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Abstract: We reformulate perturbation theory for neutrino oscillations in matter with

an expansion parameter related to the ratio of the solar to the atmospheric �m2 scales.

Unlike previous works, we use a renormalized basis in which certain first-order e↵ects are

taken into account in the zeroth-order Hamiltonian. Using this perturbation theory we

derive extremely compact expressions for the neutrino oscillation probabilities in matter.

We find, for example, that the ⌫e disappearance probability at this order is of a simple two

flavor form with an appropriately identified mixing angle and �m2. Despite exceptional

simplicity in their forms they accommodate all order e↵ects of ✓13 and the matter potential.

ar
X

iv
:su

bm
it/

12
49

59
0 

 [h
ep

-p
h]

  7
 M

ay
 2

01
5

FERMILAB-PUB-15-196-T

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 

mailto:minakata@fmail.if.usp.br
mailto:parke@fnal.gov


Contents

1 Introduction 2

2 Results of our perturbative expansion for all oscillation probabilities 3

2.1 Mass squared eigenvalues in matter 3

2.2 The mixing angle ✓13 and mixing matrix in matter 4

2.3 Compact formulas for the oscillation probabilities in matter 5

2.3.1 ⌫e ! ⌫e disappearance channel 6

2.3.2 ⌫e ! ⌫µ appearance channel 6

2.3.3 ⌫e ! ⌫⌧ appearance channel 7

2.3.4 ⌫µ ! ⌫µ disappearance channel 8

2.3.5 ⌫µ ! ⌫⌧ appearance channel 8

2.3.6 ⌫⌧ ! ⌫⌧ disappearance channel 9

2.4 Comments and range of applicability 9

3 Formulating the renormalized helio-perturbation theory 11

3.1 Choosing the basis for the renormalized helio-perturbation theory 12

3.2 Hat basis 13

3.3 S Matrix and the oscillation probability 14

3.4 Mass eigenstate in matter: V matrix method 15

3.5 The unique oscillation probability formulas and their meaning 16

4 More about the renormalized helio-perturbation theory 17

4.1 Exact versus zeroth-order eigenvalues in matter 17

4.2 Eigenvalues in vacuum and in the asymptotic regions a ! ±1 18

4.3 Neutrino mixing matrix in matter and the ⌫ flavor content at a ! ±1 19

5 Concluding remarks 20

A Calculation of S matrix elements 21

A.1 Computation of Ŝ matrix elements 21
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1 Introduction

Neutrino oscillation based on the standard three-flavor scheme provides the best possi-

ble theoretical framework available to date to describe most of the experimental results

obtained in the atmospheric, solar, reactor, and the accelerator neutrino experiments.

Although numerically calculated neutrino oscillation probabilities su�ce to analyze exper-

imental data, understanding of the framework, in particular the one in matter [1], has not

yet reached a su�cient level, in our opinion. Under the assumption of uniform matter den-

sity distribution, the exact expressions of the eigenvalues, the mixing angles and oscillation

probabilities in matter have been obtained [2–4]. Yet, the results for these quantities are

generally too complicated to facilitate understanding of the structure of the three flavor

neutrino oscillations in matter primarily due to the complexities of solving the cubic eigen-

value characteristic equation. For a recent comprehensive treatment of neutrino oscillation

in the matter, see ref. [5].

Analytic approaches to the neutrino oscillation phenomenon, so far, are mostly based

on variety of perturbative frameworks. If the matter e↵ect is small one can treat it as a

small perturbation [6]. In the environments in which the matter e↵ect is comparable to

the vacuum mixing e↵ect, the only available small expansion parameter known to us is the

ratio of the solar-scale �m2
� to the atmospheric-scale �m2

�, �m2
�/�m2

� ' 0.03. sin ✓13
has been often used as an expansion parameter (there are enormous number of references,

see e.g., [7]), but it is now known that its value is not so small, sin ✓13 ' 0.15, which is of

the order of
q
�m2

�/�m2
�. Moreover, expansion around sin ✓13 = 0 misses the physics of

the resonance which exists at an energy around E ⇠ 10 GeV for earth densities. Therefore,

it appears that the suitable perturbative framework is the one with the unique expansion

parameter�m2
�/�m2

�. This framework was indeed examined in the past, to our knowledge

in refs. [7–10].

In this paper, we present a new framework of perturbative treatment of neutrino

oscillation in matter. We follow the reasoning stated above which led to identification of

the unique expansion parameter ✏ ⇡ �m2
�/�m2

�. But, unlike the preceding works, we use

a “renormalized basis” as the basis of perturbation. That is, we absorb certain terms of

order ✏ to our “zeroth-order” Hamiltonian around which we perturb. Or, in other word,

we take the zeroth-order eigenvalues in matter such that it matches the exact eigenvalues

to order ✏. We will show that use of the renormalized basis makes the structure of the

perturbation theory transparent, and allows us to obtain simple, elegant and compact

expressions for the oscillation probabilities. For example, ⌫e survival probability takes the

form to order ✏ as

P (⌫e ! ⌫e) = 1� sin2 2� sin2
(�+ � ��)L

4E
(1.1)

where � is ✓13 in matter, and �± denote the eigenvalues of the sates which participate

the 1-3 level crossing. Despite its extremely simple form, P (⌫e ! ⌫e) in (1.1) takes into

account all order e↵ects of ✓13 and the matter potential. Since we will only consider terms

up to order ✏, in this paper, our results here are not applicable to the region near the solar
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MSW resonance [1, 11]. Our perturbative framework will be called as the “renormalized

helio-perturbation theory” in the rest of this paper.

The section plan of this paper is somewhat unusual: in the next section 2 we describe

the principle results of this work including the oscillation probabilities for all channels

in matter. This section does not describe the derivations but provides a self contained

summary of the results of this paper. Following this section, see section 3, we present a

systematic exposition of our perturbative framework and how the results of the section 2

are derived. In the appendices A, B, and C we present, respectively, calculational details

of the S matrix, the results of oscillation probabilities to order ✏ in the standardized form,

and useful relationships to verify the equivalence of various expressions.

2 Results of our perturbative expansion for all oscillation probabilities

In this section, we describe the main results of this paper without derivations and with

only minimal discussion. In later sections we provide the derivation and more in depth dis-

cussions. We start with the approximate eigenvalues of the Hamiltonian, the approximate

neutrino mixing matrix and then give the oscillation probabilities for all channels to first

order in the expansion parameter, ✏, see eq. (2.3) for the precise definition.

2.1 Mass squared eigenvalues in matter

In vacuum the three eigenvalues of the full Hamiltonian which governs the neutrino oscilla-

tion is given in the form m2
i /2E, where mi is the mass of i-th mass eigenstate of neutrinos,

i = 1, 2, 3. Similarly, in matter we write the three eigenvalues as

�i

2E
,

where the state label runs over i = �, 0,+ for the approximate Hamiltonian of three

flavor mixing system. To treat the normal and the inverted mass orderings (NO and IO

respectively) in a unified way, we define the eigenvalues as follows1

�� =
1

2

�
�m2

ren + a
�� sign(�m2

ren)
q

(�m2
ren � a)2 + 4s213a�m2

ren

�
+ ✏�m2

rens
2
12,

�0 = c212 ✏ �m2
ren, (2.1)

�+ =
1

2

�
�m2

ren + a
�
+ sign(�m2

ren)
q

(�m2
ren � a)2 + 4s213a�m2

ren

�
+ ✏�m2

rens
2
12.

1 We note that the eigenvalues in (2.1) above appear in ref. [5]. See section 3.1 for the derivation and a

comment on the treatment in [5].
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In eq. (2.1), the renomalized �m2 ⌘ �m2
ren, the expansion parameter ✏, and the Wolfen-

stein matter potential, a, [1] are defined as follows:2

�m2
ren ⌘ �m2

31 � s212�m2
21, (2.2)

✏ ⌘ �m2
21

�m2
ren

, (2.3)

and a = 2
p
2GFNeE ⇡ 1.52⇥ 10�4

✓
Ye⇢

g.cm�3

◆✓
E

GeV

◆
eV2. (2.4)

This choice of �m2
ren is crucial to the compact formulas for the oscillation probabilities that

will be given in this paper. Note also that the sign of �m2
ren signals the mass ordering, both

�m2
ren and ✏ are positive (negative) for NO (IO). However, for both orderings ✏�m2

ren =

�m2
21 > 0, as required by nature. Notice that �0 is the same for the both mass orderings,

and when we switch from NO to IO we also switch the sign in front of the square root

in eq. (2.1). The nicest feature of the sign choice is that the oscillation probability has

a unified expression and the solar resonance is in ⌫�-⌫0 level crossing for the both mass

orderings.

