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Abstract

The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new

tree-modes model is proposed and developed to describe the most unstable modes of the bunch.

This simple and flexible model includes chromaticity and space charge, and can be used with any

bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of

a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting

cases which are distinctly bounded at zero chromaticity only. It is shown that the instability

parameters depend only slightly on the bunch model but they are rather sensitive to the wake

shape. In particular, space charge effects are investigated in the paper and it is shown that their

influence depends on sign of wake field enhancing the bunch stability if the wake is negative. The

resistive wall wake is considered in detail including a comparison of single and collective effects. A

comparison of the results with earlier publications is carried out.
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I. INTRODUCTION

Two kinds of single bunch transverse instability in circular accelerators are distinguished

at present: the head-tail one and the transverse mode coupling instability (TMCI). First of

them has been studied first by Pellegrini [1] and Sands [2] who were treating the transverse

bunch oscillations as a combination of uncoupled multipoles ∝ exp(imφ) with φ as syn-

chrotron phase. Role of synchrotron amplitude has been investigated later by Sacherer who

was introducing the conception of radial modes [3]. A lot of papers dealing with this were

published later, including reviews and books (see e.g. [7, 8]). The most important conclusion

is that the head-tail instability is possible at non-zero chromaticity only and depends on its

sign.

Other type of instability was observed in many electron machines regardless of chro-

maticity and being primary referred as “transverse turbulence”. Its first explanation has
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been proposed by Kohaupt who used a simple model of two particles propelling each other

through the mediation of constant wake fields [4]. Later the theory has been evolved on

the base of Vlasov equation treating the instability as a result of reciprocal influence of

neighboring pairs of the head-tail modes which frequencies approach each other due to a

wake field, whence the term TMCI appears [5–8]. Chromaticity has been ignored in these

investigations as a factor of secondary importance. Some space charge effects has been con-

sidered later for both head-tail and TMCI instabilities [9–11]. However, specific models like

the hollow bunch in the square potential well have been used in [9], and only high space

charge limit was investigated in Ref. [9–11].

An important observation is that, in all considered cases, the lowest multipoles m = 0, ±1

or their combinations are the most prone to instability and pose a major threat to the

accelerator operation. It is shown in this paper that the general theory can be essentially

simplified and unified being restricted by these cases.

General 3-modes model is developed for this, providing simple analytical formulae for

all types of single bunch instability. The model is built on the base of exact solutions

for hollow bunch which are obtained in the paper without any additional assumptions like

truncated multipole expansion. The dangerous modes are separated and extended to realistic

distributions with arbitrary wake, chromaticity and space charge included.

It is shown that the instability parameters depend only slightly on the bunch shape being

rather sensitive to the wake function form. Resistive wall wake is investigated especially to

assign which effect is more dangerous in specific cases: either TMCI or collective mode

instability. Chromaticity is taken into account in all the cases demonstrating an absence of

clearly defined boundary between the head-tail instability (separated multipoles) and TMCI

(coalesced multipoles). Space charge effects are studied with arbitrary ratio of betatron tune

shift to synchrotron tune. In contrast with earlier papers [9–11], the investigation is not

restricted by simplified bunch models or by limiting cases only. It is shown that the space

charge effect can be either advantageous or not for the bunch stability, dependent on the

wake sign.
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II. BASIC EQUATIONS AND DEFINITIONS [11]

Linear synchrotron oscillations are considered in this paper being characterized by am-

plitude A and phase φ, or by corresponding Cartesian coordinates:

θ = A cosφ, u = A sinφ. (1)

Thus θ is azimuthal deviation of the particle from the bunch center in the rest frame whereas

the variable u is proportional to the momentum deviation with respect to the central bunch

momentum (proportionality coefficient is not a factor in this paper). Steady state of a bunch

will be described by the distribution function F (A) and by corresponding linear density

ρ(θ) =

∫

∞

−∞

F (
√
θ2 + u2) du (2)

with the normalization conditions

2π

∫

∞

0

F (A)AdA = 1,

∫

∞

−∞

ρ(θ) dθ = 1. (3)

It is convenient to present coherent transverse displacement of the bunch in the point of

longitudinal phase space (A, φ) in the form [11]

Y (A, φ) exp
[

− i(Q0 + ζ) θ − i (Q0 + ν) Ω0t
]

(4)

where Ω0 is the revolution frequency, Q0 is the central betatron tune, ν is an addition due

to a wake field, and ζ is the normalized chromaticity:

ζ =
Ω0Q

′

p

Ω′
p

=
ξ

1/γ2 − α
, (5)

with ξ as usual chromaticity, and α as the momentum compaction factor. As it has been

shown in Ref. [11], the function Y satisfies the equation

νY + i Qs
∂Y

∂φ
+∆Qav

(

ρ(θ)Y (θ, u)−
∫

∞

−∞

F (θ, u)Y (θ, u)du

)

