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Abstract

Transverse dipole modes in bunches with space charge are simulated using the Synergia accelera-

tor modeling package and analyzed with Dynamic Mode Decomposition. The properties of the first

three space charge modes, including their shape, damping rates and tune shifts are described over

the entire range of space charge strength. The intrinsic Landau damping predicted and estimated

in 2009 by one of the authors is confirmed with a reasonable scaling factor of '2.4. For the KV

distribution, very good agreement with PATRIC simulations performed by V. Kornilov and O.

Boine-Frankenheim is obtained.
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I. INTRODUCTION

The Landau damping effect, which provides an important mechanism for stabilizing beam

propagation, is an important research topic in accelerator physics. The mechanism operates

via an energy exchange between the coherent mode and particles resonating with the mode.

Thus, for Landau damping to take place, a continuous incoherent spectrum around the

coherent frequency is required. Aside from nonlinear lattice elements, incoherent tune spread

is also provided by space charge. The damping mechanism caused by space charge is not fully

known, especially for bunched beams and at intermediate space charge strength. Many high-

intensity hadronic synchrotrons operate in the intermediate or strong space charge regimes

(e.g. the Fermilab Booster and the CERN PS). In this paper we neglect nonlinear lattice

effects and focus only on the intrinsic effect of space charge on the transverse dipole modes.

The beam dynamics of a bunch is investigated over the entire range of the strength of the

space charge effect, from no space charge to the strong space charge limit. A comparison

between the modes’ properties between bunches with a transverse Gaussian distribution

(3D-G) and bunches with a transverse Kapchinsky-Vladimirsky (KV-G) distribution, both

with a longitudinally Gaussian profile, is also presented.

It was shown long ago that without lattice nonlinearities space charge does not contribute

to Landau damping in coasting beams regardless of the density of the resonant particles and

the coherent tune shift [1, 2]. In other words, there is no intrinsic Landau damping for

coasting beams. V. Balbekov [3] addressed the space charge effect on Landau damping in

the weak intensity regime and found a damping rate proportional to the incoherent tune

shift and independent of the synchrotron tune, which is similar to our results. However his

suggestion of a damping rate decreasing with increasing mode number seems to contradict

the typical behavior of Landau damping in physical systems [4–6]. The effect of space

charge on the modes in bunched beams was also addressed in 1998 by M. Blaskiewicz [7],

who showed that space charge can suppress the fast head-tail instability. He also suggested

a solvable square-well air-bag model to address the problem. Head-tail modes in the strong

space charge regime were addressed analytically by one of the authors in 2009 [6]. In that

work, a general equation describing head-tail modes valid for arbitrary RF buckets, beam

distribution functions, and dipole/quadrupole wake fields was derived. It was also shown,

contrary to the coasting beam case, that intrinsic Landau damping is different from zero for
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bunched beams; a formula estimating the head-tail modes damping rates, with an accuracy

limited to a numerical factor with a magnitude of order of unity, was provided for the strong

space charge regime. Using a different analytical approach, head-tail modes with space

charge were also addressed in Ref. [8] for zero wakes and a parabolic potential well, but no

quantitative estimation of the Landau damping was derived.

The estimate of the intrinsic Landau damping rates at strong space charge [6] and of

zero damping at zero space charge suggest that the maximal damping rate occurs in the

intermediate space charge region. However, the detailed behavior of the damping rates for

the entire range of the space charge strength is poorly known. Employing the PATRIC

code, V. Kornilov and O. Boine Frankenheim [9] ran particle tracking simulations which

address the collective modes for bunches with transverse KV and longitudinally Gaussian

distributions (KV-G). They provide the intrinsic damping rates for the first two modes

for a wide range of space charge strengths. The modes’ damping rates are extracted from

the long time behavior of the momentum functions defined as projections of the simulated

dipole moment distribution on the theoretical strong space charge mode shapes. The implicit

assumption behind this approach is that after a long enough time after the beam is excited

with an approximate mode shape only one mode survives, the others being exponentially

damped.

