On Timing Properties of LYSO-based Calorimeters

D. Anderson¹, A. Apresyan¹, A. Bornheim¹, J. Duarte¹, C. Pena¹, A. Ronzhin², M. Spiropulu¹, J. Trevor¹, and S. Xie¹

¹California Institute of Technology, Pasadena, CA, USA ²Fermi National Accelerator Laboratory, Batavia, IL, USA

Abstract

We present Test Beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design. We discuss precision timing calorimetry as a tool for mitigation of physics object performance degradation effects due to the large number of simultaneous interactions in the high luminosity environment foreseen at the Large Hardon Collider.

1 Introduction

The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN [1] is expected to provide instantaneous luminosities of 5×10^{34} cm⁻²s⁻¹. The enhanced data rates will provide the datasets necessary to perform precision measurements of the Higgs couplings, probe rare Higgs processes, study the scattering of longitudinally polarized W bosons and search for physics beyond the standard model.

The rate of simultaneous interactions per bunch crossing (pileup) is projected to reach an average of 140 to 200. The large amount of pileup increases the likelihood of confusion in the reconstruction of events of interest, due to the contamination from particles produced in different pileup interactions. The ability to discriminate between jets produced in the events of interests – especially those associated with the vector boson fusion processes – and jets produced by pileup interactions will be degraded, the missing transverse energy resolution will deteriorate, and several other physics objects performance metrics will suffer.

One way to mitigate pileup confusion effects, complementary to precision tracking methods, is to perform a time of arrival measurement associated with a particular layer of the calorimeter, allowing for a time assignment for both charged particles and photons. Such a measurement with a precision of about 20 to 30 ps, when unambiguously associated to the corresponding energy measurement, will significantly reduce the inclusion of pileup particles in the reconstruction of the event of interest given that the spread in collision time of pileup interactions is about 200 ps. The association of the time measurement to the energy measurement is crucial, leading to a prototype design that calls for the time and energy measurements to be performed in the same active detector element. It is in this context that we study the possibility of measuring the time of arrival of particles with a calorimetric device.

We focus our studies on measurements of the time of flight using sampling calorimeters based on LYSO crystals. Due to its very high light yield (~ 30 K photons/MeV) [2], and radiation tolerance [3–6], LYSO is the active element of one of the options considered for the upgrade of the Compact Muon Solenoid (CMS) detector for the HL-LHC [7].

In Figure 1 we present a simplified illustration of the major time scales associated to the timing measurement using a monolithic crystal calorimeter. Upon entering the crystal the photon or electron travels at the speed of light, interacts, and begins to shower, producing scintillation light in the crystal. The time between the entry of the photon into the crystal and the first interaction is denoted by t_I and for high energy impinging particles it is the shower development time. The time associated with the conversion of the incident photon to scintillation light is denoted by t_S . The scintillation light travels from the point of interaction to the photodetector at the velocity c/\hat{n} , where \hat{n} is the effective index of refraction of the crystal [8]. The time associated with the propagation of the scintillation light to the photodetector is denoted by t_P . Once the scintillation light reaches the photodetector, the photons are converted into an electrical signal. The time associated with this process is known as the photodetector

signal transit time, t_T . Finally, the data acquisition (DAQ) system has a characteristic time constant t_D . Each of these time intervals will fluctuate or jitter on an event-by-event basis, contributing to the time resolution.

Figure 1: Timing measurement schematic breakdown using a monolithic, large scintillating crystal. The incident particle impinges on the crystal face from the left. The characteristic time intervals are discussed in the text.

Previous studies [9], measured the time resolution at different absorber thickness for electron beams with energies varying from 12 to 32 GeV, and showed that the time of arrival of the front of an electromagnetic shower can be determined with a precision better than 20 ps. The electronic time resolution of the DAQ system was measured to be about 6 ps. Using the same techniques, we measure the time resolution of the MCP-PMT photodetectors used in the studies presented in this paper to be between 11 ps and 14 ps, depending on the exact device.

To characterize the time resolution of an inorganic crystal scintillator calorimeter we study the contributions due to fluctuations in the shower development, scintillation process, and light propagation to the photodetector. We take advantage of the very large number of scintillation photons in a LYSO crystal which result in modest fluctuations associated with the creation and transit of each particular scintillation photon for a LYSO-based detector.