= 2

∫

∞

θ

q(θ′ − θ) exp
[

i(ζ−ν)(θ−θ′)
]

dθ′
∫

∞

−∞

F (A′)Y (A′, φ′) du′ (6)

where Qs is synchrotron tune, ∆Qav is betatron space charge tune shift averaged on all

variables, and q(θ) is the reduced wake function which is connected with usual wake field

function W1(z) by the relation:

q(θ) =
r0RNW1(−Rθ)

8πβγQ0
(7)
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with r0 = e2/mc2 as classic radius of the particle, R as the accelerator radius, N as the bunch

population, β and γ as normalized velocity and energy. Definition of the wake function

and numerous examples can be found in Ref. [14]. More often than not, this function is

negative (resistive wall wake can be mentioned as the best known example). Just such a

case was considered in the most of published papers. However, positive wakes are known as

well, for example the field created by heavy positive ions in a proton beam [15]. It will be

shown in Sec.VII that the wake sign is especially important when space charge is included

in the consideration. Alternating wakes are possible as well (resonator models [14]) but this

case is beyond the scope of the paper.

It is assumed in any case that q(θ) is rather short range function so that the wake field

cannot reach subsequent bunches or turns. Constant wake q = q0 will be used to start with,

and more general cases will be considered in Sec. 6. Besides of these, space charge is not

taken into account in 3 nearest sections. With this reservations, Eq. (6) obtains the simpler

form

νY + i Qs
∂Y

∂φ
= 2q0 exp(iζνθ)

∫

∞

θ

exp(−iζνθ
′)dθ′

∫

∞

−∞

F (A′)Y (A′, φ′) du′ (8)

where ζν = ζ − ν. Note that, in most cases, the addition ν is rather small to identify ζν

with normalized chromaticity given by Eq. (5).

III. EXACT SOLUTIONS FOR HOLLOW BUNCHES

The hollow bunch model is characterized by the distribution functions

F (A) =
δ(A− A0)

2πA0
, ρ(θ) =

1

π
√

θ20 − θ2
(9)

where A0 = θ0 is synchrotron amplitude of any particle and, simultaneously, the bunch

half-length. The model was repeatedly investigated among others in frames of separated

or truncated multipole approximations (see e.g. [13]). However, its special interest is just

that the exact solution can be obtained without any similar assumptions. Therefore corre-

sponding results will be substantially used in this paper to develop adequate approximate

methods with more realistic distributions, and to control their accuracy.

The only amplitude A = A0 is essential in this case. Therefore Eq. (8) with ζν = 0 can
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be reduced to the one-dimension equation for new function Y (φ) ≡ Y (A0, φ):

νY (φ) + i QsY
′(φ) =

q0
π

∫ [φ]

−[φ]

Y (φ′) dφ′ (10)

where [φ] is the periodic polygonal function of period 2π taking the value [φ] = |φ| at

|φ| < π. It is convenient to separate even and odd parts of the function presenting it in the

form Y (φ) = Y+(φ) + Y−(φ) with Y+(φ) = Y+(−φ) and Y−(φ) = −Y−(−φ). It is easy to

see that the even part satisfies the equation

Q2
sY

′′

+(φ) + ν2Y+(φ) =
2q0ν

π

∫ [φ]

0

Y+(φ
′)dφ′ (11)

Restricting the consideration to the region 0 < φ < π, one can transform it to ordinary third

order differential equation

Y ′′′

+ (φ) +
ν2

Q2
s

Y ′

+(φ) =
2q0ν

πQ2
s

Y+(φ) (12)

with the boundary conditions

Y ′

+(0) = 0, Q2
sY

′′

+(0) + ν2Y+(0) = 0, Y ′

+(π) = 0. (13)

Eq. (12)-(13) have been obtained first in Ref. [13] where graphical solution id displayed as

well. The analytical solution is represented below in the standard form:

Y+(φ) =
3

∑

j=1

Cj exp

(

νλj

Qs

)

(14)

where λ1−3 are the roots of the algebraic equation:

λ3 + λ = g, g =
2q0Qs

πν2
. (15)

The constants C1−3 have to be determined trough the boundary conditions (13). The substi-

tution provides a series of linear uniform equation for C1−3 which is solvable if corresponding

determinant is equal to zero. It results in the dispersion equation for the bunch eigentunes ν:

λ1(λ2 − λ3)(1− λ2λ3) exp(πνλ1/Qs) +

λ2(λ3 − λ1)(1− λ3λ1) exp(πνλ2/Qs) + (16)

λ3(λ1 − λ2)(1− λ1λ2) exp(πνλ3/Qs) = 0.

Thus, the following steps are evident for handling the problem: (i) to find the roots λ1−3

of the first Eq. (15) with arbitrary chosen parameter g; (ii) to use them for the solution
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FIG. 1: Real eigentunes of hollow bunch without chromaticity (exact solutions). There are complex

roots at |q0|/Qs > 0.567 (not shown).

of Eq. (16); (iii) to substitute the found roots ν in second Eq. (15) obtaining dependence

ν(q0) by exclusion of the parameter g.