In this paper we study the collective modes for 3D-G and KV-G bunches. In the case

of intrinsic Landau damping for the KV-G bunches, we demonstrate an impressively good

agreement with Ref. [9]. For the 3D-G bunch, the very recent report of our colleagues in

Ref. [10] shows an order of magnitude difference between our intrinsic damping values and

theirs. While our simulations in the strong space charge regime yield a damping behavior as

a function of the space charge strength in agreement with the theoretical predictions [6], their

estimation does not. However, we hope that the agreement between our simulations will be

significantly improved when more macroparticles and wider Gaussian tails are considered in

their simulations [11].

For this study we employ the Synergia [12, 13] accelerator modeling package to simulate

the propagation of a single Gaussian beam through a linear lattice. Space charge is calculated

with a 3D Poisson solver. The phase space density of 107 macroparticles propagating through

a linear lattice consisting of drift, quadrupole and rf cavity elements is stored every turn. The

evolution of the phase space density is analyzed using the Dynamic Mode Decomposition
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technique [14–17].

Dynamic Mode Decomposition (DMD) is a data-driven algorithm used for modal analysis

and model reduction in both linear and nonlinear systems. Developed initially by the fluid

mechanics community to address turbulent flows, it has proven to be a successful technique

in many different areas [18–20]. One important feature of this method is the direct calcu-

lation of mode dynamics. Dynamic properties of data are poorly addressed by Principal

Component Analysis (PCA), a widely used modal decomposition method. PCA determines

the spatially coherent structures from the time-averaged correlation matrix, thus implicitly

assuming stationary data. In contrast, DMD considers both spatial and temporal orthogo-

nalities, calculating mode shape, frequency and growth/damping rates. To our knowledge

this is the first investigation of beam dynamics with DMD.

Whereas the long time behavior of the momentum functions allows only limited access

to the mode properties, the DMD method allows a full extraction of the mode properties,

even when multiple modes with similar damping rates are excited simultaneously. We are

able to visualize transverse mode shapes in phase space as they evolve from the rotationally

symmetric shapes characteristic of the non-interacting problem to the momentum indepen-

dent shapes characteristic of the strong space charge limit. At large space charge the mode

shapes and tunes are in good agreement with theoretical predictions [6]. The damping rate

dependence on space charge strength and mode number is also in agreement with the an-

alytical estimates. The large difference in the damping magnitude between the 3D-G and

the KV-G bunches shows that Landau damping is very sensitive to the bunch transverse

distribution. This is not surprising, since the resonant particles are the ones residing in both

the longitudinal and the transverse tails. We propose formulas for the damping rates and

tune shifts which fit the numerical data reasonably well over the entire range of the space

charge strength.

The paper is organized as follows. The problem is defined in Section II. The DMD method

is introduced in Section III. The Synergia simulation is discussed in Section IV. The results

of the mode analysis for 3D-G bunches are presented in Section V A. A comparison of

modes’ properties between 3D-G and KV-G bunches is given in Section V B. Simulation

challenges are discussed in Section VI and conclusions are drawn in Section VII.
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II. FORMALISM

In this paper we investigate the relevant modes which characterize the dynamics of the

transverse displacement density, defined as

X(z, u, s) =

∫
dxdpxdydpyxρ(x, px, y, py, z, u, s)

ρ(z, u, s)
, (1)

where s is the distance along the reference trajectory, z is the longitudinal position relative

to the reference particle and u = δp
p

is the relative momentum spread. ρ(x, px, y, py, z, u, s)

is the density in 6D phase space and

ρ(z, u, s) =
∫
dxdpxdydpyρ(x, px, y, py, z, u, s), (2)

is the density in the longitudinal plane.

The relevant parameter governing the transverse mode dynamics is the space charge

parameter, defined as the ratio of the incoherent tune shift, ∆Qsc and the synchrotron tune,

Qs. The equation of motion for the transverse displacement of a particle experiencing a

transverse space charge force eEx
γ2 is

d2xi
ds2

+
ω2Q2

β

β2c2
xi =

eEx
mγ3β2c2

, (3)

where ω is the angular revolution frequency and Qβ is the betatron tune; the smooth ap-

proximation was assumed. With a substitution βc/ωQβ → β(s), the incoherent space charge

tune shift for infinitely-small amplitude particles follows:

∆Qsc =
e

mγ3β2c2

1

4π

∮
β(s)

∂Ex
∂x

(x̄, s)ds, (4)

where β(s) is the lattice beta function and x̄ is the beam center coordinate. In general ∆Qsc

depends on particle’s transverse amplitude and longitudinal coordinate. Therefore for the

definition of the space charge parameter it is more convenient to use the effective incoherent

tune shift, ∆Qsc eff, determined by integrating over the transverse degrees of freedom when

calculating the equation for the eigenfunctions [6]. ∆Qsc eff depends on the transverse beam

profile; the space charge parameter can be written as

qeff = 0.52
∆Qsc max

Qs

(5)

for the 3D-G beam and

qeff =
∆Qsc max

Qs

(6)
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for the KV-G beam. ∆Qsc max is the maximum tune shift measured at the bunch center; it

is calculated numerically by employing Eq. 4 and using the electric field as determined by

the simulation.