2 Experimental Setup

A schematic diagram of a typical time of flight measurement setup is shown in Figure 2. All measurements involve a fast photodetector, typically a micro-channel-plate photo-multiplier-tube (MCP-PMT), which measures the reference (t_0) timestamp, and a photodetector further downstream that detects the signal associated with the electromagnetic shower and provides a simultaneous energy and time (t_1) measurement.

Figure 2: The basic schematic diagram of the experimental setup for a typical time of flight measurement is shown to illustrate the basic detector elements. One photodetector is used as a time reference and the second measures energy and time simultaneously.

In our study we used two types of MCP-PMT photodetectors, one produced by Hamamatsu (model R3809-52) [10], and one produced by Photek (model PMT240) [11]. A DRS4 waveform digitizer V4 evaluation board [12] was used as the primary DAQ system, connected to a laptop via USB interface. The DRS chip contains a switched capacitor array (SCA) with 1024 cells, capable of digitizing eight analog signals with high speed (5 GSPS) and high accuracy (11.5 bit SNR). All experimental beam studies were performed at the Fermilab Test Beam Facility (FTBF), which provided proton beams from the Fermilab Main Injector accelerator at 120 GeV, and secondary electron beams of energies ranging from 4 to 32 GeV. All detector elements were placed inside of a dark box lined with copper foil, providing RF shielding. A 2x2 mm² scintillator was placed inside the box at the upstream extremity and used to trigger the DAQ readout, providing a strict constraint on the location and directionality of the beam particles used in the time of flight studies. A differential Cherenkov counter (not shown in the schematic) provided by the FTBF facility and located upstream of our experimental hall, was used for electron identification.

3 Event Selection and Data Analysis

Our primary target is to reconstruct the time of flight of beam particles between different detector elements. Different time reconstruction algorithms are used for different detector elements, and all involve the assignment of a timestamp using specific features of each corresponding signal pulse. The signal pulse for the reference time detector is very sharp and symmetric around its maximum amplitude, as shown in Figure 3. Hence for the reference detector we determine the time position of the pulse peak by fit a Gaussian function to the peak of the pulse, using three sampling points before the pulse maximum and four sampling points after. The fitted mean parameter of the Gaussian function is assigned as the timestamp t_0 . The signal pulse for the downstream time measurement is the result of scintillation light, and exhibits a fast rising edge and a significantly slower decay. Therefore, we assign the timestamp t_1 using a constant fraction of the rising edge. A linear function is fit to the sampling points between 10% and 60%of the pulse maximum and the timestamp is assigned as the time at which the fitted linear function rises to 20% of the pulse maximum. Examples of fits performed to assign a time stamp from each pulse are shown in Figure 4. The impact from the choice of the functional forms is studied by using a set of alternative functions in the fits, and choosing the one that results in the best time resolution. Among the functions that we tested, the difference between the best and worst performing functions was about 8 psec.

Event selection and pulse cleaning procedures are used to eliminate abnormal pulses in the readout, as described in [9]. Large signals above 500 mV are rejected because they saturate the DRS4 inputs. Only pulses with amplitude larger than 20 mV are used for time of flight measurements, in order to reduce the impact of noise from the DRS waveform digitizer DAQ system. Events containing more than one pulse within the 200 ns readout window are not used. Attenuators were used to extend the dynamic range of the DRS4 waveform digitizer in cases when a large fraction of signal pulses are saturated.

Figure 3: Sample pulses as digitized by the DRS4 board. On the left a pulse is shown from the reference Hamamatsu R3809 MCP-PMT, and on the right is a pulse from the Hamamatsu R3809 MCP-PMT optically coupled to a $(1.7 \text{ cm})^3$ LYSO crystal cube recorded using 8 GeV electron beam.