Generally, this way is applicable for all roots including complex ones. However, in this

section we will restrict our consideration to real roots only, postponing discussing of complex

eigentunes to next parts where they will be analyzed with chromaticity taken into account.

Eq. (16) has infinite number of solutions some of which are plotted in Fig. 1. It is seen

that ν ≃ mQs at small q0 which case has to be treated as independent oscillations of

different multipoles. Because these tunes are real numbers, instability is impossible at small

wake and zero chromaticity. Complex roots appear for the first time at |q0| > 0.567Qs as

a result of the coalescing of multipoles m = 0 and m = ±1, dependent on sign of the wake.

Presented inequality should be treated as the threshold of the lowest TMCI mode. Higher

TMCI modes are possible too being caused by a coalescence of higher multipoles. They have

essentially larger thresholds as it is shown in Table I (only positive wakes are considered in

the Table because the picture is symmetric). No other coalescences and TMCI appearances

have been observed at the calculations.

Hence the modes |m| > 1 have a minor interest from point of view of the instability

threshold. Therefore our goal should be an investigation of the lower modes presented by

red line in Fig. 1, using realistic distributions and wake functions, with chromaticity and
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TABLE I: Threshold of different TMCI modes

Coalesced multipoles (0-1) (2-3) (4-5) (6-7) (8-9) (10-11)

(q0)thresh/Qs 0.5671 3.459 7.366 11.894 16.871 22.198

space charge taken into account.

IV. INTEGRAL EQUATIONS FOR MULTIPOLES

General solution of Eq. (8) can be presented as the Fourier series:

Y (A, φ) =
∑

m

Ym(A) exp(imφ) (17)

which is just expansion over the multipoles. Its substitution to Eq. (8) allows to get set of

coupled integral equations for the functions Ym(A) [3]:

(ν −mQs) Ym(A) = 2πq0
∑

n

∫

∞

0

Km,n(A,A
′)Yn(A

′)F (A′)A′ dA′ (18)

with the kernels

Km,n(A,A
′) =

2

π2

∫ A

−A

exp(iζνθ)
Tm(θ/A) dθ√

A2 − θ2

∫ A′

θ
A′

exp(−iζνθ
′)
Tn(θ

′/A′) dθ′√
A′2 − θ′2

(19)

where Tm(x) = cos(m arccosx) are Chebyshev polynomials,

θA′ = θ at A
′2 > θ2, and θA′ = A′ × sign(θ) at A

′2 < θ2.

The assumption ζν = 0 is used to start with but chromaticity will be added hereafter.

As it was established in previous section, the beam instability is governed mostly by

the multipoles m = 0, ±1, whereas other ones are of a minor importance. Corresponding

kernels are:

Km,m(A,A
′) = Km,−m(A,A

′) = δm,0 (20)

K0,±1(A,A
′) = −K±1,0(A

′, A) =
2

π2A′

∫ A

−A

√

A′2 − θ2A′

A2 − θ2
dθ (21)

(note that Eq. (20) is valid with any m at ζν = 0). Therefore equations for three mentioned

multipoles can be written in the form

νY0(A) = 2πq0

∫

∞

0

{

Y0(A
′) +K0,1(A,A

′)
[

Y−1(A
′) + Y1(A

′)
]

}

F (A′)A′ dA′ (22)
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(ν ∓Qs)Y±1(A) = −2πq0

∫

∞

0

K0,1(A
′, A)Y0(A

′)F (A′)A′ dA′ (23)

Excluding Y±1 one can obtain the ordinary integral equation for the function Y0(A):

νY0(A) = 2πq0

∫

∞

0

Y0(A
′)F (A′)A′ dA′ − 8π2q20ν

ν2 −Q2
s

∫

∞

0

K(A,A′)Y0(A
′)F (A′)A′ dA′ (24)

with the kernel

K(A,A′) =

∫

∞

0

K0,1(A,X)K0,1(A
′, X)F (X)XdX (25)

Multiplying Eq. (24) by Y0(A)F (A)A and integrating over A, one can get the simple equa-

tion for the eigentunes ν
ν − q̄

2

(

ν − Q2
s

ν

)

= −α2q20 (26)

with the parameters which do not depend on ν:

q̄ =
2πq0 [

∫

∞

0
Y0(A)F (A)AdA]2

∫

∞

0
Y 2
0 (A)F (A)AdA

(27)

and

α2 =
4π2

∫

∞

0

∫

∞

0
K(A,A′) Y0(A)Y0(A

′)F (A)F (A′)AA′ dAdA′

∫

∞

0
Y 2
0 (A)F (A)AdA

(28)

These parameters are not too much sensitive to choice of the function Y0(A), so that some

approximate solution of Eq. (24) can be used for the estimation. The function Y0 = 1

is a simple and rather reasonable option because (i) it satisfies Eq. (24) without coupling

presenting the lower radial mode at q0 ≪ 1, (ii) and it is one of the exact solutions of Eq. (12)

for hollow bunch with any q0. True, higher radial modes are excluded from consideration by

this choice. However, it does not matter in the case because it is known that these modes

are much more stable [3, 14].

