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Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density
across the sky. These “mass maps” provide a powerful tool for studying cosmology as they probe both luminous
and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in
a 139 deg2 area from the Dark Energy Survey (DES) Science Verification data. We compare the distribution of
mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map
correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters
and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts.
We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our
measurement gives results consistent with mock catalogs from N-body simulations that include the primary
sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the
cross-correlation is at the 6.8σ level with 20 arcminute smoothing. We find that the contribution of systematics
to the lensing mass maps is generally within measurement uncertainties. In this work, we analyze less than 3 %
of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can
be applied to forthcoming larger datasets from the survey.

PACS numbers:

I. INTRODUCTION

Weak gravitational lensing is a powerful tool for cosmo-
logical studies [see 1, 2, for detailed reviews]. As light from
distant galaxies passes through the mass distribution in the
Universe, its trajectory gets perturbed, causing the apparent
galaxy shapes to be distorted. Weak lensing statistically mea-
sures this small distortion, or “shear”, for a large number of
galaxies to infer the 3D matter distribution. This allows us to
constrain cosmological parameters and study the distribution
of mass in the Universe.

Since its first discovery, the accuracy and statistical pre-
cision of weak lensing measurements have improved signif-
icantly [3–8]. Most of these previous studies constrain cos-
mology through N-point statistics of the shear signal [e.g.
9–14]. In this paper, however, we focus on generating 2D
wide-field projected mass maps from the measured shear [15].
These mass maps are particularly useful for viewing the non-
Gaussian distribution of dark matter in a different way than is
possible with N-point statistics.

Probing the dark matter distribution in the Universe is par-
ticularly important for several reasons. Based on the peak
statistics from a mass map it is possible to identify dark mat-
ter halos and constrain cosmological parameters [e.g. 16–20].
Mass maps also allow us to study the connection between
baryonic matter (both in stellar and gaseous forms) and dark
matter [15]. This can be measured by cross correlating light
maps and gas maps with weak lensing mass maps. Correla-
tion with light maps, which can be constructed using observed
galaxies, groups and clusters of galaxies etc., can be used
to constrain galaxy bias, the mass-to-light ratio, and the de-
pendence of these statistics on redshift and environment [21–
24]. However, one needs to take caution when interpreting
the weak lensing mass maps, as the completeness and purity
of structure detection via these maps is not very high due to
their noisy nature [25].

One other interesting application of the mass map is that it
allows us to identify large scale structures (both super-clusters
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and voids) which are otherwise difficult to find [e.g. 26]. Char-
acterizing the statistics of large structures can be a sensitive
probe of cosmological models. Structures with masses as high
or higher than clusters require special attention as the massive
end of the halo mass function is very sensitive to the cosmol-
ogy [27–29]. These rare structures also allows us to constrain
different theories of gravity [30, 31]. In addition to the study
of the largest assemblies of mass, the study of number density
of the largest voids allows further tests of the ΛCDM model
[e.g. 32].

Similar mass mapping technique as used in this paper has
been previously applied to the Canada-France-Hawaii Tele-
scope Lensing Survey (CFHTLenS) as presented in Van Waer-
beke et al. [33]. Their work demonstrated the potential sci-
entific value of these wide-field lensing mass maps, includ-
ing measuring high-order moments of the maps and cross-
correlation with galaxy densities. The total area of the mass
map in that work is similar to our dataset, though it was di-
vided into four separate smaller fields.

The main goal of this paper is to construct a weak lens-
ing mass map from a contiguous 139 deg2 area in the Dark
Energy Survey[89] [DES, 34, 35] Science Verification (SV)
data, which overlaps with the South Pole Telescope survey
(the SPT-E field). The SV data were recorded using the newly
commissioned wide-field mosaic camera, the Dark Energy
Camera [DECam; 36–38] on the 4m Blanco telescope at the
Cerro Tololo Inter-American Observatory (CTIO) in Chile.
We cross correlate this reconstructed mass map with optically
identified structures such as galaxies and clusters of galaxies.
This work opens up several directions for future explorations
with these mass maps.

This paper is organized as follows. In Sec. II we describe
the theoretical foundation and methodology for constructing
the mass maps and galaxy density maps used in this paper.
We then describe in Sec. III the DES dataset used in this
work, together with the simulation used to interpret our re-
sults. In Sec. IV we present the reconstructed mass maps. We
discuss qualitatively in Sec. V the correlation of these maps
with known foreground structures found via independent op-
tical techniques. In Sec. VI, we quantify the wide-field mass-
to-light correlation on different spatial scales using the full
field. We show that our results are consistent with expecta-
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tions from simulations. In Sec. VII we estimate the level of
contamination by systematics in our results from a wide range
of sources. Finally, we conclude in Sec. VIII. For a summary
of the main results from this work, see the companion paper
in PRL [39].