4 Timing in LYSO-based Calorimeters

The timing measurement in LYSO-based calorimeters is driven by three main factors – other than the intrinsic transit time of the photodetector itself and the DAQ electronics : a) the shower profile fluctuations, b) the scintillation time, and c) the light propagation time. Stochastic processes during the development of an electromagnetic shower affect the time of observed signals, as both the transverse size and the depth of the shower can fluctuate event-by-event. Random processes in the scintillation mechanism and the randomization of the optical paths for the scintillation light affect both the speed of the signal formation and the time jitter. We study these effects using two independent experimental setups.

For a homogeneous crystal calorimeter we are interested in the characterization and optimization of the light propagation time, i.e. the time the scintillation light travels down the length of the crystal. Our setup uses a small LYSO cube with linear dimensions of 17mm as the active scintillation element. The size of this element reduces the effect of the light propagation time and jitter. The LYSO cube is placed behind about 4.5 X_0 radiation lengths of lead. Using this LYSO-based sampling calorimeter, we measure the time resolution of electrons.

We also study a shashlik calorimeter composed of alternating layers of tungsten and LYSO, in which scintillation light is extracted through wavelength shifting (WLS) fibers. In this setup, the light propagation

Figure 4: Sample fits used to assign timestamps to digitized MCP-PMT pulses. On the left is a pulse from the reference Hamamatsu R3809 MCP-PMT, and on the right is a pulse from the Hamamatsu R3809 MCP-PMT optically coupled to a $(1.7 \text{ cm})^3$ LYSO crystal recorded during an 8 GeV electron run.

time through the fiber is the dominant factor of the timing measurement. We study as a baseline an alternate version of this calorimeter where the light is extracted through direct optical coupling of the photodetectors at the edges of a few LYSO layers to minimize the light propagation time.

4.1 Timing Studies of the LYSO-based Sampling Calorimeter

We study the combined impact of the shower profile fluctuations, the scintillation mechanism in LYSO, and the light propagation time resolution using a sampling calorimeter with a $(1.7 \text{ cm})^3$ LYSO cube as active element. The LYSO crystal is wrapped in Tyvek and attached to the Hamamatsu R3809 MCP-PMT (HAMB) with optical coupling [13]. A second Hamamatsu MCP-PMT photodetector (HAMA) is placed upstream of the calorimeter and is used to measure the reference time. A schematic diagram and a photograph of the experimental setup are shown in Figure 5.

To ensure that the electron beam is constrained to within a $2 \times 2 \text{ mm}^2$ region, a plastic scintillator placed upstream and approximately 2 mm by 2 mm in cross sectional area is used to trigger the DAQ readout on the DRS digitizer. Electron events are identified by requiring a signal with amplitude larger than 10 mV in a Cherenkov counter located upstream. Large lead bricks are placed upstream of the Hamamatsu R3809 MCP-PMT (HAMB), out of the path of the

Figure 5: A schematic diagram of the experimental setup for the time of flight measurement using the LYSO sampling calorimeter is shown on the left, along with a picture of the experimental setup shown on the right.

beam. These shield the photodetector from stray particles produced in events where an electromagnetic shower occurs upstream of the lead radiator. Such stray shower particles yield very fast signals which can significantly contaminate the scintillation signal. Using the same experimental setup without the LYSO active element in place, we find that stray shower type events yield less than 10% contamination and give a negligible effect on the scintillation signal.

The thickness of the LYSO active element is relatively small and captures only a fraction of the total energy of the electron, but yields a reasonable energy measurement as it is close to the shower maximum.

The time of flight measurement is performed using the LYSO sampling calorimeter for electron beams with energies varying from 4 GeV to 32 GeV. The corresponding measured time of flight distributions are shown in Figure 6. We achieve the best time resolution of 34 ps for electrons with beam energy of 32 GeV.

Figure 6: Time of flight distributions for the LYSO cube sampling calorimeter for 4 GeV (top left), 8 GeV(top right), 16 GeV (bottom left), 32 GeV (bottom right) electron beam energy.

The time resolution measurement is plotted as a function of the beam energy in Figure 15 (left). We fit the result to the sum of a $1/\sqrt{E}$ term and a constant term of about 11 ps. Given that we measure the contribution to the intrinsic time resolution of the photodetector and the DAQ electronics to be about 20 ps [9], using the results from the 32 GeV electron beam, we infer that the combined contribution to the time resolution from the shower profile fluctuations, the scintillation mechanism, and the light propagation time inside the LYSO cube is about 27 ps.

