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High-energy electrons from the muon decay in orbit: radiative corrections
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We determine the O(α) correction to the energy spectrum of electrons produced in the decay
of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes
a background for the muon-electron conversion and will be precisely measured by the upcoming
experiments Mu2e and COMET. The correction suppresses the background by about 20%.
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In matter, muons decay differently from antimuons.
Although the decay rates are very similar [1], negatively
charged µ− can bind with nuclei. The nucleus exchanges
photons with the muon and the daughter electron, rear-
ranging the energy distribution. In this paper we find
how this rearrangement is affected by the real radiation
and self-interaction on the muon-electron line. We pre-
dict the energy spectrum of the highest-energy electrons,
interesting both theoretically and experimentally.

From the theoretical standpoint, the muon decay is the
simplest example with which to study the dynamics of
an unstable particle and to develop a theory of the var-
ious binding effects, including the motion in the initial
state, interplay of the binding and the self-interaction,
and the recoil of the nucleus. On the experimental side,
the bound muon decay has recently been measured [2]
with a precision sufficient to probe radiative corrections,
subsequently evaluated in [3]; however, those measure-
ments focused on the lower half of the spectrum that is
also accessible to a free muon decay.

Interestingly, the energy range of electrons produced
in a decay of a muon bound in an atom (decay in orbit,
DIO) reaches to about twice the maximum possible in
a free-muon decay. When the muon decays in vacuum,
momentum conservation requires that at least half of the
energy be carried away by the neutrinos. In the DIO, the
nucleus can absorb the momentum without taking much
energy, because it is so much heavier than the muon.

The high-energy part is important for the upcoming
experiments COMET in J-PARC [4] and Mu2e in Fermi-
lab [5]. Searching for the ultra-rare neutrinoless muon-
electron conversion, these studies will collect a large sam-
ple of events with high-energy electrons. Their designs
foresee a sensitivity better than one exotic conversion for
1016 ordinary muon decays. The signature of the exotic
process is a monochromatic electron excess at the max-
imum energy. These experiments need a reliable predic-
tion of the high-energy spectrum to distinguish an exotic
signal from the Standard Model background.

Predicting the DIO spectrum is a challenge because
both the decaying muon and the daughter electron inter-
act with the Coulomb field of the nucleus. A numerical
calculation with Coulomb-Dirac wave functions is possi-
ble [6] provided that self-interactions (photons attached

to the muon and the electron) are neglected. How can
they be included? In the lower half of the spectrum the
muon and the electron can be treated as nearly free and
the bound state effects can be factorized. Then the radia-
tive corrections calculated for a free muon are convoluted
with a shape function that parametrizes the Coulomb
field effect [3, 7]. In the present paper we construct for
the first time an expansion around the end-point, that
allows us to systematically include radiative corrections
to the high-energy part of the spectrum.

Accounting for the external Coulomb field in charged-
particle propagators is called the Furry picture [8]. In
this formulation, and still ignoring radiative corrections,
a single diagram, shown in Fig. 1, describes the DIO.
We shall demonstrate that the bound-state radiative
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FIG. 1. Muon decay in orbit (DIO). The left panel shows the
exchange of Coulomb photons (dashed lines) between charged
leptons and the nucleus. The right pannel represents the same
physics using double lines for charged fermions propagating
in the external Coulomb field (Furry picture).

corrections are easiest to evaluate near the high-energy
end of the spectrum, that is the most important part
for the new experiments. For now we neglect the nu-
clear recoil and structure, and treat the nucleus as an
infinitely-heavy point source of a Coulomb field. We de-
note the electron energy with E; its maximum value is

Emax = mµ

(
1− (Zα)2

2

)
, where mµ is muon mass, Z is

the atomic number, and α ' 1/137 is the fine-structure
constant. The DIO spectrum can be expanded near its
end-point in the small parameter ∆ = Emax−E

mµ
,

mµ

Γ0

dΓ

dE
=
∑
ijk

Bijk∆i(πZα)j
(α
π

)k
. (1)
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Powers of πZα parameterize photon exchanges with the
nucleus and α/π arises from radiative corrections on the
charged-lepton line and the vacuum polarization. The
first non-vanishing term has i = j = 5 and k = 0, with
B550 = 1024

5π6 ' 0.21. In higher-order terms, coefficients
B may contain logarithms of Zα and ∆, as we shall see.