In a purely linear lattice, the zero mode, defined by a uniform transverse displacement

of the bunch, i.e. X(z, u, s) = X(s), is undamped regardless of the value of the space

charge parameter. This is a consequence of the fact that the space charge forces are internal

bunch forces. To prove that we write the equation of motion for the particle i transverse

displacement as

d2xi
ds2

+
ω2Q2

β

β2c2
xi =

∑
j

F (xj − xi, yj − yi, zj − zi), (7)

where F (xj − xi, yj − yi, zj − zi) is proportional to the Coulomb force of particle j acting on

particle i. A uniform displacement of all the particles

x̃i(s) = xi(s) +X(s) , (8)

corresponds to the mode with X(z, u, s) = X(s) (see Eq. 1). The equation of motion for

x̃i(s) can be written as

d2x̃i
ds2

+
ω2Q2

β

β2c2
x̃i =

d2xi
ds2

+
ω2Q2

β

β2c2
xi +

d2X

ds2
+
ω2Q2

β

β2c2
X =

∑
j

F (x̃j − x̃i, yj − yi, zj − zi) . (9)

Since the space charge force depends only on the relative distance between particles, i.e.,

F (x̃j − x̃i, yj − yi, zj − zi) = F (xj − xi, yj − yi, zj − zi), it follows that

d2X

ds2
+
ω2Q2

β

β2c2
X = 0 , (10)

showing that the zero mode is undamped and oscillates with the tune Q = Qβ regardless of

the value of the space charge parameter.

In case of zero space charge the solution for the transverse displacement, X(z, u) =

X(z, u, s)ei
ωQ
βc
s, reads [21]

X(z, u) ≡ X(r, θ) = R(r)eimθ, (11)

with r and θ being the amplitude and the phase of the synchrotron oscillation, respectively.

The tune shift is given by

Q−Qβ = mQs, (12)
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for integer m. The modes are defined by the angular number m and are radially degenerate.

According to Ref [6, 8], large qeff leads to solutions which are weakly dependent on u, i.e.,

X(z, u) ≈ Y (z). Throughout this paper we will refer to the space charge modes in the large

qeff limit as space charge harmonics. The space charge harmonics, calculated in Ref [6], form

an orthogonal set ∫
Yk(z)Ym(z)ρ(z) = δkm, (13)

where k and m represent mode numbers. For the mode k the tune shift is νkQs
qeff

(νk are

numerical coefficients calculated in Ref [6]), while the Landau damping is λkT0 ' k42πQs
q3
eff

. λk

represents the mode k damping rate and T0 is the revolution period [22]. The results of our

simulations at large qeff are shown to be in agreement with these theoretical results.

III. DYNAMIC MODE DECOMPOSITION

Dynamic Mode Decomposition [14–17] is a new technique used successfully for mode anal-

ysis and model reduction in many fields such as fluid mechanics [18], neuroscience [19], video

streaming and pattern recognition [20]. There is a significant number of papers dedicated

to the method. Here we present only a short description of it.

Suppose that as a result of a simulation or an experiment the following set of data is

obtained

X(q, t0), X(q, t1), ..., X(q, tN+1), (14)

where X(q, ti) is an M dimensional vector and ti, i = 1, N + 1, represent equidistant time

slices, i.e., ti = i∆t. DMD assumes that the data evolution in time can be approximated by

a linear operator A (M ×M) such as

AX(q, ti) = X(q, ti+1), (15)

for all i = 1, N . If the eigenvectors and the eigenvalues of A are given by

Avj = µjvj, (16)

then one can write

X(q, ti) = AiX(q, t0) =
∑
j

µijαjvj =
∑
j

µijφj. (17)
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By writing

µj = e−λj∆teiωj∆t, (18)

it becomes evident that this expansion provides the damping rates λj and the frequencies

ωj for each mode φj.