With this choice, the relation q̄ = q0 follows from Eq. (27), and Eq. (28) also obtains a

compact form (see Appendix):

α2 =
8

π

∫

∞

0

F (A)A3 dA
[

∫ π

0

ρ(A cosφ) sin2 φ dφ
]2

(29)

Results of calculated by this formula are collected in Table II for several distributions.

Somewhat surprising fact is very slight dependence of the parameters on the bunch shape,

even for so far apart models as the hollow and the Gaussian bunches. It is confirmed by

Fig. 2 where solutions of Eq. (26) are plotted against the wake strength, and the images of

different distributions are also indistinguishable. The data taken from Section III are also
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FIG. 2: Eigentunes of hollow bunch without chromaticity (3-modes approximation). Red and blue

curves present real and imaginary parts of the tune. Solid lines are obtained by solution of Eq. (25),

and some data are transfered from Fig. 1 being presented by circles.

transferred in this graph being presented by the dark circles, and demonstrating absolute

agreement of the results obtained by so different methods.

The eigentunes shown in Fig. 2 are real numbers at low wake. However, they obtain an

imaginary addition (blue lines) at rather large q0, which is the TMCI threshold in the case.

Corresponding values are presented in the last line of Table II being about 0.57 in all the

examples. In agreement with definition given by Eq. (7), it allows to represent the TMCI

threshold in usual terms
r0RN |W1|
8βγQ0Qs

> 0.57π ≃ 1.8 (30)

which expression almost does not depend the bunch shape. The result coincides very well

with the known expressions [4, 6–8, 14].

TABLE II: Parameters α and TMCI threshold of different bunch shapes

Hollow* Hollow Rectang Parabol Gauss

α N/A 0.4053 0.4082 0.4075 0.4020

|q0|threshold/Qs 0.5671 0.5689 0.5672 0.5676 0.5708
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V. THREE-MODE MODEL WITH CHROMATICITY

As it has been shown in previous section, the function Y0 = 1 is rather good approxi-

mation to describe the single bunch instability near threshold at zero chromaticity. Besides,

the relation

Y±1(A) ∝ A

∫ π

0

ρ(A cosφ) sin2 φ dφ (31)

follows from Eq. (21) and Eq. (23) in this approximation. Important thing is that the

integral in this expression moderately depends on the amplitude at realistic distributions.

For example, it does not depend at all for the rectangular bunch, and has a variation not

more of 25% for the parabolic one. Therefore the approximation Y±1 ∝ A looks rather

reasonably for this case. It means that all above presented results could be obtained using

the pattern solution

Y (A, φ) = 1 + Cθθ + Cuu (32)

with indefinite constants Cθ and Cu. Confirmations of this statement will be furnished later.

However, the main thing is that this model paves the way to extend the theory by including

chromaticity, space charge, etc. Chromaticity is the fist point which will be applied in this

section.

Substitution of Eq. (32) to Eq. (8) results in

ν + (νCθ+iQsCu) θ + (νCu−iQsCθ) u = 2q0 exp(iζθ)

∫

∞

θ

ρ(θ′)(1+Cθθ
′) exp(−iζθ′) dθ′ (33)

The relation Cu = iCθQs/ν follows from this immediately. Two more equations can be

obtained by multiplication of Eq. (33) by ρ(θ) or ρ(θ)θ with subsequent integration over θ.

Then, excluding parameter Cθ, one can get required dispersion equation for the eigentunes

ν. It is represented below for the case |ζθ0| <∼ 0.5 which assumption allows to estimate

effect of chromaticity without excessively bulky expressions:

ν − q0(1− iαχ)

2

(

ν − Q2
s

ν
− 2iβq0χ

)

≃ −q20

(

α− iχ

4

)2

(34)

where χ = 2
√
2 ζνσθ, and following designations are applied:

σ2
θ =

∫

∞

−∞

ρ(θ) θ2dθ, (35a)

α =

√
2

σθ

∫

∞

−∞

ρ(θ) θdθ

∫ θ

0

ρ(θ′) dθ′, (35b)
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β =
1

σ3
θ

√
2

∫ 1

−1

ρ(θ) θdθ

∫ θ

0

ρ(θ′) θ′2dθ′ (35c)

Because σθ is rms bunch length, χ can be treated as betatron phase advance caused by

chromaticity in the entire bunch (it is really true for the hollow bunch of length 2θ0 when

σθ = θ0/
√
2). Other parameters are represented in Table III for several distributions. Com-

parison with Table II let us to conclude that Eq. (26) and (34) coincide not only formally

but also actually at χ = 0, because the difference of coefficients α is negligible. It can be

concluded as well that the dependence of the eigentunes on the bunch shape is very weak

when the chromaticity is also included. The statement is confirmed by Fig. 3 where com-

plex solutions of Eq. (34) are plotted against the wake strength at different chromaticity,