�m2
ren is equal to the e↵ective atmospheric�m2 measured in a electron (anti-) neutrino

disappearance experiment in vacuum, �m2
ee ⌘ c212�m2

31 + s212�m2
32 [12]. This quantity

is identical to �m2
ee recently measured by the reactor ✓13 experiment [13] up to e↵ects

of O(�m2
21/�m2

31)
2. Whether the coincidence between �m2

ee and �m2
ren reflects a deep

aspect of neutrino oscillation or not will be judged depending upon what happens at second

order in ✏ 3 . This point as well as the relevance of the other e↵ective �m2
µµ [12], ⌫µ

equivalent of �m2
ee, will be discussed in depth in a forthcoming communication.

2.2 The mixing angle ✓13 and mixing matrix in matter

We use the angle � to represent the mixing angle ✓13 in matter. With the definitions of

the eigenvalues (2.1), the following mass-ordering independent expressions for cosine and

sine 2� (see section 3.2) are given by

cos 2� =
�m2

ren cos 2✓13 � a

�+ � ��
,

sin 2� =
�m2

ren sin 2✓13
�+ � ��

. (2.5)

It is easy to show that � goes from 0 ! ⇡/2 as a goes from � 1 to + 1 for the NO

and as a goes from + 1 to � 1 for the IO. In vacuum (a = 0), � = ✓13 and � = ⇡/4 at

the atmospheric resonance, when a = �m2
ren cos 2✓13, for both mass orderings.

2 The following notation is used throughout: �m2
ij

⌘ m2
i

� m2
j

, s
ij

= sin ✓
ij

and c
ij

= cos ✓
ij

where

✓
ij

are the standard neutrino mixing angles and G
F

is the Fermi constant, N
e

is the number density of

electrons, E is the energy of the neutrino, Y
e

the electron fraction and ⇢ is the density of matter.
3The authors respectfully disagree with each other on this point.
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The mixing matrix in matter, V , relates the flavor eigenstates, ⌫e, ⌫µ, ⌫⌧ , to the matter

mass eigenstates, ⌫�, ⌫0, ⌫+ as follows (see section 3.4):

0

B@
⌫e
⌫µ
⌫⌧

1

CA = V

0

B@
⌫�
⌫0
⌫+

1

CA (2.6)

where the matrix V is unitary. It is convenient to split V into a zeroth order term, V (0),

and a first order term, V (1) in our ✏ expansion,

V ⌘ V (0) + ✏V (1), (2.7)

where the zeroth order matrix is given by

V (0) =

2

64
c� 0 s�

�s�s23e
i� c23 c�s23e

i�

�s�c23 �s23e
�i� c�c23

3

75 . (2.8)

whereas the first order correction is given by

V (1) = c12s12 �m2
ren

8
><

>:

✓
c(��✓13)

�� � �0

◆
2

64
0 �c� 0

c23 s�s23e
i� 0

�s23e
�i� s�c23 0

3

75

+

✓
s(��✓13)

�+ � �0

◆
2

64
0 �s� 0

0 �c�s23e
i� c23

0 �c�c23 �s23e
�i�

3

75

9
>=

>;
. (2.9)

As an outcome of the consistent perturbative treatment the total V matrix given by

(2.7) with (2.8) and (2.9) must be unitary to order ✏. In fact it is, since the following two

conditions are satisfied

V (0)(V (0))† = 1 and V (0)(V (1))† + V (1)(V (0))† = 0. (2.10)

Of course, none of what follows is self consistent without unitary here.

With the matter eigenvalues, �’s , definite by eq. (2.1) and the matter mixing matrix, V ,

given by eq. (2.7), simple and compact expressions can be easily derived for the oscillation

probabilities in matter for all channels, to leading order in ✏, as will be shown in the next

section.

2.3 Compact formulas for the oscillation probabilities in matter

In this section we present the shortest path to the oscillation probabilities by using the

eigenvalues, �±,0, and mixing matrix, V , given in the previous section to order ✏. Other

methods are described in later sections which give identical results. Note however, that

the agreement between these di↵erent methods is highly nontrivial, and its meaning will

be explained in section 3.5.
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2.3.1 ⌫e ! ⌫e disappearance channel

The derivation of the ⌫e survival oscillation probability, P (⌫e ! ⌫e), in our renormalized

helio-perturbation theory is extremely simple. Starting from the general expression

P (⌫e ! ⌫e) = 1� 4|Ve+|2|Ve�|2 sin2 (�+ � ��)L

4E

� 4|Ve+|2|Ve0|2 sin2 (�+ � �0)L

4E

� 4|Ve0|2|Ve�|2 sin2 (�0 � ��)L

4E

where, L, is the baseline. Now |Ve0|2 = O(✏2), so we obtain to order ✏

P (⌫e ! ⌫e) = 1� sin2 2� sin2
(�+ � ��)L

4E
(2.11)

with

sin2 2� =

✓
�m2

ren

�+ � ��

◆2

sin2 2✓13

and �± are given in eq. (2.1).

Notice that the formula in eq. (2.11) takes into account the matter e↵ect as well as

the e↵ect of s13 to all orders. Nonetheless, it keeps an exceptional simplicity, an e↵ective

two-flavor form with only the unique eigenvalue di↵erence �+ � ��. The feature stems

from the fact that there is no ⌫e component at zeroth order in ✏ in the “0” state in matter.

It is expressed in the zero in the Ve0 element of the zeroth-order V matrix as in (2.8), see

also section 3.4.

2.3.2 ⌫e ! ⌫µ appearance channel

Now, we discuss the appearance channel ⌫e ! ⌫µ. We describe here the simplest way to

derive the formulas for the oscillation probabilities starting from the V matrix by using

unitarity. The oscillation probability P (⌫e ! ⌫µ) can be computed as

P (⌫e ! ⌫µ) =

����Vµ�V
⇤
e�e

�i
��L

2E + Vµ0V
⇤
e0e

�i
�0L
2E + Vµ+V

⇤
e+e

�i
�+L

2E

����
2

(2.12)

We use unitarity relation Vµ�V
⇤
e� + Vµ0V

⇤
e0 + Vµ+V

⇤
e+ = 0 to eliminate the Vµ�V

⇤
e� term in

(2.12). Then, we obtain

P (⌫e ! ⌫µ) = 4|Vµ+V
⇤
e+ sin�+�e

�i�+0 � Vµ0V
⇤
e0 sin��0|2

= 4|Vµ+|2|Ve+|2 sin2�+�

�8R(Vµ+V
⇤
e+V

⇤
µ0Ve0) sin�+� sin��0 cos�+0

�8I(Vµ+V
⇤
e+V

⇤
µ0Ve0) sin�+� sin��0 sin�+0

+4|Vµ0|2|Ve0|2 sin2��0 (2.13)
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where the common shorthand notation for the kinematic phase �ij = (�i � �j)L/4E is

used. Again, since |Ve0|2 = O(✏2), we have to order ✏

P (⌫e ! ⌫µ)

=


s223 sin

2 2✓13 + 4✏Jr cos �

⇢
(�+ � ��)� (�m2

ren � a)

(�+ � �0)

��✓
�m2

ren

�+ � ��

◆2

sin2
(�+ � ��)L

4E

+ 8✏Jr
(�m2

ren)
3

(�+ � ��)(�+ � �0)(�� � �0)
sin

(�+ � ��)L

4E
sin

(�� � �0)L

4E
cos

✓
� � (�+ � �0)L

4E

◆

(2.14)

here Jr, the reduced Jarlskog factor, is

Jr ⌘ c12s12c23s23c
2
13s13. (2.15)

This expression for the ⌫e ! ⌫µ appearance channel probability is quite compact, despite

that it contains all-order contributions of s13 and a. In particular, it keeps the similar

structure as the one derived by the Cervera et al. formula [7], which retains terms of order

✏2 but expanded by s13 only up to second order.

This method of computing P (⌫e ! ⌫µ) in the above o↵ers the shortest path to the

expression of the oscillation probability which is manifestly free from the apparent singu-

larity as �� ! �0 because 1/(�� � �0) always appears adjacent to sin (����0)L
4E . We will

refer this method as the “shortcut method” in the rest of this paper.