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in Sec. II A. Then, we describe the adopted mass re-
construction method in Sec. II B. Finally in Sec. II C, we de-
scribe our method of generating galaxy density maps. The
galaxy density maps are used as independent mass tracers in
this work to help confirm the signal measured in the weak
lensing mass maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(β) and image (θ) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

β−β0 = A(θ)(θ−θ0), (1)

where β0 and θ0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(θ) = (1−κ)
(

1−g1 −g2
−g2 1+g1

)
, (2)

where κ is the convergence, gi = γi/(1− κ) is the reduced
shear and γi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The factor (1− κ) causes galaxy images to be
dilated or reduced in size, while the terms in the matrix cause
distortion in the image shapes. Under the Born approxima-
tion, which assumes that the deflection of the light rays due to
the lensing effect is small, A is given by [e.g. 1]

Ai j(θ,r) = δi j−ψ,i j, (3)

where ψ is the lensing deflection potential, or a weighted pro-
jection of the gravitational potential along the line of sight.
For a spatially flat Universe, it is given by the line of sight
integral of the 3D gravitational potential Φ [40],

ψ (θ,r) = 2
∫ r

0
dr′

r− r′

rr′
Φ
(
θ,r′

)
, (4)

where r is the comoving distance. Comparison of Eq. (3) with
Eq. (2) gives

κ =
1
2

∇2ψ; (5)

γ = γ1 + iγ2 =
1
2
(ψ,11−ψ,22)+ iψ,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation δ = (∆− ∆̄)/∆̄ (where ∆ and ∆̄ are the 3D density
and mean density respectively):

∇2Φ =
3H2

0 Ωm

2a
δ , (7)

where a is the cosmological scale factor. Eq. (4) and Eq. (5)
give the convergence measured at a sky coordinate θ from
sources at comoving distance r:

κ(θ,r) =
3H2

0 Ωm

2

∫ r

0
dr′

r′(r− r′)
r

δ (θ,r′)
a(r′)

. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: κ(θ) =

∫
κ(θ,r) f (r)dr. That

is, a κ map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the κ
map weighted by the lensing weight p(r′), which is itself an
integral over f (r):

κ(θ) =
3H2

0 Ωm

2

∫ r

0
dr′p(r′)r′

δ (θ,r′)
a(r′)

, (9)

with

p(r′) =
∫ rH

r′
dr f (r)

r− r′

r
, (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of κ .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [41].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33]. In the non-linear regime (scales cor-
responding to clusters or smaller structures) improved meth-
ods have been developed to recover the mass distribution [e.g.
42, 43]. In this paper we are interested in the mass distribution
on large scales; we can therefore restrict ourselves to the KS
method. The KS method works as follows. The Fourier trans-
form of the observed shear, γ̂, relates to the Fourier transform
of the convergence, κ̂ through

κ̂` = D∗`γ̂`, (11)

D` =
`2

1− `2
2 +2i`1`2

|`|2 , (12)

where `i are the Fourier counterparts for the angular coordi-
nates θi, i = 1,2 represent the two dimensions of sky coor-
dinate. The above equations hold true for ` 6= 0. In practice
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we apply a sinusoidal projection of sky with a reference point
at RA=71.0 deg and then pixelize the observed shears with a
pixel size of 5 arcmin before Fourier transforming. Given that
we mainly focus on scales less than a degree in this paper, the
errors due to the projection is small [33].

The inverse Fourier transform of Eq. (11) gives the con-
vergence for the observed field in real space. Ideally, the
imaginary part of the inverse Fourier transform will be zero
as the convergence is a real quantity. However, noise, system-
atics and masking causes the reconstruction to be imperfect,
with non-zero imaginary convergence as we will quantify in
Sec. VI B. The real and imaginary parts of the reconstructed
convergence are referred to as the E- and B-mode of κ , re-
spectively. In our reconstruction procedure we set shears to
zero in the masked regions [44]. We later quantify the effect
of this step in Sec. VI B.

One of the issues with the KS inversion is that the uncer-
tainty in the reconstructed convergence is formally infinite for
a discrete set of noisy shear estimates. This is because the sta-
tistically uncorrelated ellipticities of galaxies result in a white
noise power spectrum which integrates to infinity for large
spatial frequencies. Therefore we need to remove the high
frequency components. For a Gaussian filter of size σ the co-
variance of the statistical noise in the convergence map can be
written as [45]

〈κ(θ)κ(θ′)〉= σ2
ε

4πσ2ng
exp
(
−|θ−θ

′|2
2σ2

)
, (13)

where σε is the standard deviation of the single component
ellipticity (which contains the intrinsic shape noise and mea-
surement noise) and ng is the number density of the source
galaxies. Eq. (13) implies that the shape noise contribution to
the convergence map reduces with increasing size of the Gaus-
sian window and number density of the background source
galaxies.