Corrections to this leading behavior have several
sources, among which higher-order binding effects are
the most important. There are some theoretical similar-
ities between the DIO and the photoelectric effect that
we shall exploit. Binding effects in both are described
as an expansion in πZα [9, 10] rather than Zα. In-
deed, a numerical evaluation for a point-like nucleus with
Z = 13 (corresponding to aluminum, the planned target
in COMET and Mu2e) finds a −21% correction, consis-
tent with 13πα = 0.3. Logarithmic enhancement begins
with (πZα)7 ln(Zα). Fortunately, these large effects are
summed up in the numerical evaluation [6].

The next source of corrections is the finite nuclear size,
also included in [6]. We will comment at the end of this
paper on how to refine them. The largest of all the cor-
rections, they slightly suppress higher orders in Zα. The
finite nuclear mass introduces a recoil effect, also evalu-
ated in [6]. It has only a small effect on the coefficients
B but it shifts the end-point energy Emax.

Finally, the most challenging corrections result from
radiative effects that are the subject of this study. Before
we discuss technical details, we present our main result.
Close to the end-point, including radiative corrections,
the DIO spectrum for aluminum can be written as

mµ

Γ0

dΓ

dE
≈
(
1.44 ∆0.023 − 0.22

)
× 10−4 ∆5. (2)

To illustrate the importance of the new corrections we
consider the last 150 keV of the spectrum (this is the
typical planned resolution of Mu2e and COMET). Ra-
diative corrections reduce the number of events in this
bin by 19%, a welcome reduction of the background.

In the remainder we explain the origin of such a large
effect. First we want to clarify how electrons can ac-
quire the energy of the full muon mass, even though a
free muon decay produces electrons with at most half
that energy. A large amount of three-momentum must
be transferred to the nucleus, instead of sharing the en-
ergy with neutrinos. We will argue that this happens
predominantly via an exchange of a single, highly virtual
photon, rather than through many interactions.

The relativistic electron is described by a plane wave
distorted by the Coulomb potential V ,

ψp (~q) = ū(p)

[
δ3 (~p− ~q) + /V

(
(~p− ~q)2

) 1

/q −me

]
, (3)

where u(p) is a spinor solution of a free Dirac equation
and the four-potential in momentum space reads

V
(
~k2
)

=

(
− Zα

2π2~k2
,~0

)
. (4)

A muon bound to a nucleus with Z � 137 is nonrela-
tivistic. Nevertheless, we will need the first relativistic
correction to its wave function, just like in the classic
analysis of the photoelectric effect [11],

ψ (~q) = ψNR (~q)

(
1 +

~q · ~γ
2mµ

)
u(P ) (5)

where ψNR (~q) =
8πZαmµΨ(0)

[~q2+(Zαmµ)2]2
is the nonrelativistic

momentum-space wave function of the 1S ground state

with Ψ(0) =
(
Zαmµ
π1/3

)3/2

; u(P ) is a four-spinor of a muon

at rest, P = (mµ, 0).
We now consider separately the contributions of the

two terms in the electron wave function (3). The delta
function term forces the muon momentum in (5) to be
large, ~q = ~p ∼ mµ. Thus we neglect Zαmµ in the de-
nominator of ψNR and find

ψ (~q) ≈ (2π)3Ψ(0)
1

/P + /q −m
/V
(
~q 2
)
u(P ). (6)

This is visualized in Fig. 2a: the muon, before decaying,
transfers momentum ~q ∼ mµ to the nucleus through a
hard space-like photon. It is here that the relativistic
correction to the muon wave function is important.
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FIG. 2. Furry diagram expanded in Zα. Crossed circles indi-
cate insertions of the weak interaction transforming the muon
into an electron; the emitted neutrinos are not shown. These
two amplitudes give rise to the highest-energy electrons.