Seeking a linear operator to approximate the data does not imply that the method can

be applied only to linear dynamics. The linear operator A can be considered a regression

solution to the nonlinear dynamics. A more rigorous argument for applying DMD to nonlin-

ear dynamics is made by showing that DMD can be considered a numerical approximation

of Koopman spectral analysis [15–17].

DMD is a technique which computes the eigenvalues and the eigenvectors of A for the

given set of data. Defining the M ×N matrices X0 and X1

X0 =
[
X(q, t0) X(q, t1) ... X(q, tN)

]
, (19)

X1 =
[
X(q, t1) X(q, t2) ... X(q, tN+1)

]
, (20)

the operator A is required to satisfy

AX0 = X1 . (21)

In the DMD approximation A is

A = X1X
+
0 , (22)

where X+
0 is the pseudo-inverse of X0. The A given by Eq. 22 is not always a solution to

Eq. 21, since the columns of X0 are not guaranteed to be linearly independent. However it

can be shown that this choice of A minimizes ||AX0 −X1|| [16].

The DMD solution for finding A is to project the problem onto the space spanned by

the singular value decomposition (SVD) modes of X0. The DMD algorithm includes the

following steps:

1. Compute the SVD of X0,

X0 = UΣV ∗ . (23)
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2. Project A onto the space spanned by the SVD states

Ã = U∗AU = U∗X1V Σ−1 . (24)

Note that Ã is reduced to rank r, where r is equal to the number of the SVD states

of X0.

3. Solve the eigenvalue problem in the projected space

Ãwj = µjwj . (25)

4. The DMD eigenmodes are

Φj = Uwj . (26)

It is easy to check that Aφj = AUwj = UÃwj = µjUwj = µjφj.

The number of DMD modes is given by the rank of X0; the DMD modes are linear combi-

nation of the SVD modes.

DMD was developed for fluid dynamics analysis where typicallyM � N . For bunch mode

analysis often M < N , which implies that the columns of X0 are not linearly independent. In

this case a direct application of the DMD algorithm presented above can produce misleading

results. The solution is to augment each data slice with subsequent time step data slices [19]

Z0 =



X(q, t0) X(q, t1) ... X(q, tN−p)

X(q, t1) X(q, t2) ... X(q, tN−p+1)

.

.

X(q, tp) X(q, tp+1) ... X(q, tN)


, (27)

Z1 =



X(q, t1) X(q, t2) ... X(q, tN−p+1)

X(q, t2) X(q, t3) ... X(q, tN−p+2)

.

.

X(q, tp+1) X(q, tp+2) ... X(q, tN+1)


, (28)

and apply the DMD method for the problem AZ0 = Z1, where now A is a (p+1)M×(p+1)M

operator describing the evolution of the augmented data.
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IV. SIMULATIONS

A simple lattice made by 10 identical OFORODO (drift–focusing quad–drift–rf cavity–

drift–defocusing quad–drift) cells was chosen for our investigation. The dynamics is studied

using the Synergia accelerator simulation package [12, 13]. The second-order split-operator

method of Yoshida [23] is used to address space charge effects. Beam propagation consists of

interleaved sequences of single-particle propagation followed by a space charge kick, followed

by single-particle propagation followed by space charge kick, etc. In order to focus only on the

intrinsic Landau damping the single particle propagation is realized using first order maps.

Thus the single particle dynamics is purely linear. The vertical and horizontal betatron

tunes are set equal as are the vertical and horizontal beam emittances. The chromaticity is

zero and the longitudinal potential is parabolic.

The space charge kicks are proportional to the electric field in the beam frame. The

field itself is calculated by numerically solving the Poisson equation. For that purpose we

use a 3D solver with open boundary conditions [24]. We take extreme care to ensure that

the numerical approximations involved do not introduce spurious forces between particles.

Charge deposition on the grid and field interpolation from the grid to the particle’s position

is done in such a way that the sum of the reciprocal forces between any two particles is zero.

When this condition is not rigorously enforced the modes are over-damped. This happens

especially at large qeff where potential spurious numerical effects would be larger.