2.3.3 ⌫e ! ⌫⌧ appearance channel

The oscillation probability for ⌫e ! ⌫⌧ channel can be obtained in the shortcut method

used in the previous subsection, or by using the unitarity relation P (⌫e ! ⌫⌧ ) = 1�P (⌫e !
⌫e) � P (⌫e ! ⌫µ). Another method to obtain P (⌫e ! ⌫⌧ ) is to make the transformation

c23 ! �s23 and s23 ! c23 in P (⌫e ! ⌫µ) [10]. The result obtained in either one of these

ways can be written as

P (⌫e ! ⌫⌧ )

=


c223 sin

2 2✓13 � 4✏Jr cos �

⇢
(�+ � ��)� (�m2

ren � a)

(�+ � �0)

��✓
�m2

ren

�+ � ��

◆2

sin2
(�+ � ��)L

4E

� 8✏Jr
(�m2

ren)
3

(�+ � ��)(�+ � �0)(�� � �0)
sin

(�+ � ��)L

4E
sin

(�� � �0)L

4E
cos

✓
� � (�+ � �0)L

4E

◆

(2.16)

Given the expression of P (⌫e ! ⌫µ) in (2.14), it is very easy to understand the result

(2.16). To satisfy unitarity P (⌫e ! ⌫⌧ ) and P (⌫e ! ⌫µ) must add up to 1 � P (⌫e ! ⌫e),

which means that the explicit order ✏ terms must cancel out and the coe�cient of sin2 2✓13
term must add up to unity.
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2.3.4 ⌫µ ! ⌫µ disappearance channel

By using the shortcut method, or by rewriting the expression in appendix B using the

formulas in appendix C, one obtains P (⌫µ ! ⌫µ) as:

P (⌫µ ! ⌫µ)

= 1�
"
s423 sin

2 2�+ 8✏Jr cos � s223
(�m2

ren)
2
�
(�+ � ��)� (�m2

ren � a)
 

(�+ � ��)2(�+ � �0)

#
sin2

(�+ � ��)L

4E

�
"
sin2 2✓23c

2
� � 4✏

�
Jr cos �/c

2
13

�
cos 2✓23

�m2
ren

�
(�+ � ��)� (�m2

ren + a)
 

(�+ � ��)(�+ � �0)

#
sin2

(�+ � �0)L

4E

�
"
sin2 2✓23s

2
� � 4✏

�
Jr cos �/c

2
13

�
cos 2✓23

�m2
ren

�
(�+ � ��) + (�m2

ren + a)
 

(�+ � ��)(�� � �0)

#
sin2

(�� � �0)L

4E

� 16✏Jr cos � s223
(�m2

ren)
3

(�+ � ��)(�+ � �0)(�� � �0)
sin

(�+ � ��)L

4E
sin

(�� � �0)L

4E
cos

(�+ � �0)L

4E
.

(2.17)

The last term in (2.17) can be casted into the canonical sin2�ji terms by using the identity

sin2�+� + sin2��0 � sin2�+0 = �2 sin�+� sin��0 cos�+0, (2.18)

which leads to the form in (B.5). However, if this is done then some of the terms are

singular when �� = �0, yet the total expression is equivalent to eq. (2.17) and is finite.

2.3.5 ⌫µ ! ⌫⌧ appearance channel

Similarly, one can easily derive the expression of P (⌫µ ! ⌫⌧ ) by the shortcut method

with use of the identity (2.18), or by using unitarity, or by rewriting the expression in

appendix B. The result can be written as

P (⌫µ ! ⌫⌧ )

= �
"
c223s

2
23 sin

2 2�+ 4✏Jr cos � cos 2✓23
(�m2

ren)
2
�
(�+ � ��)� (�m2

ren � a)
 

(�+ � ��)2(�+ � �0)

#
sin2

(�+ � ��)L

4E

+

"
sin2 2✓23c

2
� � 4✏

�
Jr cos �/c

2
13

�
cos 2✓23

�m2
ren

�
(�+ � ��)� (�m2

ren + a)
 

(�+ � ��)(�+ � �0)

#
sin2

(�+ � �0)L

4E

+

"
sin2 2✓23s

2
� � 4✏

�
Jr cos �/c

2
13

�
cos 2✓23

�m2
ren

�
(�+ � ��) + (�m2

ren + a)
 

(�+ � ��)(�� � �0)

#
sin2

(�� � �0)L

4E

� 8✏Jr
(�m2

ren)
3

(�+ � ��)(�+ � �0)(�� � �0)
sin

(�+ � ��)L

4E
sin

(�� � �0)L

4E

⇥

cos 2✓23 cos � cos

(�+ � �0)L

4E
� sin � sin

(�+ � �0)L

4E

�
. (2.19)
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2.3.6 ⌫⌧ ! ⌫⌧ disappearance channel

The simplest way to obtain P (⌫⌧ ! ⌫⌧ ) is to make the transformation c23 ! �s23 and

s23 ! c23 in P (⌫µ ! ⌫µ). Or, one may use the shortcut method, or the unitarity relation

P (⌫⌧ ! ⌫⌧ ) = 1� P (⌫⌧ ! ⌫e)� P (⌫⌧ ! ⌫µ). The results are all the same, and given by

P (⌫⌧ ! ⌫⌧ )

= 1�
"
c423 sin

2 2�� 8✏Jr cos �c
2
23

(�m2
ren)

2
�
(�+ � ��)� (�m2

ren � a)
 

(�+ � ��)2(�+ � �0)

#
sin2

(�+ � ��)L

4E

�
"
sin2 2✓23c

2
� � 4✏

�
Jr cos �/c

2
13

�
cos 2✓23

�m2
ren

�
(�+ � ��)� (�m2

ren + a)
 

(�+ � ��)(�+ � �0)

#
sin2

(�+ � �0)L

4E

�
"
sin2 2✓23s

2
� � 4✏

�
Jr cos �/c

2
13

�
cos 2✓23

�m2
ren

�
(�+ � ��) + (�m2

ren + a)
 

(�+ � ��)(�� � �0)

#
sin2

(�� � �0)L

4E

+ 16✏Jr cos � c223
(�m2

ren)
3

(�+ � ��)(�+ � �0)(�� � �0)
sin

(�+ � ��)L

4E
sin

(�� � �0)L

4E
cos

(�+ � �0)L

4E
.

(2.20)

2.4 Comments and range of applicability

So far we have given the expressions of oscillation probabilities in all the oscillation channels.

The simplicity of our expressions for the oscillation probabilities may be understood by the

readers, if they compare our expressions to the ones in the existing literatures to the same

order in the expansion parameter, for example, P (⌫e ! ⌫µ) in (2.14) to the equations

(36a)�(36f) in [9], or P (⌫µ ! ⌫⌧ ) in (2.19) to eqs. (10) and (11) in [10].

Two relevant comments on the properties of the oscillation probabilities are in order:

• In vacuum, a = 0, the above oscillation probabilities reproduce the standard results,

to first order in ✏. The form is somewhat unusual but we have checked that the

expressions are identical.

• If one looks at eqs. (2.14), (2.16), and (2.19), the terms proportional to sin � are all

equal to

8

⇢
Jr sin �

✏ (�m2
ren)

3

(�+ � ��)(�+ � �0)(�� � �0)

�
sin

(�+ � ��)L

4E
sin

(�� � �0)L

4E
sin

(�+ � �0)L

4E

up to an overall sign. These is because the quantity in {· · · } is just the Jarlskog

factor in matter due to the Naumov-Harrison-Scott identity, [16, 17].

To discuss the range of applicability of our expressions, it is useful to first consider

the vacuum expressions to first order in the expansion parameter ✏. For all channels, the

expansion of the vacuum oscillation probabilities to first order in ✏ does not include terms

proportional to sin2�21 which starts at second order in ✏,

sin2�21 = ✏2�2
ren +O(✏4) ' ✏2�2

31 +O(✏4). (2.21)
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Figure 1. The iso-probability contours for the exact (solid blue) and approximate (dashed red)
oscillation probabilities for upper left, ⌫e ! ⌫e, upper right, ⌫e ! ⌫µ and lower, ⌫µ ! ⌫µ. The
upper (lower) half plane is for normal ordering (inverted ordering), whereas positive (negative)
L/E is for neutrinos (antineutrinos). (See footnote 4.) The order of the contours given in the
title is determined from the line L/E=0. The discontinued as one crosses Ye⇢|E| = 0 is because
we are switching mass orderings at this point. In most of parameter space the approximate and
exact contours sit on top of one another so the lines appear to alternate blue-red dashed. Note
that, for L/E >1000 km/GeV and |Ye⇢E| < 5 g.cm�3.GeV, the di↵erence between the exact and
approximate contours becomes noticeable at least for ⌫e ! ⌫e and ⌫e ! ⌫µ.

where �ji ⌘ �m2
jiL/4E. When, �31 = ⇡/2, that is at the first atmospheric oscillation

maximum, ✏2�2
31 ⇡ 0.002 which is small for the channels ⌫e ! ⌫x where x = e, µ, or ⌧

since 1�P (⌫e ! ⌫e), P (⌫e ! ⌫µ) and P (⌫e ! ⌫⌧ ) are all of order sin2 2✓13 ⇡ 0.1. However,

at the second atmospheric oscillation maximum, �2
31 = 3⇡/2 and ✏2�2

31 ⇡ 0.02, which is

significant compared to the sin2 2✓13 term. So in vacuum our first order expansion is only

a good approximation for �2
31

<⇠ ⇡ or L/E <⇠ 1000 km/GeV for these ⌫e channels. For

the other channels, ⌫µ ! ⌫µ, ⌫⌧ ! ⌫⌧ and ⌫µ ! ⌫⌧ , our first order expansion is a good

– 10 –



approximation to somewhat beyond L/E = 1000 km/GeV because the leading terms are

not suppressed by the smallness of sin2 2✓13.