TABLE III: Dispersion equation parameters of different bunches

Hollow Boxcar Parabolic Gaussian

σ2
θ θ20/2 θ20/3 θ20/5 Any

α 0.405 0.408 0.407 0.400

β 0.135 0.123 0.113 0.100

0.0 0.5 1.0 1.5
q0/Qs

−1.0

−0.5

0.0

0.5

1.0

1.5

ν/
Q

s

χ=0
0.25
0.5
0.75
χ=1

REAL

IMAG

REAL

IMAG

0.0 0.5 1.0 1.5
q0/Qs

−1.0

−0.5

0.0

0.5

1.0

1.5

ν/Q
s

χ=0
0.25
0.5
0.75
χ=1

REAL

REAL

IMAG

IMAG

FIG. 3: Eigentunes with chromaticity: left – hollow bunch, right – Gaussian distribution. All the

curves are odd functions of the wake strength. Real parts do not depend on sign of chromaticity,

imaginary parts change sign. Some curves are indistinguishable because the modes starting from

the point ν = −Qs almost do not depend on chromaticity.
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for hollow and Gaussian bunches. Note that only positive wakes and chromaticities are

presented in the graphs because all curves have following symmetry properties: (i) they are

odd functions of q0/Qs; (ii) real parts of the tunes do not depend on sign of chromaticity;

(iii) the imaginary additions reflect specularly with respect to the line ν = 0, when the

chromaticity change sign. It is seen that the instability has no threshold with chromaticity,

and TMCI appears against the head-tail background without a pronounced demarcation

line. In particular, the head-tail and TMCI contributions are comparable at |q0| ≃ 0.7Qs

and |θ0ζ | ≃ 0.5. It should be noted in addition that no sign of chromaticity can prevent

instability of all bunch modes.

With accuracy of several percents, solutions of Eq. (34) at q0 < Qs can be presented in

the form

ν ≃ q0 +mQs − iq0χ(α− β)

2
±

√

(

q0 −mQs − iq0χ(α + β)

2

)2

− q20

(

α− iχ

4

)2

(36)

where m = ±1. In particular, it provides correct TMCI threshold without chromaticity,

and leads to well known formulae for the head-tail modes at q0 ≪ Qs. In the last case the

solutions for hollow bunch can be reduced to the form:

νm = mQs + q0δm,0 +
8iq0θ0ζν

π2(4m2 − 1)
(37)

which expression is valid with any m [7]. Analyzing Table III, one can add that this result

almost does not depend on the bunch shape, at least for lowest radial modes and multipoles.

VI. REALISTIC BUNCH WITH ARBITRARY WAKE

It would be beyond reasons to treat rectangular wake as an exclusive case. On the

contrary, Eq. (32) can be applied as an approximate solution of general Eq. (6) to look for

the eigentunes of a bunch with arbitrary wake function. Subsequent transformations are

described just after Eq. (32) and result in the dispersion equation like Eq. (34) or (26):

ν − qef
2

(

ν − Q2
s

ν
− 2α2qef

)

= −α2
1q

2
ef (38)

with the coefficients

qef = 2

∫

∞

0

q̃(θ)dθ

∫

∞

−∞

ρ(θ′ − θ/2) ρ(θ′ + θ/2) dθ′ (39a)

13



α1 =
1

σθqef
√
2

∫

∞

0

q̃(θ) θdθ ×
∫

∞

−∞

ρ(θ′ − θ/2) ρ(θ′ + θ/2) dθ′ (39b)

α2 =
1

σ2
θqef

∫

∞

0

q̃(θ) dθ

∫

∞

−∞

ρ(θ′ − θ/2) ρ(θ′ + θ/2) (θ′2 − θ2/4) dθ′ (39c)

where σθ is rms bunch length given by Eq. (35a), and q̃(θ) = q(θ) exp(−iζνθ). Approximate

solutions of Eq. (38) can be presented in the form like Eq. (36):

ν ≃ qef(1 + α2) +mQs

2
±

√

[

qef(1− α2)−mQs

2

]2

− α2
1q

2
ef (40)

with m = ±1. Although parameter χ does not appear in the expression, chromaticity is

still presented here being included in the functions q̃(θ) and qef . However, next consideration

will be restricted by the case of zero chromaticity: ζν = 0, q̃(θ) = q(θ). Then α1,2 are real

numbers, and the instability can appear only in the TMCI form with the threshold:

|qef |thresh =
Qs

1 + 2α
, α = α1 −

α2

2
(41)

For Gaussian bunch with dispersion σθ, used parameters obtain the forms

qef =
1

σθ

√
π

∫

∞

0

exp

(

− θ2

4σ2
θ

)

q(θ) dθ (42a)

α1 =
1

2
√
2π σ2

θqef

∫

∞

0

exp

(

− θ2

4σ2
θ

)

q(θ) θdθ (42b)

α2 =
1

4
√
π σθqef

∫

∞

0

(

1− θ2

2σ2
θ

)

exp

(

− θ2

4σ2
θ

)

q(θ) dθ (42c)

Note that qef = q0, α1 = α, α2 = 0 at constant wake q = q0. Two more examples are

considered below.