C. Lensing-weighted galaxy density maps

In addition to the mass map generated from weak lensing
measurements in Sec. II B, we also generate mass maps based
on the assumption that galaxies are linearly biased tracers of
mass in the foreground. In particular, we study two galaxy
samples: the general field galaxies and the Luminous Red
Galaxies (LRGs). Properties of the samples used in this work
such as the redshift distribution, magnitude distribution etc.
are described in Sec. III B. To compare with the weak lensing
mass map, we assume that the bias is constant. However, bias
may change with spatial scale, redshift, magnitude and other
galaxy properties. This can introduce differences between the
weak lensing mass map and foreground map. In this paper
we neglect such effects since we mostly focus on large scales
(& 5−10 arcmin at z∼ 0.35) where the departures from linear
bias are small [46].

Based on a given sample of mass tracer we generate a
weighted foreground map (κg) after applying an appropriate
lensing weight to each galaxy before pixelation. In principle

the weight increases the signal-to-noise (S/N) of the cross-
correlation between the lensing mass map and the foreground
density map. The lensing weight (Eq. (10)) depends on the
comoving distance to the source and lens, and the distance
between them. To generate the weighted galaxy density map,
we first generate a 3D grid of the galaxies. We estimate the
density contrast in each of these cells as follows:

δ i jk
g =

ni jk− n̄k

n̄k
(14)

where (i, j) is the pixel index in the projected 2D sky and k
is the pixel index in the redshift direction. ni jk is the num-
ber of galaxies in the i jkth cell and n̄k is the average number
of galaxies per pixel in the kth redshift bin. This 3D grid of
galaxy density fluctuations will be used to estimate κg accord-
ing to the discrete version of Eq. (9),

κ i j
g =

3H2
0 Ωm

2c2 ∑
k

∆z
δ 3D

k dk

ak
∑
l>k

(dl−dk) fl

dl
, (15)

where κ i j
g is the weighted foreground map at the pixel (i, j);

k and l represent indices along the redshift direction for lens
and source, ∆z is the physical size of the redshift bin, dl is
the angular diameter distance to source, fl is the probability
density of the source redshift distribution at redshift l and δ 3D

k
is the foreground density fluctuation at angular diameter dis-
tance dk. In this work, use a single source redshift bin and
∆z = 0.1 for the lens sample. We adopt the following cosmo-
logical parameters: Ωm = 0.3, ΩΛ = 0.7, Ωk = 0.0, h = 0.72.
Our results depend very weakly on the exact values of these
cosmological parameters.

III. DATA AND SIMULATIONS

The measurements in this paper are based on 139 deg2 of
data in the SPT-E field, observed as part of the Science Veri-
fication (SV) data from DES. The SV data were taken during
the period of November 2012 – February 2013 before the of-
ficial start of the science survey. The data were taken shortly
after DECam commissioning and were used to test survey op-
erations and assess data quality. Five optical filters (grizY )
were used throughout the survey, with typical exposure times
being 90 sec for griz and 45 sec for Y . The final median depth
estimates of this data set in our region of interest are g∼ 24.0,
r ∼ 23.9, i∼ 23.0 and z∼ 22.3 (10-σ galaxy limiting magni-
tude).

Below we introduce in Sec. III A the relevant data used in
this work. Then we define in Sec. III B two subsamples of the
SV data that we identify as “foreground (lens)” and “back-
ground (source)” galaxies for the main analysis of the paper.
In Sec. III C we introduce the simulations we use to interpret
our measurements.

A. The DES SVA1 Gold galaxy catalogs

All galaxies used for foreground catalogs and lensing mea-
surements are drawn from the DES SVA1 Gold Catalog
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(Rykoff et al., in preparation) and several extensions to it.
The main catalog is a product of the DES Data Management
(DESDM) pipeline version “SVA1” (Yanny et al., in prepa-
ration). The DESDM pipeline, as described in Ngeow et al.
[47], Sevilla et al. [48], Desai et al. [49], Mohr et al. [50],
begins with initial image processing on single-exposure im-
ages and astrometry measurements from the software pack-
age SCAMP [51]. The single-exposure images were then
stacked to produce co-add images using the software package
SWARP [52]. Basic object detection, point-spread-function
(PSF) modelling, star-galaxy classification [90] and photom-
etry were done on the individual images as well as the co-add
images using software packages SEXTRACTOR [53] and PS-
FEX [54]. The full SVA1 Gold dataset consists of 254.4 deg2

with griz-band coverage, and 223.6 deg2 for Y band. The main
science goal for this work is to reconstruct wide-field mass
maps; as a result, we use the largest continuous region in the
SV data: 139 deg2 in the SPT-E field.