Then, what about the validity in matter? In section 4 we will argue that our per-

turbative description is valid outside the solar resonance. Notice that the region without

validity (no guarantee for approximation being good) is rather wide and includes the vac-

uum because the solar resonance width |�a| = p
3(sin 2✓12/ cos2 ✓13)�m2

21 is larger than

the solar resonance position a = (cos 2✓12/ cos2 ✓13)�m2
21. We expect then that our helio-

perturbation theory works for the matter potential a larger than a few tenth of |�m2
ren|.

To give the reader a sense of the precision of our approximation we have plotted in

Fig. 1, the contours of equal probability for the exact and the approximate solutions for

the channels ⌫e ! ⌫µ, ⌫e ! ⌫e and ⌫µ ! ⌫µ.4 As expected, for large values of the

matter potential, |a| > 1
3 |�m2

ren| we find we have no restrictions on L/E, to have a good

approximation to the exact numerical solutions. Whereas for small values of the matter

potential, |a| < 1
3 |�m2

ren| we still need the restriction L/E <⇠ 1000 km/GeV.5

We note that most of the settings for the ongoing and the proposed experiments,

except possibly for the one which utilizes the second oscillation maximum, fall into the

region L/E <⇠ 1000 km/GeV. To improve the accuracy to larger values of L/E, especially

for values of |a| < 1
3 |�m2

ren|, second order perturbation theory in ✏ is needed, which will

be the subject of a future publication.

3 Formulating the renormalized helio-perturbation theory

In this section, we formulate the helio-to-terrestrial ratio perturbation theory, for short the

helio-perturbation theory, which has the unique expansion parameter

✏ ⌘ �m2
21

�m2
ren

. (3.1)

We will show that use of its renormalized version is the key to the very simple formulas

of the oscillation probabilities exhibited in section 2.3 and appendix B. In fact, there are

two ways of deriving the oscillation probabilities, the S matrix method and the wave

function method. Here we sketch both of them, leaving technical or computational parts

into Appendices A and B. The meaning of the agreement between results obtained by both

the S matrix and the wave function methods will be discussed at the end of this section.

The S matrix describes neutrino flavor changes ⌫� ! ⌫↵ after traversing a distance L,

⌫↵(L) = S↵�⌫�(0), (3.2)

and the oscillation probability is given by

P (⌫� ! ⌫↵;L) = |S↵� |2. (3.3)

4 One can show by taking complex conjugate of the evolution equation of anti-neutrinos of energy E, it

is equivalent to solve the neutrino evolution equation with energy �E. Therefore, the right (left) half plane

of each panel of Fig. 1 corresponds to the neutrino (anti-neutrino) channel.
5 Of course, the boundary between these two regions should be interpreted as an approximate one. In

fact, an exact boundary would sensitively depend on the definition of the di↵erence allowed between the

exact and the approximate probabilities.
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When the neutrino evolution is governed by the Schrödinger equation, i d
dx⌫ = H⌫, S

matrix is given as

S = T exp


�i

Z L

0
dxH(x)

�
(3.4)

where T symbol indicates the “time ordering” (in fact “space ordering” here). In the

standard three-flavor neutrinos, Hamiltonian is given by

H =
1

2E

8
><

>:
U

2

64
0 0 0

0 �m2
21 0

0 0 �m2
31

3

75U † +

2

64
a(x) 0 0

0 0 0

0 0 0

3

75

9
>=

>;
, (3.5)

where the symbols are defined in an earlier footnote. For the case of constant matter

density, the right-hand side of (3.4) may be written as e�iHx. We recapitulate here the

earlier footnote: In (3.5) �m2
ji ⌘ m2

j � m2
i where mi denotes the mass of i-th mass

eigenstate neutrinos. Position dependent function a(x) ⌘ 2
p
2GFNe(x)E is a coe�cient

for measuring the matter e↵ect on neutrinos propagating in medium of electron number

density Ne(x) [1] where GF is the Fermi constant and E is the neutrino energy.

The neutrino flavor mixing matrix U is usually taken to be the standard form UPDG

given by Particle Data Group. We, however, prefer to work in a slightly di↵erent basis, for

this paper, in which the flavor mixing matrix has a form

U =

2

64
1 0 0

0 1 0

0 0 e�i�

3

75UPDG

2

64
1 0 0

0 1 0

0 0 ei�

3

75

=

2

64
1 0 0

0 c23 s23e
i�

0 �s23e
�i� c23

3

75

2

64
c13 0 s13
0 1 0

�s13 0 c13

3

75

2

64
c12 s12 0

�s12 c12 0

0 0 1

3

75 ⌘ U23U13U12 (3.6)

with understanding that the left phase matrix in the first line in eq.(3.6) is to be absorbed

into the ⌫⌧ neutrino wave functions. By using the convention of the mixing matrix as in

(3.6), the perturbative calculation is entirely free from �. We use the obvious notations

sij ⌘ sin ✓ij etc. and � is the CP violating phase.

3.1 Choosing the basis for the renormalized helio-perturbation theory

It is convenient to work with the tilde basis defined as ⌫̃↵ = (U †
23)↵�⌫� , in which the

Hamiltonian is related to the flavor basis one as

H̃ = U †
23HU23, (3.7)

where U23 is defined in eq.(3.6). The S matrix in the flavor basis is related to the S matrix

in the tilde basis S̃ as

S(L) = U23S̃(L)U
†
23, S̃(L) = T exp


�i

Z L

0
dxH̃(x)

�
. (3.8)
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The simplest formulation of hello-perturbative treatment in the tilde-basis includes

decomposition of H̃ into the zeroth and the first order terms in the expansion parameter
�m2

21
�m2

31
as

H̃(x) =
�m2

31

2E

8
><

>:

2

64

a(x)
�m2

31
+ s213 0 c13s13

0 0 0

c13s13 0 c213

3

75+
�m2

21

�m2
31

2

64
s212c

2
13 c12s12c13 �s212c13s13

c12s12c13 c212 �c12s12s13
�s212c13s13 �c12s12s13 s212s

2
13

3

75

9
>=

>;

(3.9)

To derive the compact formulas of oscillation probabilities we use slightly di↵erent

basis, a renormalized basis, to formulate the perturbation theory. That is, we absorb a

certain order ✏ terms into the zeroth order Hamiltonian, H̃(x) = H̃0(x) + H̃1(x):

H̃0(x) =
�m2

ren

2E

8
><

>:

2

64

a(x)
�m2

ren
+ s213 0 c13s13

0 0 0

c13s13 0 c213

3

75+ ✏

2

64
s212 0 0

0 c212 0

0 0 s212

3

75

9
>=

>;
(3.10)

H̃1(x) = ✏c12s12
�m2

ren

2E

2

64
0 c13 0

c13 0 �s13
0 �s13 0

3

75 (3.11)

where �m2
ren ⌘ �m2

31 � s212�m2
21 and ✏ ⌘ �m2

21/�m2
ren, as defined in (2.2) and (2.3).

H̃(x) with (3.10) and (3.11) is identical with the tilde-Hamiltonian in (3.9). Note the

simplicity of the perturbing Hamiltonian, H̃1 and that the diagonalization of H̃0 leads to

the eigenvalues given in section 2.1, eq. (2.1).

The authors of [5] treat the order ✏ e↵ect in the Hamiltonian as a renormalization of

the matter potential, whereas we regard it as a renormalization of �m2
31.

Though our treatment can be easily generalized to cases with matter density variation

as far as the adiabatic approximation holds, we derive, for ease of presentation, the formulas

with constant matter density approximation in the rest of this paper.