A. Short rectangular wake

Gaussian bunch with a rectangular wake of restricted length θw is considered in this

subsection as first example (similar wake can be created e.g. by a pair of strip-line BPM

[14]). Eq. (42) gives in this case

qef = q0 erf(x), α1 =
1− exp(−x2)√

2π erf (x)
, α2 =

x exp(−x2)

2
√
π erf (x)

(43)
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FIG. 4: Parameters of Gaussian bunch with short rectangular wake. Brown line describes an

effective weakening of the wake in a short bunch, red line represents TMCI threshold.

where x = θw/(2σθ). These functions are plotted in Fig. 4. Threshold value of q0 is shown

as well being determined with help of the expression

|q0|thresh
Qs

=
1

[1 + 2α(x)] erf (x)
(44)

It is seen that a shortening of the wake results in a rise of the threshold which becomes

especially noticeable at θw <∼ 2σ .

B. Resistive wake

Resistive wall impedance is the most general and important source of transverse insta-

bilities in circular accelerators. Corresponding normalized wake function is

q(θ) =
qrw√
θ
, qrw = − r0R

2N

2πβγQ0b3

√

c

Rσc
(45)

where b is the beam pipe radius, and σc is the pipe wall conductivity (see e.g. [14]). With

this wake, integrals in Eq. (42) are representable in terms of gamma functions:

qef =
qrw Γ(1/4)√

2πσθ

=
1.4464 qrw√

σθ
, α1 =

Γ(3/4)√
2Γ(1/4)

= 0.2390, α2 =
1

8
(46)

Threshold value of the effective and usual wakes can be found then with help of Eq. (41):

|qef |thresh = 0.739Qs, |qrw|thresh = 0.511Qs

√
σθ. Therefore the resistive wall TMCI thresh-
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old in usual terms is
r0R

2Nthresh

2πβγQ0Qsb3

√

c

σcσz

= 0.51 (47)

where standard rms bunch length σz = σθR is used. However, it is necessary to take into

account that Eq. (45) is valid only at Rθ >∼ b/γ when the wake reaches a maximum.

Therefore sufficient condition of applicability of Eq. (47) is σz ≫ b/γ.

Another restriction comes from the fact that the resistive wake has a long and slowly

decaying tail. Therefore it can impact not only next bunches but also itself by the succeeding

turns. These multibunch/multiturn collective effects should be included in a comprehensive

investigation of resistive wall instability. However, this point is beyond the scope of the paper

where only single bunch effects are examined. Nevertheless it can be noted that presented

results give a possibility to estimate a relative danger of the effects by a comparison of the

contributed tune shifts. Indeed, TMCI of a single bunch appears at |ν|TMCI ≃ 0.77Qs as it

follows from Fig. 1-3, and corresponding bunch population is determined by Eq. (47). The

collective modes i.e. long term tune shift with this intensity is [12]

|ν|LONG ≃ 0.51Qs

√

2βσz

2πR|k −Q0|

(

h− (2|k −Q0|)3/2
h1/2

)

(48)

where h is number of bunches, and k is the collective mode number (the mode can be

unstable at k > Q0). Taking |k − Q0| = 0.25 and β = 1 as a typical example, we can

compare these long term and TMCI effects as the ratio of corresponding tune shifts:

∣

∣

∣

∣

νLONG

νTMCI

∣

∣

∣

∣

∼ 2

(

h− 0.35√
h

)
√

σz

2πR
(49)

With great probability this value is < 1 or even ≪ 1 at h = 1, that is the multiturn effect

of a single bunch is typically small or even negligible in comparison with TMCI or head-tail

instability. However, the collective effects are more dangerous in a multibunch machine with

h ≫ 1, hσz ∼ R. Of course, more detailed analysis is required at intermediate cases.

VII. SPACE CHARGE EFFECTS

Bunched beam instability with extremely large space charge (∆Q ≫ Qs) was considered

in works [10–12]. The most remarkable phenomenon is a pronounced asymmetry of the

curves with respect to the wake sign which effect has been first shown in Ref. [11]. It is
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FIG. 5: Eigentunes of a rectangular (“boxcar”) bunch with ultimate space charge ∆Q0 ≫ Qs. The

graph is taken from [11]; n = m(m+ 1)/2.

illustrated by Fig. 5 taken from the quoted article where a rectangular (“boxcar”) bunch

with constant wake was explored at space charge betatron tune shift ∆Q0 ≫ Qs. It is seen

that TMCI appears only with the positive wake satisfying the instability condition

(q0)thresh ≃ 0.5Q2
s

∆Q0

(50)

which drastically differs from the conditions presented by Fig. 1-3, and Eq. (30) of this

paper. It is needless to say that investigation of the effect at ∆Q0 ∼ Qs is the only way to

resolve the problem by a joining of these conflicting pictures. It turns out that the 3-modes

model described by Eq. (32) bridges these ultimate cases providing a general form of the

lowers eigenmodes over a wide range of parameters.