The SVA1 Gold Catalog is augmented by: a photometric
redshift catalog, two galaxy shape catalogs, and an LRG cat-
alog. These catalogs are described below.

1. Photometric redshift catalog

In this work we use the photometric redshift (photo-z) es-
timated with the Bayesian Photometric Redshifts (BPZ) code
[55, 56]. The photo-z’s are used to select the main foreground
and background sample (see Sec. III B). The details and ca-
pabilities of BPZ on early DES data were already presented
in Sánchez et al. [57], where it showed good performance
among template-based codes. The primary set of templates
used contains the Coleman et al. [58] templates, two starburst
templates from Kinney et al. [59] and two younger starburst
simple stellar population templates from Bruzual and Char-
lot [60], added to BPZ in Coe et al. [56]. We calibrate the
Bayesian prior by fitting the empirical function Π(z, t|m0) pro-
posed in Benı́tez [55], using a spectroscopic sample matched
to DES galaxies and weighted to mimic the photometric prop-
erties of the DES SV sample used in this work. As tested in
Sánchez et al. [57], the bias in the photo-z estimate is ∼0.02,
with 68% scatter σ68 ∼ 0.1 and the 3σ outlier fraction ∼2%.
For this work, we use zmean, the mean of the Probability Dis-
tribution Function (PDF) output from BPZ as a single-point
estimate of the photo-z to separate our galaxies into the fore-
ground and background samples. Other photo-z codes used in
DES have been run on the same data. For this work we have
also checked our main results in Sec. VI using an indepen-
dent Neural Network code [Skynet; 61, 62]. We found that
BPZ and Skynet gives consistent results (within 1σ ) in terms
of the cross-correlation between the weak lensing mass maps
and the foreground galaxy map.

2. Shape catalogs

Based on the SVA1 data, two shear catalogs were produced
and tested extensively in Jarvis et al. (in preparation): the

ngmix [91] (version 011) catalog and the im3shape [92] (ver-
sion 9) catalog. The main results shown in our paper are
based on the ngmix catalog, but we also cross-check with the
im3shape catalog to confirm that the results are statistically
consistent. These catalogs are slightly earlier version from
that described in Jarvis et al. (in preparation).

The PSF model for both methods are based on the single-
exposure PSF models from PSFEX. PSFEX models the PSF
as a linear combination of small images sampled on an ad hoc
pixel grid, with coefficients that are the terms of a second-
order polynomial of pixel coordinates in each DECam CCD.
ngmix [63] is a general tool for fitting morphological mod-

els to images of astronomical objects. For the galaxy model,
ngmix supports various options including exponential disk
and de Vaucouleurs’ profile [64], all of which are imple-
mented approximately as a sum of Gaussians [65]. Addition-
ally, any number of Gaussians can be fit. These Gaussian fits
can either be completely free or constrained to be co-centric
and co-elliptical. For the DES SV galaxy images, we used
the exponential disk model. For the PSF fitting, an Expecta-
tion Maximization [66] approach is used to model the PSF as
a sum of three free Gaussians. Shear estimation was carried
out using by jointly fitting multiple images in r, i,z bands. The
multi-band approach enabled a larger effective galaxy number
density compared to the im3shape catalog, which is based on
single-band images in the current version.

The im3shape [67] implementation in this work estimates
shapes by jointly fitting a parameterized galaxy model to all of
the different single-exposure r-band images, finding the max-
imum likelihood solution. Calibration for bias in the shear
measurement associated with noise [68, 69] is applied. An
earlier version of this code (run on the co-add images instead
of single-exposures) has been run on the SV cluster fields for
cluster lensing studies [70].

Details for both shape catalogs and the tests performed on
these catalogs can be found in Jarvis et al. (in preparation).
Both shear catalogs have been tested and shown to pass the re-
quirements for SV cosmic shear measurement, which is much
more stringent than what is required in this paper. As our anal-
ysis is insensitive to the overall multiplicative bias in the shear
measurements, we adopt the “conservative additive” selec-
tion; this results in small additive systematic uncertainties, but
possibly some moderate multiplicative systematic uncertain-
ties. For ngmix, this selection removes galaxies with S/N<20
and very small galaxies (Gaussian sigma smaller than the
pixel scale). For im3shape, it removes galaxies with S/N<15.
In both cases, there were many other selections applied to both
catalogs to remove stars, spurious detections, poor measure-
ments, and various other effects that significantly biased shear
estimates for both catalogs.