3.2 Hat basis

We transform the Hamiltonian Ĥ = Ĥ0 + Ĥ1, from the“tilde” basis to the “hat” basis,

using

Ĥ0 = U †
�H̃0U�, Ĥ1 = U †

�H̃1U� (3.12)

where the unperturbed Hamiltonian Ĥ0 is diagonal,

Ĥ0 =
1

2E

2

64
�� 0 0

0 �0 0

0 0 �+

3

75 . (3.13)

We take the following form of unitary matrix U� to diagonalize H̃0:

U� =

2

64
cos� 0 sin�

0 1 0

� sin� 0 cos�

3

75 . (3.14)
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The expressions of the zeroth order eigenvalues ��, �0, and �+, are given in eqn (2.1).

Similarly, cosine and sine � are given in eqn. (2.5).

Also the perturbing Hamiltonian, Ĥ1, retains it’s simple form thanks to that the U�

rotation keeps “zero” in H̃1 unchanged,

Ĥ1 = U †
�H̃1U�

= ✏c12s12
�m2

ren

2E

2

64
0 cos (�� ✓13) 0

cos (�� ✓13) 0 sin (�� ✓13)

0 sin (�� ✓13) 0

3

75 . (3.15)

In fact, Ĥ1 is identical to H̃1 with ✓13 replaced by (✓13 � �).

3.3 S Matrix and the oscillation probability

The S matrix in the flavor basis is related to the S matrix in the tilde and the hat bases as

S(L) = U23S̃(L)U
†
23 = U23U�Ŝ(L)U

†
�U

†
23 (3.16)

where we have used explicitly the fact that the matter density is constant:

S̃(L) = T exp


�i

Z L

0
dxH̃(x)

�
= U�T exp


�i

Z L

0
dxĤ(x)

�
U †
� ⌘ U�Ŝ(L)U

†
�. (3.17)

To calculate Ŝ(L) we define ⌦(L) as

⌦(L) = eiĤ0LŜ(L). (3.18)

Then, ⌦(L) obeys the evolution equation

i
d

dx
⌦(x) = Ȟ1⌦(x) (3.19)

where

Ȟ1 ⌘ eiĤ0xĤ1e
�iĤ0x. (3.20)

Then, ⌦(x) can be computed perturbatively as

⌦(L) = 1 + (�i)

Z L

0
dxȞ1(x) +O(✏2). (3.21)

Collecting the formulas the S matrix can be written as

S(L) = U23U�e
�iĤ0L⌦(L)U †

�U
†
23 (3.22)

Thus, we are left with perturbative computation of ⌦(L) with use of (3.20) to calculate

the S matrix. With the S matrix in hand it is straightforward to compute the oscillation

probabilities by using (3.3). We leave these tasks to appendices A and B.
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3.4 Mass eigenstate in matter: V matrix method

In this section we calculate the V -matrix directly using our perturbation theory. If we

switch o↵ the perturbation Ĥ1, the mass eigenstates in matter, to lowest order, are given

by the hat-basis wave function ⌫̂
(0)
i , which are the eigenstates of Ĥ0 in (3.12), and since

Ĥ0 is diagonal, we have

⌫̂
(0)
i = (U23U�)

†
i↵⌫↵. (3.23)

Thus, the V matrix is given to zeroth order by V (0) = U23U� whose explicit form is given

in section 4.3, and also in eq. (2.8).

In order to obtain the mass eigenstates in matter to first order in ✏, ⌫i = ⌫̂
(0)
i + ⌫̂

(1)
i , let

us compute the first order correction to the hat basis wave functions. Using the familiar

perturbative formula for the perturbed wave functions

⌫̂
(1)
i =

X

j 6=i

(Ĥ1)ji
�i � �j

⌫̂
(0)
j (3.24)

with Ĥ1 in (3.12), and the �i’s are given by the eigenvalues of Ĥ0, see (2.1). Then the

mass eigenstate in matter ⌫i can be written to first order in ✏ as:

0

B@
⌫�
⌫0
⌫+

1

CA =

0

B@
1 ✏�m2

ren
c12s12c(��✓13)

����0
0

�✏�m2
ren

c12s12c(��✓13)

����0
1 �✏�m2

ren
c12s12s(��✓13)

�+��0

0 ✏�m2
ren

c12s12s(��✓13)

�+��0
1

1

CA

0

B@
⌫̂
(0)
�
⌫̂
(0)
0

⌫̂
(0)
+

1

CA .

Using (3.23), this equation is of the form ⌫i = V †⌫↵ which can be inverted to easily obtained

the V -matrix given in eq. (2.7),

V = U23U�

0

B@
1 �✏�m2

ren
c12s12c(��✓13)

����0
0

✏�m2
ren

c12s12c(��✓13)

����0
1 ✏�m2

ren
c12s12s(��✓13)

�+��0

0 �✏�m2
ren

c12s12s(��✓13)

�+��0
1

1

CA ,

= U23U�

+✏c12s12�m2
ren

8
><

>:

c(��✓13)

�� � �0
U23U�

0

B@
0 �1 0

1 0 0

0 0 0

1

CA+
s(��✓13)

�+ � �0
U23U�

0

B@
0 0 0

0 0 1

0 �1 0

1

CA

9
>=

>;
. (3.25)

This can be used to directly compute the oscillation probabilities as was performed in

section (2.3) or by using the V matrix the oscillation probabilities for ⌫� ! ⌫↵ in matter

is given (under the adiabatic approximation) as

P (⌫� ! ⌫↵) =

�����
X

i

V↵iV
⇤
�i e

�i
�

i

L

2E

�����

2

= �↵� � 4
X

j>i

Re[V↵iV
⇤
�iV

⇤
↵jV�j ] sin

2 (�j � �i)L

4E
� 2

X

j>i

Im[V↵iV
⇤
�iV

⇤
↵jV�j ] sin

(�j � �i)L

2E

(3.26)
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where i = (�, 0,+). This V matrix method was used to calculate the matter e↵ect correc-

tion in the oscillation probabilities [14].

3.5 The unique oscillation probability formulas and their meaning

We have sketched the two di↵erent methods for calculating the oscillation probabilities,

the S-matrix method (section 3.3) and the V -matrix methods (section 3.4). The results

obtained by the both methods agree with each other. A careful choice of the eigenvalues

and the mixing angle � in sections 2.1 and 2.2 allows us the unified expressions of the

oscillation probabilities for both NO and IO. They are presented in the two di↵erent styles:

In appendix B we present all of them in a manner loyal to the general expression (3.26),

which is convenient for demonstrating unitarity. In section 2, we already presented them

in a way manifestly free from the spurious singularity at 1/(����0), and showing explicit

dependence on the eigenvalues and the mixing angles.6 The formulas useful to show the

equivalence between the general expressions of the oscillation probabilities in appendix B

and the ones given in section 2 will be provided in appendix C.

It turned out that this property, the agreement between the results obtained by the

V and S matrix methods, is highly nontrivial. That is, we find that in most formulations

of perturbative framework they don’t agree with each other. As a concrete example, we

briefly describe what happens if we formulate a perturbation theory by using the simplest

zeroth-order basis, the first term in (3.9). One can calculate the V matrix elements as we

did in the previous subsection, and obtain the oscillation probabilities by inserting them

into (3.26). But, they do not agree with the oscillation probabilities calculated by using

the S matrix method in an obvious way. Namely, the latter contains the types of terms

that do not exist in the general form (3.26). A clearest example is the presence of the

term proportional to sin (�
j

��
i

)L
2E in P (⌫e ! ⌫e), which is absent in (3.26) because of no

CP violation in P (⌫e ! ⌫e).

But, then how the oscillation probabilities calculated by the two method can agree

with each other? It occurs if one can redefine the zeroth-order eigenvalues such that the

extra terms in the oscillation probabilities can be absorbed into the canonical terms which

exist in the general formula (3.26); This is the meaning of the agreement between the

oscillation probabilities calculated by using the S matrix as well as V matrix methods.

Our result demonstrates that it can happen to order ✏. It is one of the nicest features of

our renormalized helio-perturbation theory that it occurs automatically. Apparently, our

framework with the normalized zeroth-order basis in (3.9) is the unique case which possesses

this property, as any other choice of zeroth order eigenvalues will generate additional, non-

canonical terms in the oscillation probabilities.