The second term in (3) refers to an electron scattered
on the nucleus. There is no δ-function restricting the µ
momentum to large values; the muon introduces into the
matrix element its typical bound-state momentum ~q ∼
Zαmµ, negligible in comparison with ~p ∼ mµ. We use
lima→0

8πa
(q2+a2)2 = (2π)3δ3 (~q) to approximate the muon

wave function by

ψ (~q) ≈ (2π)3Ψ(0)δ3 (~q)u(P ). (7)

This is shown in Fig. 2b, where the hard photon is ex-
changed after the decay.

An evaluation of both diagrams in Fig. 2 gives the lead-
ing contribution B550 in (1). We note that in both cases
no energy is transfered to the nucleus and any energy
unused by the electron (∼ ∆) is taken up by the neutri-
nos. Counting the powers of neutrino momenta in the
integrated matrix element,
ˆ

d3ν

ν0

d3ν0

ν0
δ (mµ∆− ν0 − ν0) . . . /ν . . . /ν ∼ ∆5, (8)
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explains the leading energy dependence in (1).

Having understood that only two diagrams describe
the end-point behavior, we are now ready to evaluate
radiative corrections. In the Furry picture there are two
groups of virtual corrections, shown in Fig. 3. We expand
them in Zα just like the tree-level diagrams, except that
in addition to the expansion of wave functions (3, 5), we

(a) (b)

FIG. 3. Virtual corrections to the muon DIO in the Furry
picture.

also need the Coulomb-Dirac Green’s function [12],

−iGV (E; ~p, ~p′) '
δ3
(
~p− ~p′

)
/p−m

+
1

/p−m
/V
(

(~p− ~p′)2
) 1

/p
′ −m

. (9)

Due to the external field, the Green’s function depends
separately on ~p and ~p′ and not only on ~p. Expansion
(9) generates loop diagrams that we evaluate analytically
using standard techniques [13].

For example, the leading approximation of the diagram
3a gives a one-loop vacum polarization insertion into the
photon propagators in Fig. 2. It enhances the tree-level
decay rate by a factor 1 + α

π δVP, with

δVP =
4

3
ln
mµ

me
− 10

9
+ 0.12 ≈ 6.1, (10)

where the term 0.12 arises from a muon loop. The en-
hancement of about 1.4% reflects the running of the elec-
tromagnetic coupling, significant when either the muon
or the daughter electron are close to the nucleus.

Another correction comes from the real radiation. The
set of diagrams represented by Fig. 4 is expanded in the

FIG. 4. Furry diagram for the real radiation correction.

same way as virtual corrections, using (9). Near the
end-point it is sufficient to use the eikonal approxima-
tion since the energy conservation requires that the real
photons be soft, 0 < Eγ < mµ∆.

Virtual and real radiation, separately divergent, to-
gether give a finite correction,

B551

B550
= −46

15
ln
mµ

me
+ δS ln ∆ + 0.76 + δVP, (11)

with

δS = 2 ln 2− 2 + 2 ln
mµ

me
. (12)

The part enhanced by ln
mµ
me

= 5.33, due to collinear
photons, can be predicted using the electron structure
function, providing a useful check. This is possible since
the electron in the final state is relativistic, E � me, and
corrections from the Coulomb potential to the electron
structure function can be neglected.

Contributions of soft photons δS can be exponentiated
[14]. To separate the hard corrections, we introduce

δH =
B551

B550
− δS ln ∆ ≈ −9.5. (13)

Then, denoting with a tilde a sum of only soft-photon
contribution for i > 1, we find∑̃∞

i=0
B55i

(α
π

)i
= B550

[
∆

α
π δS +

α

π
δH

]
. (14)

Now when ∆→ 0, instead of unphysically diverging with
ln ∆, the soft-photon correction vanishes.

So far we have assumed a point nucleus. The end-point
is characterized by a large momentum transfer so the
difference between a point and a finite nucleus matters.
Fortunately, in the order in πZα we are interested in, the
bulk of this effect is an overall multiplicative factor.