To study the modes, the bunch distribution in phase space is initially excited with dif-

ferent shapes. Each macroparticle’s transverse coordinate xi is changed by

∆xi = −af(zi, ui). (29)

The change in the phase-space density is

∆ρ(x, px, y, py, z, u) = −af(z, u)
∂ρ

∂x
, (30)

while the initial transverse dipole is proportional to the applied excitation shape f(z, u),

X(z, u) = −af(z, u)
∫
dxx

∂ρ

∂x
= af(z, u). (31)

a is the excitation amplitude; it must be taken small enough to ensure the beam dynamics

is in the linear damping regime. In our simulations a ≈ 0.03σx at small qeff and a ≈ 0.005σx

at large qeff.
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The DMD technique described in Section III is applied to the data set X(z, u, sn) defined

by the Eq. 1 and produced by the Synergia simulation.

V. RESULTS

A. Transverse Gaussian distribution (3D-G)

The zero mode corresponds to the transverse displacement of the beam as a whole, i.e.,

X(z, u) is constant. Without wake fields and lattice nonlinearities, its dynamics is reduced

to undamped betatron oscillation (see Eq. 10).

To validate our simulations we start in the strong space charge regime, where a comparison

with theoretical results can be done. In Fig. 1 a), b), c) & d) we show the spatial distribution

of the first four modes at large qeff. For each mode the beam is excited with a shape

proportional to the corresponding space charge harmonic calculated in Ref [6]. In agreement

with the theory we find that the modes’ spatial distribution is nearly independent of the

momentum coordinate u. In Fig. 1 e), f), g) & h) we compare the modes’ dependence on z

with the theoretical prediction. The agreement is very good.

As discussed in Section II, for zero space charge the modes are degenerate with respect to

radial distribution. The space charge forces lift this degeneracy and the weakly interacting

regime is characterized by a large number of modes with tune shifts close to integer multiples

of Qs. Any excitation, unless proportional to an exact mode shape, will excite a large number

of those modes. In order to study the evolution of the strong space charge modes into the

weakly interacting regime we excite the beam with excitations proportional to space charge

harmonics. Among the many excited modes we choose for investigation the ones which have

the largest overlap with the space charge harmonics. These are also the modes which change

smoothly when going from large to small qeff.

In Figs. 2, 3 and 4 we show the spatial distribution in longitudinal phase space for

the modes 1, 2 and 3 respectively, for different values of qeff. When qeff = 0 the modes

are characterized by the the angular number m = k (where k is the mode number), i.e.

Xk(z, u) ≡ Xk(r, θ) = Rk(r)e
ikθ. With increasing qeff the modes transform gradually into

the space charge harmonics. While at small qeff the real and the imaginary part of the

modes have comparable magnitudes, at large qeff the modes can be described by purely real
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FIG. 1: The first four modes of a 3D-G bunch in the strong space charge regime. a), b), c) &

d) At large qeff the modes’ spatial distribution is nearly independent of u, i.e., X(z, u) ≈ Y (z),

as predicted by Ref. [6]. e), f), g) & h) Comparison of the simulated modes (solid red) with the

theoretical space charge harmonics (dashed black) [6]. The agreement is very good.
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FIG. 2: 3D-G bunch. The mode 1 longitudinal distribution, X1(z, u), for different values of the

space charge parameter qeff. Without space charge, X1(z, u) ∝ eiθ. With increasing qeff, X1(z, u)

transforms gradually to the first space charge harmonic (see Fig. 1 a)). At large qeff X1(z, u) can

be described by a purely real function.

functions.

The spatial overlap of the mode Xk(z, u) with the space charge harmonic Yk(z)

< XkYk >=
∫
X∗
k(z, u)Yk(z)ρ(z, u)dzdu, (32)

as a function of qeff is presented in Fig. 5. At small qeff the overlap increases rapidly with

increasing qeff and saturates at qeff ≈ 4k indicating the transition to the strong space charge

regime.

The Landau damping for the first three modes is shown in Fig. 6. All three modes display

a similar behavior. At small qeff the damping increases quickly with increasing qeff. The

damping reaches its maximum in the intermediate region around qeff ≈ 2k. The maximum

damping increases with the mode number. For qeff > 4k the damping λkT0 ≈ 2.4k
42πQs
q3
eff

.