6 In section 2, we made the structure of � dependent terms transparent by exhibiting their Jarlskog

factor [15] dependence explicit. Notice that the sin � terms must come with the Jarlskog factor J
r

defined

in (2.15) [16, 17]. Whereas the cos � terms must be accompanied with a further reduced Jarlskog factor

c12s12c23s23s13 [4, 18].
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Figure 2. The flow of the three eigenvalues in the normal mass ordering, abbreviated as NO, (left
panel) and in the inverted mass ordering, abbreviated as IO, (right panel). The exact eigenvalues
are depicted with colored lines, green for ⌫1, red for ⌫2, and flight blue for ⌫3. The eigenvalues
calculated by using our renormalized helio-perturbation theory are drawn by the black dashed lines
whose state labels are marked on the figures. The approximate eigenvalues for ⌫0 and ⌫� cross at
the solar resonance, whereas the exact eigenvalues for ⌫1 and ⌫2 repelled at solar resonance. To
make these features visible we used a solar �m2

21 three times as large as the measured value.

4 More about the renormalized helio-perturbation theory

In this section, we critically examine the framework of the renormalized helio-perturbation

theory. Despite a drawback of the current framework (which is to be described below) we

argue that our perturbation theory works apart from the vicinity of the solar resonance

crossing.

4.1 Exact versus zeroth-order eigenvalues in matter

The three eigenvalues of the Hamiltonian are written as �
i

2E , where i runs over 1, 2, 3 for

the exact eigenvalues, and i = �, 0,+ for the zeroth-order eigenvalues in our perturbative

framework. In Figure 2 the �i are plotted as a function of a, the Wolfenstein matter

potential [1] for both the exact and the zeroth-order ones given by eq. (2.1). It is clear

in Fig. 2 that our zeroth-order eigenvalues fail to treat the solar-�m2 scale level crossing

correctly. As one goes through the solar resonance in the exact solution the two eigenvalues

involved, the red and green, repel one another, whereas in our perturbative solution the

two corresponding eigenvalues cross with each other.7

We first note that, despite the feature, the atmospheric and solar resonances occur at

the correct values of the matter potential with our zeroth-order eigenvalues. The atmo-

spheric resonance occurs when �+ � �� is a minimum, which is at

a = �m2
ren cos 2✓13

7 We note, however, that this is the common feature possessed by the similar perturbative treatments

of neutrino oscillation available in the market. In this section we argue, for the first time, that despite the

drawback, our perturbative framework successfully treat the flavor content of these two states at reasonably

far from the solar resonance point.
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and the minimum di↵erence between �+ and �� is �m2
ren sin 2✓13 as expected. The solar

resonance occurs when �� � �0 is a minimum; this occurs when

a = ✏�m2
ren cos 2✓12/ cos

2 ✓13

and the minimum di↵erence is zero! This is not the value determined by the full Hamil-

tonian which is ⇡ ✏�m2
ren sin 2✓12. Therefore, while our perturbative scheme treats the

atmospheric resonance correctly to order ✏, it misses the e↵ects of the solar resonance.

4.2 Eigenvalues in vacuum and in the asymptotic regions a ! ±1
In this and the next subsections, we will give the arguments to indicate that our renormal-

ized helio-perturbation theory works apart from the vicinity of the solar resonance despite

the issue mentioned above.

We first show that the zeroth-order eigenvalues given in (2.1) agrees with the exact

ones to order ✏ in the asymptotic regions a ! ±1. We use the characteristic equation of

the full Hamiltonian (3.5) to derive (i = 1, 2, 3)

X

i

�i =
�
a+�m2

31 +�m2
21

�
,

X

i,j

�i�j = �m2
21�m2

31 + a
�
(c212 + s212s

2
13)�m2

21 + c213�m2
31

 
,

�1�2�3 = c212c
2
13a�m2

21�m2
31. (4.1)

Then, by using the asymptotic expansion of �’s one can obtain to leading order in the 1/a

expansion (at a ! +1 in the NO case)

�2 = c213�m2
31 + s212s

2
13�m2

21 = (c213 + s212✏)�m2
ren,

�1 = c212�m2
21 = c212✏�m2

ren,

�3 = a+ s213�m2
31 + s212c

2
13�m2

21 = a+ (s213 + s212✏)�m2
ren. (4.2)

At a ! �1, �+ and �� must be interchanged. They are identical to the ones computed

with our zeroth-order eigenvalues given in (2.1):

0

B@
��
�0

�+

1

CA

NO

a=+1

=

0

B@
(c213 + s212✏)�m2

ren

c212✏�m2
ren

a+ (s213 + s212✏)�m2
ren

1

CA (4.3)

0

B@
��
�0

�+

1

CA

NO

a=�1

=

0

B@
a+ (s213 + s212✏)�m2

ren

c212✏ �m2
ren

(c213 + s212✏)�m2
ren

1

CA (4.4)

For the IO, the analytic expressions of �i (i = �, 0,+) at a ! ±1 is the same as those of

�i at a ! ⌥1 for the case of NO.8

8 In fact, the first line in (4.1) holds exactly.
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When the matter potential vanishes, a = 0, the mass squared eigenvalues are given for

the both mass orderings by

0

B@
��
�0

�+

1

CA

NO,IO

a=0

=

0

B@
s212✏�m2

ren

c212✏�m2
ren

�m2
31

1

CA (4.5)

whose order ✏ terms are di↵erent from the exact values, �1 = 0, �2 = �m2
21, and �3 =

�m2
31. To understand the meaning of the failure at order ✏ we need to discuss what happens

to the flavor content of the matter mass eigenstates as the matter potential changes from

below to above the solar resonance. This will be done in the next subsection.

Similarly, the asymptotic behaviour of the angle �, i.e., ✓13 in matter can be easily

worked out. With the definition of � in (2.5), it is easy to show that � takes on the following

values as a is varied from � 1 to + 1. In the case of normal mass ordering,

�NO =

8
>>>>><

>>>>>:

0, a = � 1
✓13, a = 0
⇡
4 , a = �m2

ren cos 2✓13
⇡
2 � ✓13, a = 2�m2

ren cos 2✓13
⇡
2 , a = + 1.

(4.6)

while in the case of inverted mass ordering,

�IO =

8
>>>>><

>>>>>:

⇡
2 , a = � 1

⇡
2 � ✓13, a = 2�m2

ren cos 2✓13
⇡
4 , a = �m2

ren cos 2✓13
✓13 a = 0

0, a = + 1.

(4.7)

It reflects a natural view that physics at a ! +1 for the normal mass ordering corresponds

to the one at a ! �1 for the inverted mass ordering at least to leading order in ✏.

4.3 Neutrino mixing matrix in matter and the ⌫ flavor content at a ! ±1
Since the two levels cross at the solar resonance in our perturbative treatment, one may

expect that our treatment fails completely beyond the solar resonance, i.e., in the region

with matter density higher than the resonance. However, we will show in this subsection

that the flavor contents of the three eigenstates are correctly reproduced at least in the

asymptotic region. That is, the zeroth-order V matrix describes correctly the asymptotic

behaviour of the exact eigenstates in matter.

Suppose we denote the exact flavor mixing matrix in matter as the (almost standard)

U matrix defined in (3.6). Let us discuss the case of NO first. At a ! �1 U is nothing

but V (0) in (2.8). Notice that s23 in matter is frozen to its vacuum value for ✏ < 0.1, and

s12 ' 0 at a ! �1 [3]. At a ! +1, s12 ' 1 and c12 ' 0 the matter U matrix is identical

to (2.8) if we interchange ⌫1 and ⌫2 apart from re-phasing factor �1 for the new second

mass eigenstate.
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To make the meaning of this feature clearer we write down here the flavor content of

the states ⌫i (i = 1, 2, 3) at a ! ±1. Noticing that ⌫i = (V †)i↵⌫↵, the flavor composition

at a ! �1 is given at zeroth order by

⌫1 = c�⌫e � s�(s23e
�i�⌫µ + c23⌫⌧ ) = ⌫�

⌫2 = {c23⌫µ � s23e
i�⌫⌧} = ⌫0

⌫3 = s�⌫e + c�(s23e
�i�⌫µ + c23⌫⌧ ) = ⌫+ (4.8)

Whereas the composition at a ! +1 is given by

⌫1 = �{c23⌫µ � s23e
i�⌫⌧} = �⌫0

⌫2 = c�⌫e � s�(s23e
�i�⌫µ + c23⌫⌧ ) = ⌫�

⌫3 = s�⌫e + c�(s23e
�i�⌫µ + c23⌫⌧ ) = ⌫+ (4.9)

The flavor compositions given in (4.8) and (4.9) imply that the flavor content of the lower

two mass eigenstate in matter is correctly described in our perturbative framework despite

the failure of describing the solar level crossing. Note, the combinations of ⌫µ and ⌫⌧ in

the (· · · ) and {· · · } are orthogonal in the above expressions.