3. The red-sequence Matched filter Galaxy Catalog (Redmagic)

We use the DES SV red-sequence Matched-filter Galaxy
Catalog (Redmagic Rozo et al., in preparation) v6.3.3 in this
paper as one of the foreground samples. The objects in this
catalog are photometrically selected luminous red galaxies
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(LRGs). We use the terms Redmagic galaxies and LRG in-
terchangeably. Specifically, Redmagic uses the Redmapper-
calibrated model for the color of red-sequence galaxies as a
function of magnitude and redshift [71]. This model is used
to find the best-fit photometric redshift for all galaxies irre-
spective of type, and the χ2 goodness-of-fit of the model is
computed. For each redshift slice, all galaxies fainter than
some minimum luminosity threshold Lmin are rejected. In ad-
dition, Redmagic applies a χ2 selection χ2 ≤ χ2

max, where the
χ2

max as a function of redshift is chosen to ensure that the re-
sulting galaxy sample has a nearly constant space density n̄.
In this work, we set n̄ = 10−3h3Mpc−3. We assume flat Λ
CDM model with cosmological parameters ΩΛ = 0.7, h= 100
(varying these parameters does not change the results signif-
icantly). The luminosity selection is L ≥ 0.5L∗(z), where the
value of L∗(z) at z=0.1 is set to match the Redmapper defi-
nition for SDSS, and the redshift evolution for L∗(z) is that
predicted using a simple passive evolution starburst model
at z = 3 [60]. We use the Redmagic sample because of the
exquisite photometric redshifts of the Redmagic galaxy cat-
alog: Redmagic photometric redshifts are nearly unbiased,
with a scatter σz/(1+ z) ≈ 1.7%, and a ≈ 1.7% 4σ redshift
outlier rate. We refer the reader to Rozo et al. (in preparation)
for further details of this catalog.

B. Foreground and background galaxy samples selection

As described in Sec. I, the main goal of this paper is to
construct a projected mass map at a given redshift via weak
lensing and to show that the mass map corresponds to real
structures, or mass, in the foreground line-of-sight. For that
purpose, we define two galaxy samples in this study — the
background “source” sample which is lensed by foreground
mass, and the foreground “lens” sample that traces the fore-
ground mass responsible for the lensing. We wish to con-
struct a weak lensing mass map from the background sample
according to Sec. II B and compare it with the mass map gen-
erated from the foreground galaxy density map according to
Sec. II C.

We choose to have the two samples separated at redshift
∼ 0.55 in order to have a sufficient number of galaxies in both
samples. Given that the photo-z training sample of our photo-
z catalog does not extend to the same redshift and magnitude
range as our data, we exclude objects with photo-z outside
the range 0.1–1.2. The final foreground and background sam-
ple are separated by the photo-z selection of 0.1 < z < 0.5
and 0.6 < z < 1.2. Note that the Redmagic foreground galaxy
sample has an additional redshift threshold z > 0.2.

The main quantity of interest for the background galaxy
sample is the shear measured for each galaxy. Since the back-
ground sample only serves as a “backlight” for the foreground
structure we are interested in, it need not be complete. There-
fore the most important selection criteria for the background
sample is to use galaxies with accurate shear measurements.
Our source selection criteria are based on extensive tests of
shear catalog as described in Jarvis et al. (in preparation). Af-
ter applying the conservative selection of background galax-

ies and our background redshift selection we are left with
1,111,487 galaxies (2.22/arcmin2) for ngmix and 1,013,317
galaxies (2.03/arcmin2) for im3shape.
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FIG. 1: Distributions of the single-point photo-z estimates for the
background and foreground samples used in this paper are shown
in the top panel, overlaid by the lensing efficiency (Eq. (10)) corre-
sponding to the background sample. The background and the fore-
ground main sample uses the mean of the PDF from BPZ for single-
point estimates, while the LRG redshift estimate comes indepen-
dently from Redmagic (see Sec. III A 3). The bottom panel shows the
corresponding n(z) of the background and foreground main sample
given by BPZ. These come from the sum of the PDF for all galaxies
in the samples.

The foreground sample in this work serves as the tracer of
mass. Thus it is important to construct a magnitude-limited
sample for which the number density is affected as little as
possible by external factors. The main physical factors that
contribute to variation in the galaxy number density are the
spatial variation in depth and seeing. Both effects can intro-
duce spatial variation in the foreground galaxy number den-
sity, which can be wrongly identified as foreground mass fluc-
tuations. We test both effects in Appendix A. Two subsam-
ples are used in this work as foreground samples: the “main”
foreground sample and the LRG foreground sample. While
the space density of LRGs is significantly lower than that of
the main sample, they are better tracers of galaxy clusters and
groups, so we use them to check our results. The main fore-
ground sample includes all the galaxies with i < 22 and the
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TABLE I: Catalogs and selection criteron used to construct the foreground and background sample for this work, and the number of galaxies
in each sample after all the selections are applied. All catalogs are based on the DES SVA1 dataset. We use the Source Extractor MAG AUTO
parameter for the i-band magnitude.