This dependence is in good agreement with the theoretical predictions of Ref [6]. Note that

in Ref. [6] the Landau damping was derived with an accuracy limited by a proportionality
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FIG. 3: 3D-G bunch. The mode 2 longitudinal distribution, X2(z, u), for different values of the

space charge parameter qeff. Without space charge, X2(z, u) ∝ ei2θ. With increasing qeff, X2(z, u)

transforms gradually to the second space charge harmonic (see Fig. 1 b)). At large qeff X2(z, u)

can be described by a purely real function.

factor with the magnitude of order unity. As simulations with KV-G beams show (see

Section V B), the proportionality factor is sensitive to the transverse bunch distribution.

The value of 2.4 is characteristic of transverse Gaussian beams.

We propose a formula for the intrinsic Landau damping of the 3D-G bunches which fits

reasonably well over the entire range of space charge strengths (green lines in Fig. 6),

λkT0

2πQs

=
Akqeff

1 +B
( qeff

2k

)2
+ C

( qeff
2k

)3
+ kD

( qeff
2k

)4 , (33)

with A = 0.072, B = 2.4, C = −1 and D = 0.48. It is interesting to note that the data for

the first three modes can be fitted with only four coefficients. Inductive reasoning suggests

that Eq. 33 can also be used to describe higher order modes; however the validity of Eq. 33

for k ≥ 4 remains to be checked by future investigations.

In Fig. 7 the tune shifts for the first three modes as a function of qeff are shown. Starting

from the non-interacting value of Qk = Qβ + kQs, the tune is suppressed with increasing
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FIG. 4: 3D-G bunch. The mode 3 longitudinal distribution, X3(z, u), for different values of the

space charge parameter qeff. Without space charge, X3(z, u) ∝ ei3θ. With increasing qeff, X3(z, u)

transforms gradually to the third space charge harmonic (see Fig. 1 c)). At large qeff X3(z, u) can

be described by a purely real function.

qeff. In the strong space charge regime
Qk−Qβ
Qs

≈ νk
qeff

in good agreement with the theoretical

estimate of Ref. [6]. The νk are coefficients specific to each mode and were calculated in

Ref. [6]. For the first three modes we have ν1 = 1.4, ν2 = 4.4 and ν3 = 8.9. We propose

a fitting formula for the tune shift for the entire range of the space charge strength (green

lines in Fig. 7),

Qk −Qβ

Qs

= Ak
qeff

2
+

√(
Ak
qeff

2

)2

+ k2, (34)

with

Ak =
k2

νk
. (35)

For the first three modes A1 = 0.72, A2 = 0.91 and A3 = 1.01. Eq. 34 is obtained by

modifying the tune shift equation derived by M. Blaskiewicz [7] for bunches with an airbag
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FIG. 5: 3D-G bunch. The overlap < XkYk > (see Eq. 32) in the longitudinal phase space of the

mode k with the space charge harmonic k for k = 1, 2, 3. At small qeff the overlap increases rapidly

with increasing qeff. For qeff >≈ 4k the increase of < XkYk > with qeff saturates indicating the

transition to the strong space charge regime.

distribution in a square well potential. The equation for the airbag model in square well

potential is recovered by setting the coefficients Ak = 1.

At small qeff the space charge harmonics are not good approximation for the modes.

Therefore the excitations with shapes proportional to the space charge harmonics excite

multiple modes. For example, at qeff = 0, the first space charge harmonic predominantly ex-

cites modes with m = ±1. Other modes are excited too, but with a much smaller amplitude.

The second space charge harmonic predominantly excites modes with m = ±2 and m = 0.

The third space charge harmonic predominantly excites modes with m = ±3 and modes

with m = ±1 with various radial distribution. For purposes of illustration, in Fig. 8-a we

show the damping of the modes with large amplitude and the smallest damping rate excited

with the first and the second space charge harmonics shapes. The corresponding tune shifts

are shown in Fig. 8-b. The modes corresponding to m = 1 and m = 2 in the figure are the
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FIG. 6: 3D-G bunch. The Landau damping for modes 1, 2 and 3 versus the space charge parameter

qeff. At small qeff the damping increases quickly with increasing qeff. In the strong space charge

regime, q >≈ 4k, we find that λT0 ≈ 2.4k
42πQs
q3
eff

, where k is the mode number (dashed lines). This

behavior is in agreement with the theoretical predictions [6]. The proportionality factor of 2.4 is

characteristic of transverse Gaussian beams. The damping rates of all three modes can be fitted

reasonably well for the entire range of the space charge strength by employing Eq. 33 (green lines).

ones which transform into the space charge modes 1 and 2 with increasing qeff. The other

modes are more strongly damped.