4.2 Timing Studies of the LYSO-Tungsten Shashlik Calorimeter

4.2.1 Wavelength shifting fibers readout (WLS Y11 & DSB1)

We study the time resolution of a LYSO-tungsten Shashlik calorimeter, one of the proposed choices for the Phase 2 upgrade of the CMS endcap calorimeter system [7]. We compare the time resolution performance for two alternative light propagation schemes.

In our setup the scintillation light is collected by WLS fibers that pass through a set of four holes in the LYSO and tungsten layers. In Figure 7, a shashlik cell and the light extraction scheme is illustrated. A schematic diagram and a photograph showing this experimental setup are shown in Figure 8. Two MCP-PMTs by Hamamatsu (R3809) are used to collect the scintillation light, while a Photek 240 MCP-PMT is used as a reference time detector.

Figure 7: The shashlik configuration based upon interleaved W and LYSO layers. Twenty-eight LYSO crystal plates and twenty-seven W plates comprise the module. Four WLS fibers are used to read out the scintillation light from the tiles.

Figure 8: A schematic diagram of the experimental setup for the time of flight measurement using the LYSO-tungsten shashlik calorimeter with fiber signal extraction, along with a photograph of the experimental setup.

We compare the signal pulses obtained using two different types of WLS fiber in the same LYSO-tungsten shashlik calorimeter. In Figure 9 (a) and (b) and we show the pulse shapes averaged over a few hundred events obtained using DSB1 fibers [14] and Y11 fibers, plotted in blue and red respectively. We find that the rise time of the pulse obtained using the DSB1 fibers, about 2.4 ns, is significantly faster than the rise time of the pulse obtained using the Y11 fibers, which is about 7.1 ns. To optimize the time resolution of this type of calorimeter the DSB1 fiber provides a better choice than Y11 if only this parameter is considered. The signal rise times we observe are comparable to the measured decay times of the corresponding WLS fibers [14].

Figure 9: (a) Pulse shapes digitized by the DRS4 board and averaged over several hundred events obtained from the LYSO-tungsten shashlik calorimeter with light extracted using DSB1 (blue) and Y11 (red) WLS fibers. (b) DSB1(blue) shashlik average light pulse shape compared with the averaged pulse shape obtained from direct optical coupling of the photodetector to one edge of a LYSO tile in the shashlik calorimeter. (green)

Using the shashlik calorimeter cell with DSB1 fibers, we measure the time resolution for electron beams with energy varying between 4 GeV and 32 GeV. In Figure 10(b) we show the distribution of the pulse integral which is proportional to the total collected charge, for the 32 GeV beam, and observe an energy resolution of about 5% while for the small LYSO cube shown in 10 (a), the energy resolution was about 20%. For this particular run in the Shashlik setup, no electron identification requirements could be made due to a misconfiguration of the upstream Cherenkov counter, so the background is visible.

Time of flight distributions, fitted to gaussian functions, are shown

in Figure 11, and the σ parameter of the gaussian fit is plotted as a function of the beam energy in Figure 15. We find that the dependence of the time resolution on beam energy follows a $1/\sqrt{E}$ functional form, indicating that the current calorimeter setup remains in the photostatistics limited regime. The best time resolution we obtain with this setup is 104 ps. As the measurements are photostatistics limited, the result can be improved in the future if the light collection efficiency is increased.

Figure 10: (Left) Histogram of the pulse integral which is proportional to the total collected charge is shown for events recorded using the LYSO cube sampling calorimeter for a 32 GeV electron beam. (Right) Histogram of the pulse integral for events recorded using the LYSO-tungsten shashlik calorimeter using DSB1 fibers, for a 32 GeV electron beam. The background is included due to a misconfiguration of the Cherenkov counter.

Figure 11: Time of flight distributions for the LYSO-tungsten shashlik calorimeter using DSB1 fibers for electron beams with varying beam energies.