Background Foreground main Foreground LRG
Input catalog ngmix011 im3shape SVA1 Gold Redmagic
Photometric redshift 0.6<z<1.2 0.1<z<0.5 0.2<z<0.5
Others “conservative additive” i <22 constant density

10−3 (h−1Mpc)−3

Number of galaxies 1,111,487 1,013,317 1,106,189 28,033
Number density (arcmin−2) 2.22 2.03 2.21 0.056
Mean redshift 0.826 0.825 0.367 0.385

LRG sample includes the LRGs in the Redmagic LRG cata-
log with i < 22. This magnitude selection is based on tests de-
scribed in Appendix A 1 to ensure that our sample is shallower
than the limiting magnitude for all regions of sky under study.
The final main foreground sample contains 1,106,189 galaxies
(2.21/arcmin2), while the LRG sample contains 28,033 galax-
ies (0.05/arcmin2). Table I summarizes all the selection crite-
ria applied on the three main samples used in this work.

Fig. (1) shows the distributions of the single-point photo-
z estimates (zmean) for the final foreground and background
samples overlaid by the lensing efficiency corresponding to
the background sample (top panel), and the n(z) (from the
BPZ code) for the background and main foreground sample
(bottom panel). Note that the background galaxy number den-
sity is much lower than the number density of all galaxies
in the ngmix011 and im3shape catalogs, as we have made
stringent redshift selections to avoid overlap between the fore-
ground and background samples.

C. Mock catalogs from simulations

We use the simulations primarily as a tool to understand the
impact of various effects on the expected signal, and a sanity
check to confirm that our measurement method is producing
reasonable results. We use a set of simulated galaxy catalogs
“Aardvark v1.0c” developed for the DES collaboration [72].
The full catalog covers approximately 1/4 of the sky and is
complete to the final expected DES depth.

The heart of the galaxy catalog generation is the algorithm
Adding Density Determined Galaxies to Lightcone Simula-
tions [ADDGALS; 72], which aims at generating a galaxy
catalog that matches the luminosities, colors, and clustering
properties of the observed data. The simulated galaxy catalog
is based on three flat ΛCDM dark matter-only N-body simula-
tions, one each of a 1050 Mpc/h, 2600 Mpc/h and 4000 Mpc/h
boxes with 14003, 20483 and 20483 particles respectively.
These boxes were run with LGadget-2 [73] with 2LPTic ini-
tial conditions from [74] and CAMB [75]. From an input lu-
minosity function, galaxies are drawn and then assigned to
a position in the dark matter simulation volume according to
a statistical prescription of the relation between the galaxy’s
magnitude, redshift and local dark matter density. The pre-

scription is derived from a high-resolution simulation using
SubHalo Abundance Matching techniques [72, 76, 77]. Next,
photometric properties are assigned to each galaxy, where
the magnitude-color-redshift distribution is designed to repro-
duce the observed distribution of SDSS DR8 [78] and DEEP2
[79] data. The size distribution of the galaxies is magnitude-
dependent and modelled from a set of deep (i∼26) Suprime-
Cam i-band images, which were taken at with seeing condi-
tions of 0.6” [80]. Finally, the weak lensing parameters (κ
and γ) in the simulations are based on the ray-tracing al-
gorithm Curved-sky grAvitational Lensing for Cosmological
Light conE simulatioNS [CALCLENS; 81]. The ray-tracing
resolution is accurate to ' 6.4 arcseconds, sufficient for the
usage in this work.

Aside from the intrinsic uncertainties in the modelling in
the mock galaxy catalog (related to the input parameters and
uncertainty in the galaxy-halo connection), there are also
many real-world effects that are not included in these simula-
tions, including as depth variation, seeing variation and shear
measurement uncertainties.

IV. MASS MAPS

In Fig. (2) we show our final convergence maps generated
using the data described in Sec. III A and the methods de-
scribed in Sec. II B and Sec. II C. For the purpose of visu-
alization we present maps for 20 arcmin Gaussian smoothing.
In the top left panel we show the E-mode convergence map
generated from shear. The top right panel shows the weighted
foreground galaxy map from the main sample, κg,main map.
In both of these panels, red areas correspond to overdensities
and blue areas correspond to under densities. The bottom left
and bottom right panels show the product of the κE (left) and
κB (right) maps with the κg,main. Visually we see that there
are more positive (correlated) areas for the κE map compared
to the κB map, indicating clear detection of the weak lensing
signal in these maps. Note that these positive regions could be
either mass over-densities or under-densities. In Sec. VI, we
present a quantitative analysis of this correlation.