Since at small qeff the radial modes are nearly degenerate, investigating the damping

dependence as a function of the radial distribution and angular number m is difficult there.

The statistical noise can easily mix the modes. We believe the accuracy can be increased

with higher statistics and by using excitation shapes proportional to modes at small qeff. An

exhaustive study of the modes in the small qeff regime requires further investigation.
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FIG. 7: 3D-G bunch. The relative tune shift, Q−Qβ
Qs

, for the modes 1, 2 and 3 versus the space

charge parameter qeff. In the strong space charge regime, q >≈ 4k, ∆Qk
Qs
≈ νk

qeff
, in good agreement

with the theoretical prediction. ν1 = 1.4, ν2 = 4.4 and ν3 = 8.9 [6]. The tune shift can be fitted

reasonably well for the entire range of the space charge strength by employing Eq. 34 (green lines).

B. Transverse K-V distribution (KV-G)

Employing particle tracking simulations, V. Kornilov and O. Boine-Frankenheim calcu-

lated the damping rates of longitudinally Gaussian beams with transverse KV distribu-

tion [9]. In Fig. 9 -a we compare the Landau damping of the first two modes obtained in

our simulations for the KV-G beams (black and red circles) with the ones from the Fig. 3

of Ref. [9] (green and blue squares). Despite the different approximations involved in the

simulations, the agreement is good.

There is a significant difference between the damping rates of transverse Gaussian beams

and transverse KV beams, as can be seen from Fig. 9-b. The difference is larger at large

qeff. In the strong space charge regime the damping for the 3D-G beams is more than one

order of magnitude larger than the damping for the KV-G beams.

Unlike the Landau damping, which is very sensitive to the transverse beam distribution,
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FIG. 8: 3D-G bunch. The Landau damping a) and the relative tune shift b) versus the space

charge parameter qeff in the weak space charge regime for a few modes. The modes m = −1, 1

in the figure are excited with a shape proportional to the first space charge harmonic while the

modes m = −2, 0, 2 are excited with a shape proportional to the second space charge harmonic. m

corresponds to the angular number at qeff = 0. Only the modes which have a large overlap with

the excitation shapes are shown. The modes which transform into the space charge modes with

increasing qeff (black and red) are least damped.

the tune shift and the modes spatial shapes show very small difference between the 3D-G

and the KV-G distributions, in agreement with the theory [6]. That can be seen in Fig. 9-c

and Fig. 9-d where the tune shift and the overlap with the space charge harmonics (see

Eq. 32) are shown for both beam distributions.

VI. DISCUSSION

We calculated the momentum function defined as

Mk(s) =
∫
X(z, u, s)Yk(z)ρ(z)dzdu, (36)
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FIG. 9: a) Landau damping for KV-G bunches. Comparison between our simulations and those

of V. Kornilov and O. Boine-Frankenheim [9]. The agreement is good. b), c) & d). Comparison

between the first two modes of KV-G beams and 3D-G beams. b) Landau damping. The damping

of the 3D-G beams’ modes is much larger. c) Relative tune shift. d) Spatial overlap of the mode

shape with the space charge harmonic (see Eq. 32). Unlike the Landau damping the tune shift and

the modes shapes depend very little on the transverse beam distribution, as expected.

where Yk(z) is the space charge harmonic k, which is similar to the method employed in

Ref [9] for extracting the modes’ properties. The damping values obtained from the analysis

of the Mk behavior are consistent with the ones obtained from the DMD analysis, although

the results DMD are more accurate.

We want to point out several potential problems with Mk analysis. The analysis assumes

that after the beam is excited with an approximate mode shape only one mode remains

after a sufficient time, all others being exponentially damped. This assumption is justifiable

in the strong space charge regime where good approximations for the excitations are known

from analytical calculations. However it is questionable in the intermediate region where

the modes shapes are unknown, especially for the higher-order modes. Moreover, when the
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FIG. 10: 3D-G bunch. M1, Eq. 36, versus turn number at qeff = 6 for different excitation ampli-

tudes. M1 is multiplied by a factor inverse proportional to the excitation amplitude. The linear

regime requires an excitation amplitude smaller than 0.01σx. The exponential decay in the linear

regime is consistent with the one provided by the DMD analysis. In the nonlinear regime the long

time behavior is very sensitive to the excitation amplitude.