In the case of IO, essentially the same discussion goes through. The asymptotic be-

havior of ✓12 at a ! ±1 is the same as that in NO. The asymptotic behavior of ✓13 at

a ! ±1 for NO is mapped into the one at a ! ⌥1 for IO. But, this is already taken care

of by the definition of � given in (2.5). Therefore, the same U matrix in matter as the one

in NO are obtained at a ! ±1. Then, the same flavor compositions as in (4.8) and (4.9)

follow for IO. Again it is consistent with those we expect from the level crossing diagram.

We add that our ⌫+ state always corresponds to ⌫3 state. At a ! +1 in NO and at

a ! �1 in IO the electron neutrino component is all in this ⌫+ = ⌫3 state. At a ! �1
in NO and at a ! +1 in IO the electron neutrino component is all in ⌫� (⌫1 for NO, ⌫2
for IO) state. In vacuum for both NO and IO, V (0)

e+ = s� = s13, which is the correct value

for the ⌫3 = ⌫+-state.

To summarize: Despite that the eigenvalues calculated by our helio-perturbation the-

ory do not show the correct behavior at around the solar level crossing, the flavor com-

position of the states are correctly represented by our zeroth order states. Therefore, we

believe that our perturbative framework correctly describe the system of three flavor mixing

in matter for both NO and IO apart from the vicinity of the solar resonance.

5 Concluding remarks

In this paper, we have derived compact expressions of the neutrino oscillation probabilities

in the standard three-flavor framework, which are valid to order ✏ ⌘ �m2
21

�m2
ren

' �m2
21

�m2
31
. We

believe that our formulas have the simplest possible forms among the available ones in the

market derived by using various perturbative frameworks. Though extremely simple in

their forms, they keep all-order e↵ects of s13 and matter potential a, having ✏ as the only

expansion parameter.
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To derive the compact formulas we have developed a perturbative framework dubbed

as the “renormalized helio-perturbation theory”. It di↵ers from the perturbative framework

discussed before mainly on the following two points:

• We have used the renormalized basis (3.10) with an order ✏ corrected atmospheric

mass squared di↵erence, �m2
ren, whose zeroth-order eigenvalues agree with the exact

ones to order ✏ in the asymptotic regions of the matter potential a ! ±1.

• We have presented two ways of computing the oscillation probabilities, the S-matrix

and the V -matrix methods described, respectively, in sections 3.3 and 3.4. The results

obtained by the two methods agree with each other, the fact we emphasized to be

highly nontrivial.

To our knowledge they represent the unique feature among the perturbative frameworks

available in the market. Despite the success of our current framework in almost all regions

including the one around the first oscillation maximum, it has a clear drawback. It fails

to accommodate the physics at around the solar-scale resonance. This is related to the

unphysical feature that the two eigenvalues (�� and �0) cross with each other at the solar

resonance. We hope that we can return to this problem in the future.

As we noticed at the end of section 2.1 our renormalized �m2
ren is identical, to order

✏, to the e↵ective �m2 measurable in an (anti-) ⌫e disappearance experiment in vacuum.

It is a tantalizing question whether it is just a coincidence, or is an indication of something

deep.

It is quite possible that the second feature of the current framework mentioned above

naturally generalizes to higher orders. That is, one can demand that the oscillation prob-

abilities of the general form in (3.26) calculated by the V -matrix method, with the well

prepared eigenvalues, be correct to certain order in ✏. Our result in this paper is the ex-

istence proof of the concept to order ✏. Since we know that this is true in the exact form

of the oscillation probabilities (assuming adiabaticity) [3], it is likely to be correct in each

order in perturbation theory. It may or may not require higher order renormalization in

�m2
ren.

A Calculation of S matrix elements

A.1 Computation of Ŝ matrix elements

By using Ĥ1 in (3.15) and eiĤ0x = diag
⇥
ei��x, ei�0x, ei�+x

⇤
, one can easily compute Ȟ1 ⌘

eiĤ0xĤ1e
�iĤ0x. Then, using eq. (3.21), the first order term of ⌦(x) can be calculated as

⌦1(x) = (�i)

Z x

0
dx0Ȟ1(x

0)

= �i✏�m2
renc12s12

2

664

0 c(��✓13)
ei(����0)x�1

i(����0)
, 0

c(��✓13)
e�i(����0)x�1
�i(����0)

, 0 s(��✓13)
e�i(�+��0)x�1
�i(�+��0)

0 s(��✓13)
ei(�+��0)x�1

i(�+��0)
, 0

3

775

(A.1)
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where we have introduced the simplified notations, c(��✓13) ⌘ cos (�� ✓13), s(��✓13) ⌘
sin (�� ✓13), etc. The simplicity in the structure of (A.1) with many zeros is the math-

ematical reason why the expressions of neutrino oscillation probabilities are so simple in

our renormalized hello perturbation theory.

The Ŝ matrix is given by Ŝ = e�iĤ0x⌦ = e�iĤ0x [1+ ⌦1(x)] where 1 denotes the unit

matrix. Then, the elements of Ŝ matrix are given by:

Ŝee = e�i��x, Ŝµµ = e�i�0x, Ŝ⌧⌧ = e�i�+x,

Ŝe⌧ = Ŝ⌧e = 0,

Ŝeµ = �i✏�m2
renc12s12c(��✓13)

(e�i�0x � e�i��x)

i(�� � �0)
,

Ŝµe = �i✏�m2
renc12s12c(��✓13)

(e�i�0x � e�i��x)

i(�� � �0)
= Ŝeµ,

Ŝµ⌧ = �i✏�m2
renc12s12s(��✓13)

(e�i�0x � e�i�+x)

i(�+ � �0)
,

Ŝ⌧µ = �i✏�m2
renc12s12s(��✓13)

(e�i�0x � e�i�+x)

i(�+ � �0)
= Ŝµ⌧ . (A.2)

A.2 The relationships between Ŝ, S̃, and S matrices

The relationships between Ŝ, S̃, and S matrices are summarized as

S̃(x) = U�Ŝ(x)U
†
� S(x) = U23S̃(x)U

†
23 (A.3)

To define the notations for their elements let us write the first equation in (A.3) explicitly:

2

64
S̃ee S̃eµ S̃e⌧

S̃µe S̃µµ S̃µ⌧

S̃⌧e S̃⌧µ S̃⌧⌧

3

75 =

2

64
c� 0 s�
0 1 0

�s� 0 c�

3

75

2

64
Ŝee Ŝeµ Ŝe⌧

Ŝµe Ŝµµ Ŝµ⌧

Ŝ⌧e Ŝ⌧µ Ŝ⌧⌧

3

75

2

64
c� 0 �s�
0 1 0

s� 0 c�

3

75 (A.4)

The relationships can be written by matrix elements as

S̃ee = c2�Ŝee + s2�Ŝ⌧⌧ + c�s�

⇣
Ŝe⌧ + Ŝ⌧e

⌘
,

S̃eµ = c�Ŝeµ + s�Ŝ⌧µ,

S̃e⌧ = c2�Ŝe⌧ � s2�Ŝ⌧e � c�s�

⇣
Ŝee � Ŝ⌧⌧

⌘
,

S̃µe = c�Ŝµe + s�Ŝµ⌧ = S̃eµ

S̃µµ = Ŝµµ

S̃µ⌧ = �s�Ŝµe + c�Ŝµ⌧ ,

S̃⌧e = �s2�Ŝe⌧ + c2�Ŝ⌧e � c�s�

⇣
Ŝee � Ŝ⌧⌧

⌘
= S̃e⌧ ,

S̃⌧µ = �s�Ŝeµ + c�Ŝ⌧µ = S̃µ⌧

S̃⌧⌧ = s2�Ŝee + c2�Ŝ⌧⌧ � c�s�

⇣
Ŝe⌧ + Ŝ⌧e

⌘
. (A.5)
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Similarly, by using the similar notations, S matrix elements can be written by S̃ matrix

elements as follows:

See = S̃ee,

Seµ = c23S̃eµ + s23e
�i�S̃e⌧ ,

Se⌧ = c23S̃e⌧ � s23e
i�S̃eµ,

Sµe = c23S̃µe + s23e
i�S̃⌧e = S̃eµ(��),

Sµµ = c223S̃µµ + s223S̃⌧⌧ + c23s23(e
�i�S̃µ⌧ + ei�S̃⌧µ),

Sµ⌧ = c223S̃µ⌧ � s223e
2i�S̃⌧µ + c23s23e

i�(S̃⌧⌧ � S̃µµ),

S⌧e = c23S̃⌧e � s23e
�i�S̃µe = S̃e⌧ (��),

S⌧µ = c223S̃⌧µ � s223e
�2i�S̃µ⌧ + c23s23e

�i�(S̃⌧⌧ � S̃µµ) = Sµ⌧ (��),

S⌧⌧ = s223S̃µµ + c223S̃⌧⌧ � c23s23(e
�i�S̃µ⌧ + ei�S̃⌧µ). (A.6)

B Expressions of neutrino oscillation probabilities

With the expressions of S matrix elements obtained in appendix 3.3 and using (3.3) it is

straightforward to calculate the neutrino oscillation probabilities. Similarly, one can insert

the V matrix elements given in (2.7) into (3.26) to obtain the equivalent results. In this

appendix we only give the results.