To estimate the significance of the structures in the mass
maps, it is important to understand the noise properties of
these maps. Uncertainties in the lensing convergence map
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FIG. 2: The upper left panel shows the E-modes of the weak lensing convergence map. The upper right shows the weighted foreground galaxy
map from the main sample, or kg,main. The lower two panels show the product maps of the E-mode (left) and B-mode (right) convergence
map with the kg,main map. All maps are generated with a 5 arcmin pixel scale and 20 arcmin Gaussian smoothing. Red areas corresponds to
overdensities and blue areas to underdensities in the upper panels. White regions correspond to the survey mask. The scale of the Gaussian
smoothing kernel is indicated by the Gaussian profile on the upper right corner.

FIG. 2: The upper left panel shows the E-modes of the weak lensing convergence map. The upper right shows the weighted foreground galaxy
map from the main sample, or κg,main. The lower two panels show the product maps of the E-mode (left) and B-mode (right) convergence
map with the κg,main map. All maps are generated with a 5 arcmin pixel scale and 20 arcmin Gaussian smoothing. Red areas corresponds to
overdensities and blue areas to underdensities in the upper panels. White regions correspond to the survey mask. The scale of the Gaussian
smoothing kernel is indicated by the Gaussian profile on the upper right corner.
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FIG. 3: The top panel shows the S/N map for the mass map in Fig. (2) estimated via randomized errors. Note that due to the Gaussian
smoothing kernel, there is some mixing of scales which leads to higher contrasts in the cores of over and under-dense regions compared to
top-hat smoothing. The bottom panel shows the normalized S/N distributions for both maps, overlaid by those measured from simulations
described in Sec. VI B. The red dashed lines in both bottom panels show a Gaussian fit to the B-mode S/N.

include contributions from both shape noise and measure-
ment uncertainties, which is affected by the number density of
galaxies across the field and the shear measurement method.

We estimate the uncertainties on each pixel by randomising
the shear measurements on each galaxy. A thousand random
background galaxy catalogs were generated by shuffling the
shear values between all the galaxies. We then construct kE
and kB maps from these randomized catalogs in the same way
as in Fig. (2). The standard deviation map for these 1000 ran-
dom samples is used as the noise map. Dividing the signal
map (Fig. (2)) by the noise map gives an estimate for the S/N

of the different structures in the maps, as shown in Fig. (3).
These values are broadly consistent with those predicted via
Eq. (13) and simulations described in Sec. VI B. The bottom
panels of Fig. (3) show the distribution of the S/N values for
both E and B-mode maps for data as well as simulations pre-
dicted by Eq. (13). We find that the B-mode distribution is
consistent with a Gaussian distribution of standard deviation
⇠ 1 as expected [82], and the E-mode gives more extreme
values. The difference between the data and the simulation is
consistent with cosmic variance and shape noise.

FIG. 3: The top panel shows the S/N map for the mass map in Fig. (2) estimated via randomized errors. Note that due to the Gaussian
smoothing kernel, there is some mixing of scales which leads to higher contrasts in the cores of over and under-dense regions compared to
top-hat smoothing. The bottom panel shows the normalized S/N distributions for both maps, overlaid by those measured from simulations
described in Sec. VI B. The red dashed lines in both bottom panels show a Gaussian fit to the B-mode S/N.

include contributions from both shape noise and measure-
ment uncertainties, which is affected by the number density of
galaxies across the field and the shear measurement method.

We estimate the uncertainties on each pixel by randomising
the shear measurements on each galaxy. A thousand random
background galaxy catalogs were generated by shuffling the
shear values between all the galaxies. We then construct κE
and κB maps from these randomized catalogs in the same way
as in Fig. (2). The standard deviation map for these 1000 ran-
dom samples is used as the noise map. Dividing the signal
map (Fig. (2)) by the noise map gives an estimate for the S/N
of the different structures in the maps, as shown in Fig. (3).