Landau damping is not in the linear regime the interpretation of data under this assumption

might easily lead to wrong conclusions, as explained below.

It is essential to make sure the dynamics are in the linear damping regime. This can be

seen in Fig. 10 where M1 is shown for different values of the initial excitation amplitude

at qeff = 6 for a 3D-G bunch. The linear regime requires an excitation amplitude smaller

than 0.01σx. In the linear regime the M1 envelope decays exponentially, with a damping

rate equal to the that provided by DMD. With larger initial excitations, the first 400 turns

show similar decaying behavior. However, after longer times, the behavior is very different,

with the envelope of M1 exhibiting a slow beating, a behavior characteristic for nonlinear

Landau damping [25]. For example, by analyzing the data with an amplitude excitation of

0.02σx (red line), one can wrongly conclude that the behavior of the first 400 turns of M1
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shows the exponential decay of the high order modes while the long time behavior yields

zero Landau damping of the first mode. We find that at larger qeff, the excitation amplitude

must be reduced in order to satisfy the linear regime requirement.

Sufficient particle statistics is important for mode analysis. The simulation poses specific

challenges over the entire interaction range. At small qeff there is a strong degeneracy of

modes which makes the mode mixing susceptible to statistical noise. The intermediate qeff

region is subject to strong damping, which causes the damped signal to approach the noise

level quite rapidly. At large qeff the space charge nonlinear effects are strong, requiring a

small excitation amplitude for the linear Landau damping regime. But a small excitation

amplitude implies a small signal to noise ratio. Our simulations used 107 macroparticles.

The results shown here are obtained for the synchrotron tune Qs = 0.01. The simulations

with Qs = 0.005 produce consistent results.

VII. SUMMARY AND CONCLUSIONS

A numerical investigation of the transverse modes and their intrinsic Landau damping

in Gaussian bunched beams with space charge was presented. The beam dynamics is simu-

lated with the Synergia accelerator simulation package. The Dynamic Mode Decomposition

technique is used to extract the properties of the modes from the simulated data.

As the strength of the space charge is increased, the modes change gradually from the

radially degenerate phase space harmonics to the momentum-independent space charge har-

monics of Refs. [6, 8]. Based on the evolution of the mode shape, damping and tune shift

with increasing qeff, we estimate qeff ≈ 4k to be the threshold value which defines the strong

space charge regime. This is in agreement with the theoretical requirement qeff � 2k, where

k is the mode number.

Comparison between the mode properties of bunches with Gaussian transverse distribu-

tions and of those with KV transverse distributions shows that the damping is very sensitive

to the bunch transverse distribution shape, even though the tune shifts and mode shapes

themselves depend very little on the transverse shape, which also agrees with the theoretical

predictions.

In the strong space charge regime the damping for the 3D-G beams is λkT0 ≈ 2.4k
42πQs
q3
eff

,

while for KV-G beams it is much smaller. The tune shift of the modes is in agreement with
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the theoretical predictions and equal to νkQs
qeff

, where νk constants are tabulated in Ref. [6].

The damping reaches a maximum in the intermediate region for qeff ≈ 2k. The maximum

damping increases with the mode number, as expected. Formulas for the damping rates and

the tune shifts which fit the numerical results reasonably well for the entire range of the

space charge strengths were proposed.

At qeff = 0 the modes are radially degenerate, being characterized by the azimuthal

harmonic number m and tune shift mQs. The space charge mode k transforms into a mode

with angular number m = k upon decreasing qeff. The space charge interaction lifts the

degeneracy of the noninteracting regime. However, in the weakly interacting regime there are

a large number of modes with closely spaced frequencies, making the numerical investigation

of this regime difficult. An exhaustive study of the modes in the weakly interacting regime

requires further investigation. Here we only considered the modes which are significantly

excited by the space charge harmonics. Among these modes, those which evolve into the

space charge modes upon increasing qeff, i.e., the ones with the shape closest to the space

charge harmonic, have the smallest damping rates.
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