It is easy to verify that substitution of Eq. (32) to general Eq. (6) results in

ν + (νCθ+iQsCu) θ +
{[

(∆Qavρ(θ) + ν
]

Cu−iQsCθ]
}

u

= 2q0 exp(iζθ)

∫

∞

θ

ρ(θ′)(1 + Cθθ
′) exp(−iζθ′) dθ′ (51)

The only distinction of this expression from Eq. (33) without space charge is the addition

proportional to ∆Qavρ(θ). We consider in this section a rectangular bunch which density

does not depend on longitudinal coordinate so that Qavρ is the constant value ∆Q0 which

coincides with incoherent space charge tune shift averaged over all transverse coordinates
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[12]. Therefore relation between coefficients of Eq. (51) obtains the form Cu = iCθQs/(ν +

∆Q0) instead of Cu = iCθQs/ν. As a result, all subsequent relations hold true with the

replacement of Q2
s/ν on Q2

s/(ν+∆Q0). In particular, Eq. (34) with constant wake function

and chromaticity obtains the form

ν − q0(1− iαχ)

2

(

ν − Q2
s

ν +∆Q0

− 2iβq0χ

)

≃ −q20

(

α− iχ

4

)2

(52)

In the “head-tail” limit, that is at |q0| ≪ Qs , approximate solutions of the equation are

ν0 = q0(1− iαχ), ν±1 ≃ ±
√

Q2
s +

∆Q2
0

4
− ∆Q0

2
+ iβq0χ (53)

Thus space charge does not affect zero mode at all and does not change growth rate of the

modes m = ±1 in this “head-tail” approximation.

Another situation arises at q0 ∼ Qs or q0 > Qs where TMCI can arise. This case is

illustrated by Fig. 6 where the eigentunes are plotted against the wake strength at different

space charge, but without chromaticity. Effect of the wake sign is seen very clearly in this

graph: space charge propels the TMCI threshold to the centerline at q0 > 0, and away

from it at q0 < 0. Corresponding dependence is shown quantitatively in Fig. 7 where the

thresholds are presented separately for positive and negative wakes and supplemented by

appropriate analytical formulae. There is very good agreement of these results with Fig. 5.

For example, TMCI threshold of positive wake is

(q0)thresh ≃ 0.57Q2
s

Qs +∆Q0

→ 0.57Q2
s

∆Q0

(54)

what is very close to the estimation given by Fig. 5 and Eq. (50).

However, space charge tune shift raises the TMCI threshold of negative wakes. For

example, Eq. (47) for resistive wall TMCI threshold obtains the form:

r0R
2Nthresh

2πβγQ0Qsb3

√

Ω0R

σcσz
≃ 0.51

(

1 +
0.7∆Q0

Qs
+

0.3∆Q2
0

Q2
s

)

(55)

Joint effect of space charge and chromaticity is illustrated by Fig. 8 where dependence

of the eigentunes of rectangular bunch on the wake strength is presented at ∆Q0 = Qs and

various chromaticity.
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FIG. 6: Eigentunes of rectangular bunch with space charge (chromaticity is turned off). Used

ratios ∆Q0/Qs are: 0 (maroon), 1 (red), 2 (green), and 3 (blue). Solid/dashed lines represent

real/imaginary parts of the tune.
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FIG. 7: TMCI threshold of the rectangular bunch against the space charge tune shift. Positive

and negative wakes are presented separately, no chromaticity.
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FIG. 8: Eigentunes of rectangular bunch with ∆Q0 = Qs and chromaticity. Solid/dashed lines

represent real/imaginary parts of the tune. Some red and blue solid lines coalesce because real

part of the tune is even function of chromaticity.

A. Discussion

The most unstable TMCI mode with space charge was considered in Ref. [9] where ex-

pansion of eigenfunctions in terms of azimuthal and radial modes has been applied. Fig. 1

of the paper gives an example of negative wake which is twice the size needed to produce

instability without space charge: W/|Wthresh(0)| = −2. The results depend on number

of the basis modes which is characterized by the number mmax. According them, the in-

stability disappears at rather large ∆Qsc/Qs, and threshold values of this parameters are:

0.85 at mmax = 1 (3 multipoles), 0.5 at mmax = 5 or 10 (21 multipoles and up to 5 radial

modes in the last case). My Eq. (52) provide reasonably close parameters of the threshold:

∆Q0/Qs = 1 at q0/Qs = −1.14 (point X = 1, Y = −1.14 in Fig. 7).