4.2.2 Directly coupled MCP-PMTs to LYSO shashlik plates

In this setup the MCP-PMT photodetectors are directly coupled to the edges of two adjacent LYSO layers in the shashlik calorimeter and scintillation light is directly transported to the photodetector through the edges of the tile layers. A schematic diagram and corresponding picture of the experimental setup are shown in Figure 12. In Figure 13, we show a zoomed-in photograph of the exposed LYSO plates from which the scintillation light signal is extracted.

Figure 12: A schematic diagram of the experimental setup for the time of flight measurement using the LYSO-tungsten shashlik calorimeter with signal extraction from the edges of two LYSO plates, along with a picture of the experimental setup.

Figure 13: A photograph of the two exposed LYSO layers in the shashlik cell. The scintillation light signal is extracted by optically coupling the edges of these two exposed LYSO layers to MCP-PMT photodetectors.

With this setup we invoke an interplay between the light propagation jitter and the limited photostatistics. By placing the photodetectors in direct contact with the edges of two LYSO layers, we minimize the distance the scintillation light travels to reach the photodetectors, and reduce the impact of light propagation jitter on the time measurement resolution. However in this setup we have also reduced the available photostatistics, as we collect light from only a small fraction of the shashlik cell. In Figure 14, we show the time of flight distributions for electron beams at various energies, fitted to gaussian functions. The width of the best-fit gaussian is plotted as a function of the beam energy in Figure 15. The best time resolution that we obtain is about 55 ps, and fitting the result to the sum of a $1/\sqrt{E}$ term and a constant term, we find a constant term of about 30 ps.

Figure 14: Time of flight distributions for the LYSO-tungsten shashlik calorimeter with signal extracted from the edges of two LYSO layers.

Figure 15: Timing resolution measurement as a function of the electron beam energy for (left) the LYSO cube sampling calorimeter (middle) the LYSO-tungsten shashlik calorimeter read-out with DSB1 fibers (right) the LYSO-tungsten shashlik calorimeter read-out directly by optically coupling to the edges of two LYSO layers. In all cases we fit the data with a function of $1/\sqrt{E}$ and a constant term.

In summary, we find that removing the impact of the wavelength shifting mechanism and minimizing the impact of optical transit does indeed improve the time resolution, but at a cost in photostatistics. Results obtained in this experiment suggest that a LYSO-tungsten shashlik calorimeter with edge readout can likely achieve 30 ps resolution provided some improvement to the light collection efficiency is achieved.

5 Results Discussion and Summary

In this article we have described studies characterizing the timing performance of LYSO-based calorimeters. Using a $(1.7 \text{ cm})^3$ LYSO crystal that samples the electromagnetic showers created by electrons of various energies ranging from 4 GeV to 32 GeV at about 4.5 X_0 , we infer that the contribution to the time resolution from event-by-event fluctuations of the shower profile, the scintillation process, and the light propagation is less than 30 ps. Studies using different wavelength shifting fibers in a LYSO-tungsten shashlik calorimeter demonstrates that the choice of the fiber affects the timing performance. Besides the absorption and re-emission processes in the fibers, we found that another important factor influencing the timing performance is the light extraction efficiency. Using DSB1 fibers, despite being photostatistics limited, we obtained a best time resolution of about 100 ps. A future development of such a detector will be focused on increasing the light collection efficiency. In a setup where the scintillation light from the LYSO-tungsten shashlik calorimeter is extracted via the edges of two LYSO layers, thereby removing completely the wavelength shifting mechanism and long light propagation distance, we achieve a best time resolution of 55 ps. The result indicates that such a calorimeter design can achieve the 30 ps time resolution benchmark obtained with the LYSO cube provided some improvement to the light collection efficiency.

In comparing results using different light extraction schemes, we find that at a given light yield the time resolution depends significantly on the light propagation fluctuations. As the light yield increases the dependence on the light propagation fluctuations is reduced. The effect can be seen in the summary Figure 16 where we show the dependence of the time resolution on the average pulse height for the shashlik cell with light extracted through the DSB1 fibers and for the sampling calorimeter with the LYSO cube. For the same average pulse height of 500 mV, the LYSO cube time resolution is about half of the shashlik using the DSB1 fibers which have also twice the rise time. As the pulse height increases the time resolution improves. Extrapolating to the regime of very large light yield, we should be able to reach asymptotically the best resolution without limitations from the light propagation fluctuations.