The only comment worth to give here is about the simple method for transformation

c23 ! �s23 and s23 ! c23 to obtain P (⌫e ! ⌫⌧ ) from P (⌫e ! ⌫µ), or P (⌫⌧ ! ⌫⌧ ) from

P (⌫µ ! ⌫µ), which is utilized in section 2. Though we work with the rephased flavor

mixing matrix defined in (3.6), the transformations produces Se⌧ from Seµ, and S⌧⌧ from

Sµµ, up to an overall phase, see eq. (A.6).

B.1 Oscillation probabilities in ⌫e�row

P (⌫e ! ⌫e) is extremely simple as

P (⌫e ! ⌫e) = 1� 4c2�s
2
� sin

2 (�+ � ��)x

4E
. (B.1)

Here and in the rest of this Appendix we use x as the baseline. The reasons for the

simplicity is discussed in depth in section 2.3. P (⌫e ! ⌫µ) and P (⌫e ! ⌫⌧ ) are given by

P (⌫e ! ⌫µ) = 4c2�s
2
�s

2
23 sin

2 (�+ � ��)x

4E
+ 4✏�m2

renc12s12c23s23c�s� cos �

⇥
⇢

�c�c(��✓13)
1

(�� � �0)
+ s�s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � ��)x

4E

+

⇢
c�c(��✓13)

1

(�� � �0)
+ s�s(��✓13)

1

(�+ � �0)

�⇢
sin2

(�+ � �0)x

4E
� sin2

(�� � �0)x

4E

��

+ 2✏�m2
renc12s12c23s23c�s� sin �

⇢
c�c(��✓13)

1

(�� � �0)
+ s�s(��✓13)

1

(�+ � �0)

�

⇥

sin

(�+ � ��)x

2E
� sin

(�+ � �0)x

2E
+ sin

(�� � �0)x

2E

�
(B.2)
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P (⌫e ! ⌫⌧ ) = 4c2�s
2
�c

2
23 sin

2 (�+ � ��)x

4E
� 4✏�m2

renc12s12c23s23c�s� cos �

⇥
⇢

�c�c(��✓13)
1

(�� � �0)
+ s�s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � ��)x

4E

+

⇢
c�c(��✓13)

1

(�� � �0)
+ s�s(��✓13)

1

(�+ � �0)

�⇢
sin2

(�+ � �0)x

4E
� sin2

(�� � �0)x

4E

��

� 2✏�m2
renc12s12c23s23c�s� sin �

⇢
c�c(��✓13)

1

(�� � �0)
+ s�s(��✓13)

1

(�+ � �0)

�

⇥

sin

(�+ � ��)x

2E
� sin

(�+ � �0)x

2E
+ sin

(�� � �0)x

2E

�
(B.3)

It is almost trivial to verify unitarity in the ⌫e�row: P (⌫e ! ⌫e) + P (⌫e ! ⌫µ) + P (⌫e !
⌫⌧ ) = 1.

To compare with the results of section (2.3), one needs the following identity

sin
(�+ � ��)x

2E
� sin

(�+ � �0)x

2E
+ sin

(�� � �0)x

2E

= 4 sin
(�+ � ��)x

4E
sin

(�+ � �0)x

4E
sin

(�� � �0)x

4E
(B.4)

as well as the identities given in Appendix (C).

B.2 Oscillation probabilities in ⌫µ�row

P (⌫µ ! ⌫e) is related to the T-conjugate channel probability P (⌫e ! ⌫µ) as P (⌫µ !
⌫e : �) = P (⌫e ! ⌫µ : ��), whose latter can be obtained by replacing � by �� in (B.2).

Therefore, we only give the expressions of P (⌫µ ! ⌫µ) and P (⌫µ ! ⌫⌧ ):

P (⌫µ ! ⌫µ)

= 1� 4s423c
2
�s

2
� sin

2 (�+ � ��)x

4E
� 4c223s

2
23


c2� sin

2 (�+ � �0)x

4E
+ s2� sin

2 (�� � �0)x

4E

�

+ 8✏�m2
renc12s12c23s23 cos �

⇥

s223c�s�

⇢
c�c(��✓13)

1

(�� � �0)
� s�s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � ��)x

4E

� c�

⇢
s223s�c�c(��✓13)

1

(�� � �0)
+
�
c223 � s223c

2
�

�
s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � �0)x

4E

+ s�

⇢�
c223 � s223s

2
�

�
c(��✓13)

1

(�� � �0)
+ s223c�s�s(��✓13)

1

(�+ � �0)

�
sin2

(�� � �0)x

4E

�
.

(B.5)
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P (⌫µ ! ⌫⌧ )

= 4c223s
2
23


�c2�s

2
� sin

2 (�+ � ��)x

4E
+ c2� sin

2 (�+ � �0)x

4E
+ s2� sin

2 (�� � �0)x

4E

�

+ 4✏�m2
renc12s12c23s23

�
c223 � s223

�
cos �

⇥

c�s�

⇢
c�c(��✓13)

1

(�� � �0)
� s�s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � ��)x

4E

�
⇢
s�c

2
�c(��✓13)

1

(�� � �0)
� c�

�
1 + c2�

�
s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � �0)x

4E

�
⇢
s�
�
1 + s2�

�
c(��✓13)

1

(�� � �0)
� c�s

2
�s(��✓13)

1

(�+ � �0)

�
sin2

(�� � �0)x

4E

�

+ 2✏�m2
renc12s12c23s23c�s� sin �

⇢
c�c(��✓13)

1

(�� � �0)
+ s�s(��✓13)

1

(�+ � �0)

�

⇥

sin

(�+ � ��)x

2E
� sin

(�+ � �0)x

2E
+ sin

(�� � �0)x

2E

�
. (B.6)

With the above results the unitarity in ⌫µ�row can also be verified: P (⌫µ ! ⌫e)+P (⌫µ !
⌫µ) + P (⌫µ ! ⌫⌧ ) = 1.

B.3 Oscillation probabilities in ⌫⌧�row

P (⌫⌧ ! ⌫e) and P (⌫⌧ ! ⌫µ) can be given by their T-conjugate channels: P (⌫⌧ ! ⌫↵ : �) =

P (⌫↵ ! ⌫⌧ : ��). Therefore, we only give the expressions of P (⌫⌧ ! ⌫⌧ ) below.

P (⌫⌧ ! ⌫⌧ )

= 1� 4c423c
2
�s

2
� sin

2 (�+ � ��)x

4E
� 4c223s

2
23


c2� sin

2 (�+ � �0)x

4E
+ s2� sin

2 (�� � �0)x

4E

�

� 8✏�m2
renc12s12c23s23 cos �

⇥

c223c�s�

⇢
c�c(��✓13)

1

(�� � �0)
� s�s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � ��)x

4E

� c�

⇢
c223s�c�c(��✓13)

1

(�� � �0)
+
�
s223 � c223c

2
�

�
s(��✓13)

1

(�+ � �0)

�
sin2

(�+ � �0)x

4E

+ s�

⇢�
s223 � c223s

2
�

�
c(��✓13)

1

(�� � �0)
+ c223c�s�s(��✓13)

1

(�+ � �0)

�
sin2

(�� � �0)x

4E

�
.

(B.7)

The unitarity in ⌫⌧�row can also be verified: P (⌫⌧ ! ⌫e)+P (⌫⌧ ! ⌫µ)+P (⌫⌧ ! ⌫⌧ ) = 1.

C Some useful Identities

Here we list some formulas which may be useful to understand the relationship between

di↵erent expressions of the oscillation probabilities:

cos 2(�� ✓13) =
�m2

ren � a cos 2✓13
(�+ � ��)

, sin 2(�� ✓13) =
a sin 2✓13
(�+ � ��)

. (C.1)
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1

(�� � �0)
c�c(��✓13) =

c13
2(�� � �0)(�+ � ��)

⇥
(�+ � ��) + (�m2

ren � a)
⇤

1

(�+ � �0)
s�s(��✓13) =

c13
2(�+ � �0)(�+ � ��)
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