However, there is a profound disagreement at the larger space charge tune shift. A

monotonous behavior of the threshold follows from my paper, and this statement does not

contradict Fig. 1 with mmax = 1 and 5. However, new region of instability at ∆Q > 2.2 is

predicted by the figure with mmax = 10. This problem is pointed but not explained in [9]

(end of Sec.II).
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Analytical and numerical investigation of the model with hollow bunch in square potential

well is also performed in Ref. [9]. Being compared with Fig. 1, the results agree with option

mmax = 1 better than with multi-modes approach. At least, Fig. 13 obtained by numerical

solution of differential equation demonstrates a monotonous behavior of the threshold, with-

out additional instability regions at higher ∆Q0. However, analytical expression for ∆Qx in

page 10 gives a way of head-tail instability even without chromaticity and space charge. I

guess this statement is in a conflict with commonly accepted point of view [7, 8, 14]. My

Eq. (53) has another appearance and does not suffer from this shortcoming.

My results correlate well with the multi-particle simulations presented in Ref. [16]. For

example, Fig. 1 of this paper resembles my Fig. 6 and allows to find TMCI thresholds of

square bunch at ∆Q0/Qs = 4. According it, the relative wake strength is: Wthresh/|W0| ≃ −9

for negative wake, and 0.2 – 0.3 for positive one where W0 is the threshold value for no

space charge (it is difficult to get more exact numbers from the plot). In terms of my paper

Wthresh/|W0| = (q0)thresh/(0.57Qs) which value should be −8.6 or 0.2, according to my Fig. 7.

Another example is provided by Fig. 3 [16] where threshold value of the wake is presented

as a function of ∆Q/Qs. The curves for square bunch coincide with my Fig. 7 not only

in shape but also quantitatively. Indeed, it follows from Fig. 3 that Wthresh/|W0| ≃ −6

at ∆Q0/Qs = 3. In terms of my paper, it means qthresh/Qs = −6 × 0.57 ≃ −3.4 while

the value -3.3 follows from Fig.7. Positive wake thresholds are in a good consent as well

being presented in these figures. However, the agreement is not so close for smooth bunch.

According to Fig. 3 [16], thresholds of the smooth and square bunches have a similar behavior

at ∆Qsc/Qs < 3. The similarity is especially obvious if the averaged across the bunch value

is used as the argument (∆Q0 = 0.43∆Qsc for this distribution). However, the results come

apart at larger tune shift because non-monotonous behavior of the smooth bunch is shown

in Ref. [16].

VIII. CONCLUSION

The theory of a single bunch transverse instability is advanced in the paper by devel-

opment of 3-modes model for the most unstable bunch modes. The dispersion equation is

presented in form of 3rd order algebraic equation which includes chromaticity and space

charge, and can be used with any bunch shape and wake field form.
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The known TMCI and head-tail instability appear in the theory as the limiting cases. It is

shown that a distinct boundary between them exists only at zero chromaticity representing

the TMCI threshold in the case. Generally, the TMCI appears more or less smoothly against

the head-tail background without a pronounced demarcation line.

The results depend very slightly on the bunch shape so that simple bunch models can

be successfully used to analyze the stability limits. For example, difference of the TMCI

thresholds is less of 1% for so far models as hollow and Gaussian bunches, if they have the

same rms length and space charge is negligible.

In contrast with this, the tunes essentially depend on the wake form. Several cases are in-

vestigated in the paper including arbitrary rectangular and resistive wall wakes. Comparison

of the single bunch and multibunch/multiturn effects is realized in the last case.

Space charge tune shift is included in the consideration at arbitrary relation of the shift

to the synchrotron tune. It is shown that the space charge effect depends on the wake sign:

it increases the instability threshold if the wake is negative, and decreases it at positive

wakes. Simple analytical formulae are presented for the instability threshold and growth

rate. They coincide well with the known expressions in the limiting cases though generally

there are some divergences which are discussed in the paper.
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IX. APPENDIX: DERIVATION OF EQ. (29)

It follows from Eq. (25) and (28) at Y0 = 1,

α2 = 8π3

∫

∞

0

F (A)AdA

[
∫

∞

0

K0,1(A
′, A)F (A′)A′ dA′

]2

The substitution of K0,1 from Eq. (21) results in

α2 =
128

π

∫

∞

0

F (A)
dA

A

[
∫

∞

0

F (A′)A′dA′

∫ A′

0

√

A2 − θ2A
A′2 − θ2

dθ

]2

where θA = min{θ, A}. Changing sequence of the integrals obtain

α2 =
128

π

∫

∞

0

F (A)
dA

A

[
∫ A

0

√
A2 − θ2 dθ

∫

∞

θ

F (A′)A′ dA′

√
A′2 − θ2

]2

The last integral is ρ(θ)/2 so the expression is reducible in the form

α2 =
8

π

∫

∞

0

F (A)A3 dA

[
∫ 1

−1

ρ(Aξ)
√

1− ξ2 dξ

]2

which can be transformed in Eq. (29) by the substitution ξ = cosφ.
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