Figure 16: Comparison of time resolutions obtained with the $(1.7 \text{ cm})^3$ LYSO cube (blue), and the LYSO-tungsten shashlik calorimeter with light extracted using DSB1 fibers (red). The x-axis in this figure displays the amplitude of the signal, corrected for the attenuation factors.

In summary, using a LYSO-based calorimeter and different light propagation experimental setups we obtain about 30 ps resolution time measurement for the maximum light yield achieved. As a follow-up we will investigate the time resolution in the limit of very large light yield, and attempt to improve the light collection efficiency in these types of detectors.

6 Acknowledgements

We would like to thank Erik Ramberg and Sergey Los for their help and support of this work, and Aria Soha and the FTBF test beam facility for the beam delivery and control. We thank Randy Ruchti for providing us with the DSB1 fibers used in the measurements, and Eileen Hahn for the high quality work in polishing the fibers. We would also like to thank Ewa Skup and Geoff Savage for help with operation of the Cherenkov counters, and to Todd Nobel for organizing and providing supporting equipment at FTBF.

This work is supported by funding from Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States

Department of Energy and from California Institute of Technology High Energy Physics under Contract DE-SC0011925 with the United States Department of Energy.

References

- L. Rossi, and O. Brüning, "High Luminosity Large Hadron Collider A description for the European Strategy Preparatory Group," Tech. Rep. CERN-ATS-2012-236, CERN, Geneva, Aug 2012.
- [2] L. Zhang, R. Mao, F. Yang, and R. Zhu, "LSO/LYSO Crystals for Calorimeters in Future HEP Experiments," *IEEE Transactions* on Nuclear Science, vol. 61, pp. 483–488, Feb 2014.
- [3] R. Mao, L. Zhang, and R. Zhu, "Gamma ray induced radiation damage in PWO and LSO/LYSO crystals," in Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE, pp. 2045–2049, Oct 2009.
- [4] J. Chen, R. Mao, L. Zhang, and R. Zhu, "Gamma-Ray Induced Radiation Damage in Large Size LSO and LYSO Crystal Samples," *IEEE Transactions on Nuclear Science*, vol. 54, pp. 1319– 1326, Aug 2007.
- [5] L. Zhang, R. Mao, and R. Zhu, "Effects of neutron irradiations in various crystal samples of large size for future crystal calorimeter," in *Nuclear Science Symposium Conference Record* (*NSS/MIC*), 2009 IEEE, pp. 2041–2044, Oct 2009.
- [6] G. Dissertori, D. Luckey, Nessi-Tedaldi, et al., "Results on damage induced by high-energy protons in LYSO calorimeter crystals," NIM A 745 (2014) 1-6.
- [7] D. Contardo and J. Spalding, "CMS Phase 2 Upgrade: Preliminary Plan and Cost Estimate," Tech. Rep. CERN-RRB-2013-124, CERN, Geneva, Oct 2013.
- [8] W. W. Moses and S. E. Derenzo, "Prospects for Time-of-Flight PET using LSO Scintillator," *IEEE Transactions on Nuclear Sci*ence, vol. 46, pp. 474–478, June 1999.

- [9] A. Ronzhin, S. Los, E. Ramberg, et al., "Development of a new fast shower maximum detector based on microchannel plates photomultipliers (MCP-PMT) as an active element," NIM A 759 (2014) 65-73.
- [10] http://www.hamamatsu.com/resources/pdf/etd/R3809U-50_ TPMH1067E09.pdf.
- [11] http://www.photek.com/pdf/datasheets/detectors/DS006_ Photomultipliers.pdf.
- [12] S. Ritt, R. Dinapoli, and U. Hartmann, "Application of the DRS chip for fast waveform digitizing," NIM A 623 (2010) 486-488.
- [13] http://www.ellsworth.com/dow-corning-q2-3067-optical-couplant-453g-bottle.
- [14] M. Albrecht, K. Andert, P. Anselmino, et al., "Scintillators and Wavelength Shifters for the Detection of Ionizing Radiation," Proceedings of the 8th Conference on astroparticle, particle and space physics, detectors and medical physics applications, pp. 502-511, 2003.