atoms. The wave functionsamd fay first expanding them
in a series of Bloch functions and then solving the resultinadrix eigenvalue problem, see
e.g [34].

The wave functions are then subsequently used in calcglatie correction factors
defined above. The form factdtFn,(0)|%) = 1 and we find that in the range3/y <
B < 3/y, {|Fan(64)|?) ~ 1 to within 0.2% in all cases. The significant correction foe t
PXRC yield is due to the initial probability of occupatidR,) which is determined by the
beam divergence. This population of the bound states dezsess the beam divergence
approaches the critical angle of channeling which at theTFASergy of 50MeV is about
0.98mrad. The correctiod is defined as the relative difference between the PXR and
PXRC vyields, hence ag§ =1 — sz(Pn><|Fm|2>. This correction factor increases with
beam divergence and has the values 0.02, 0.09 and 0.58 atdaezngences of 0.01mrad,
0.1mrad and 1mrad respectively.

Figure 8 shows the angular spectra from PXRC for the threzrgiances mentioned and
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Plane || Divergence| AE Yield Spectral Brilliance
mrad eV | x10-4 photons/(e-sr) | photons/(mm-mrad)0.1% BW
B PXR PXRC PXR PXRC
(2,02) 0.01 93 | 0.40 0.38 35.9 35.1
0.1 93 | 0.40 0.35 2.1x10° 1.9x10°
1.0 93 | 0.40 0.16 6.5x 108 1.8x10°
(0,0,4) 0.01 1311 0.89 0.85 21.3 20.8
0.1 131 0.89 0.78 1.27 x10° 1.14x10°
1.0 131 0.37 4.25x108 1.2x108

Table 8: Comparison of angular yields, photon flux and spébtilliance without and with
channeling for three values of the initial beam divergenue f@r two PXR planes. The
channeling plane was fixed at (1,1,0). Andle= 60° for the (2,02) plane, and] = 90°
(Laue geometry) for the (0,0,4) plane. The energy widthfiscaéd by the PXR plane but
not by the initial beam divergence.

compared with the spectrum from PXR without channeling I§&shows that the angular
yield decreases with beam divergence, because the framtmarticles in the bound states
decreases with increasing divergence. Since the spedthalize is inversely proportional
to the square of the spot size and assuming the emittancenge@d, a larger beam
divergence implies a smaller spot size. The increase ilidorile with the smaller spot size
dominates the decrease due to channeling.

6.3 Possible applications of PXR

One of the primary foreseen uses of PXR is in phase contraaggiig (PCI) of low Z
materials, specially biological samples. There are manyri&hods, we plan to use the
free space propagation method which does not need any@uhlitptical elements. The
principle of PCI is that phase shifts undergone by hard X&ralgen traversing low Z sam-
ples are orders of magnitude larger than absorption effélt® phase shift changes the
complex amplitude of the wave field and hence causes infemsitiulations when under-
going interference with X-rays that have not passed thrahglsample. The quality of the
image with the free space propagation method depends orotineessize, the geometric
magnification and the resolution of the detector. Th spdemtiure of FAST that makes it
suitable for PCl is the very low emittance of the electronnbeand hence the small X-ray
source size after the crystal. With electron emittancesratd00nm using a conventional
photocathode, beam sizes at the crystal arounduinscan be achieved [35]. This com-
pares very favorably with recent PCI experiments using P3® hich had beam sizes
of 0.5 - 2 mm (FWHM) at the target. With the use of field emittanatips as the cathode,
the beam emittance could be improved another order of madg([tL1] implying a further
improvement in image resolution. The use of the new goniemdiscussed in Section 6.1
will enable imaging at multiple X-ray energies.

Finally, we mention a proposal [37] to generate short ebechunches at FAST using a
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slit mask placed in the middle of the bunch compressor cleic&ub-picosecond electron
bunches could be produced without the need of an undulator additional complex laser
system. Due to scattering in the mask, the final beam intemsit only be about 10%
of the initial intensity. However, starting from initial tensities of 1-3 nC, the final bunch
intensities within the bunch train will be low enough (ab@0tpC) for PXR generation.
The resulting sub-picosecond X-ray pulses will have a higleak brilliance and could be
used for time resolved X-ray studies in materials scienigerrastry and biology.

7 Conclusions

In this paper we considered the prospect of generating PXfg dsamond crystals with 50
MeV electron beams from the photoinjector at the FAST fgcak Fermilab. We revisited
calculations of the energy width from both geometric andtipld scattering. Compar-
isons with earlier experiments were found to yield reastamagreement The PXR spec-
trum model calculation was applied to the conditions at FAEIng the presently available
goniometer restricts the Bragg angle t¢ 4bit allows a clear separation from the electron
beam. The PXR energies from the planes studied fall in thgerdrr 10 keV with a spectral
energy widths o~ 1%. With a diamond crystal thickness of 18&, maximum angular
yields are about 10 photons/e-sr, taking into account attenuation in air from the crystal
to the detector. Using crystals of different thicknesdes RXR yield was found to saturate
at a thickness of about 1.2, the photon attenuation length at two different energidse T
spectral brilliance on the other hand attained a maximumevat around 012, for these
same energies. This is mainly because the emittance grawtharger thicknesses reduces
the brilliance more than the yield increases it. Next, PXRssion with a new goniometer
with five possible ports was studied. The range of energiesspans 3 - 18 keV. The spec-
tral brilliance, around 1®photons/(mm-mrad)0.1% BW, is reached with a fixed crystal
thickness which is less than Q2for most energies, so higher brilliance is feasible with
thicker crystals. Use of this goniometer would open up thesgmlity of extracting PXR
at multiple energies simultaneously. Finally, PXRC or PXRier channeling conditions
was studied and the yield with quantum corrections from nbéing was calculated for
three beam divergences. While the reduction in PXR yielihdurhanneling was smallest
for the lowest divergence, higher brilliance favors the kesabeam spot size or equiva-
lently the largest divergence under conditions of equalktamtes. This PXRC emission
makes possible simultaneous X-ray emission from changpelhd PXR at 90 degrees to
each other. The brilliance of PXR appears to be sufficienpf@se contrast imaging and
the FAST facility with (10 - 100) nm scale electron emittasisbould enable imaging with
very good resolution.
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