From now on, we specialize to the case of aluminum,
although the discussion can easily be applied to other
nuclei. With that in mind, we keep the Z dependence
explicit. We assume a Fermi charge distribution,

% =
ρ0

1 + exp r−r0
a0

(15)

with a0 = 0.569 fm and r0 = 2.84(5) fm [15].
Two factors should be corrected to include the finite

size: the nucleus form-factor and the muon wave func-
tion at the origin. We define the form-factor as a ratio
of Fourier transforms of potentials calculated for the ex-
tended charge distribution (15) and the point-like (4),

Fρ(~k
2) =

Vρ

(
~k2
)

V
(
~k2
) −→ 0.64 for ~k2 = m2

µ. (16)

The muon wave function χ(x) is found numerically from
the Schrödinger equation with the potential Vρ. We de-
fine the ratio R of wave functions at the origin,

R =
χ(0)2

Ψ(0)2
= 0.71. (17)
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Then the terms Bρ55k for a finite nucleus are obtained
from respective terms for a point nucleus, in particular

Bρ550 = RF 2
ρ (m2

µ)B550 = 0.061. (18)

The suppression due to the form-factor decreases also the
higher-order binding effects.

Finally we estimate the recoil and the higher-order
binding effects. Ref. [6] found the end-point behaviour for
aluminum. We rewrite that result separating the leading
from the higher-order (H.O.) effects,

Bρ550(πZα)5 +

∞∑
j=6

Bρ5j0 (πZα)
j ≡ Bρ550(πZα)5 + H.O.

= 8.98× 10−17
( mµ

MeV

)6

. (19)

Now we include our radiative correction (14) in the lead-
ing order and get at order ∆5

mµ

Γ0

dΓ

dE
≈
[
Bρ550

(
∆

α
π δS +

α

π
δH

)
(πZα)

5
+ H.O.

]
∆5.

(20)
With H.O. = −1.9×10−5 [from (18) and (19)], this leads
to our final result (2).

The increased exponent of ∆, due to soft corrections,
suppresses the number of DIO events in the end-point
region. The relative decrease is inversely correlated with
the energy resolution: the number of electrons in the
end-point bin of 1 (0.1) MeV is reduced by 15% (20%).

There are three main uncertainties in our result. The
first is an uncertainty in Bρ550 due to the finite nucleus
size. The wave functions (5–7) refer to the Coulomb po-
tential. Comparing with numerical solutions of the wave
equation, we estimate the error in eq. (18) at about 12%.
This affects the extraction of the H.O. terms and induces
an error of 1.8 – 2.4% in the total coefficient of ∆5, for
bin sizes in the range 0.1 – 1 MeV.

The second uncertainty are the uncalculated hard cor-
rectionsO

(
(α/π)2

)
. They are expected to be small, since

at order α
π the hard correction (13) is only 2.5%.

Further improvements of the DIO end-point prediction
require a calculation of radiative corrections to the H.O.
Assuming that they have the same relative effect as on
B550, we estimate the remaining uncertainty to be about
4% of the ∆5 coefficient.

Even though the radiative corrections turn out to be
large, knowing them we can assess the theoretical preci-
sion. We conservatively estimate the uncertainty of the
number of events in the end-point bin to be about 6%.

To summarize, we have determined the correction to
the high-energy tail of the DIO energy distribution and

its remaining uncertainty. Key to this improvement
has been the simplicity of the leading amplitudes that
turn out to arise from a small number of hard-photon
exchanges. This line of reasoning can be extended to
higher-order binding effects, at least for a point nucleus.
For a realistic charge distribution, a numerical evaluation
of loop diagrams will be necessary. However, the lead-
ing radiative correction has now been established with
good precision. Its sizeable negative effect on the DIO
will make any observed event near the end-point an even
more convincing signal of New Physics, a discovery we
eagerly anticipate.
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[10] J. Eichler and T. Stöhlker, Phys. Rep. 439, 1 (2007).
[11] V. B. Berestetsky, E. M. Lifshitz, and L. P. Pitaevsky,

Quantum Electrodynamics (Pergamon, Oxford, 1982).
[12] J. Schwinger, Particles, sources and fields, Vol. 2

(Addison-Wesley, Redwood City, CA, 1973).
[13] A. V. Smirnov, Comput. Phys. Commun. 189, 182

(2014), arXiv:1408.2372 [hep-ph].
[14] D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.

13, 379 (1961).
[15] H. de Vries et al., At. Data and Nucl. Data Tables 36,

495 (1987).