These values are broadly consistent with those predicted via
Eq. (13) and simulations described in Sec. VI B. The bottom
panels of Fig. (3) show the distribution of the S/N values for
both E and B-mode maps for data as well as simulations pre-
dicted by Eq. (13). We find that the B-mode distribution is
consistent with a Gaussian distribution of standard deviation
∼ 1 as expected [82], and the E-mode gives more extreme
values. The difference between the data and the simulation is
consistent with cosmic variance and shape noise.
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FIG. 4: The DES SV mass map along with foreground galaxy clusters detected using the Redmapper algorithm. The clusters are overlaid as
black circles with the size of the circles indicating the richness of the cluster. Only clusters with richness greater than 20 and redshift between
0.1 and 0.5 are shown in the figure. The upper right corner shows the correspondence of the optical richness to the size of the circle in the plot.
It can be seen that there is significant correlation between the mass map and the distribution of galaxy clusters. Several superclusters (black
squares) and voids (white squares) can be identified in the joint map.

V. CORRELATION WITH GALAXY CLUSTERS AND
POTENTIAL SUPER-STRUCTURES

In this section we compare our mass map with optically
identified groups and clusters of galaxies using the Redmap-
per algorithm (Rykoff et al. in preparation) on DES data. We
overlay in Fig. (4) Redmapper clusters and groups on the mass
map as black circles. The size of these circles corresponds to
the optical richness of these structures. Only clusters with
optical richness λ greater than 20 and redshift between 0.1
and 0.5 are shown in the figure. According to Rykoff et al.
[83] and Saro et al. (in preparation), cluster mass scales

approximately linear with λ , with λ = 20 corresponding to
∼ 1.7× 1014 M� and λ = 80 corresponding to ∼ 7.6× 1014

M�. It is evident from this figure that the structures in the
weak lensing mass map have significant correlation with the
distribution of optically identified Redmapper clusters. The
combination of the lensing mass maps, Redmapper clusters
and Redmagic LRGs provides a powerful tool for identifying
superstructures in the universe that would otherwise be hard
to spot.

Superclusters are the largest distinct structures in the uni-
verse, typically 10 Mpc or larger in extent with fractional
overdensities of order 1-10 times the cosmic mean density.
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FIG. 5: Left: the blue curve in each of the 4 panels shows the weighted redshift distribution of galaxy clusters counts with optical richness
l >5 at the 4 different locations in the mass map of Fig. (4) corresponding to large convergence peak locations. The RA, Dec coordinates of
these pointings are shown in the top right corner of each panel and the field numbers are listed on the top left corner. The counts are calculated
for a 1 deg radius area, and the histograms are weighted by l and the lensing efficiency to properly represent the mass distribution and the
lensing probed by the mass map. The thick grey line indicates the corresponding average number count in the full map. The redshift range
above z = 0.6 is marked with the shaded grey area, as these ranges overlap with the background sample. Right: a candidate supercluster is
shown by zooming in on a narrow redshift range of field 2 (red band in upper right panel on the left) where a peak in the cluster counts occurs.
Each circle indicates the location of a galaxy belonging to a Redmapper cluster. The large spatial extent (a transverse distance of 10 Mpc is
indicated in the panel) and the irregular shape characteristic of 3D superclusters is evident.

FIG. 6: Left: same as the left panel of Fig. (5) but plotted for voids identified in the mass map. There are typically fewer than average clusters
over much of the line of sight which also contains some deep underdense regions at specific redshifts. At the higher redshifts, there are also
above average cluster counts, but since the redshift range overlaps with the source galaxy sample, the interpretation of the structures is more
complicated. Right: radial distribution of the Redmagic LRGs for field 5 in the left panel (red bands in upper left panel). The data are consistent
with the existence of two voids modeled by the “top-hat” void model of width 190 Mpc/h and 120 Mpc/h respectively.

Cosmic voids are the corresponding underdensities, typically
larger than 10 Mpc in radius with fractional underdensity of
order unity. We identify superclusters and voids from the mass
and galaxy maps in Fig. (2) and Fig. (4). The large peaks at
the positions (RA, Dec) = (71.0, -45.0), (69.9, -47.8), (69.7,
-54.5) and (69.1, -57.3) and large voids at (RA, Dec) = (65.6, -
49.0), (75.1, -54.6), (75.7, -58.0) and (82.8, -59.5) are selected

as shown in Fig. (4). The transverse spatial extent of these su-
perstructures is typically greater than 10 Mpc. We compare
in the left panels of Fig. (5) and Fig. (6) the redshift distribu-
tion of the foreground clusters within 1 deg radius of these
locations with the average redshift distribution of the clus-
ters in the entire SV field. The histograms are weighted by
the optical richness l as well as the lensing efficiency of our

FIG. 5: Left: the blue curve in each of the 4 panels shows the weighted redshift distribution of galaxy clusters counts with optical richness
λ >5 at the 4 different locations in the mass map of Fig. (4) corresponding to large convergence peak locations. The RA, Dec coordinates of
these pointings are shown in the top right corner of each panel and the field numbers are listed on the top left corner. The counts are calculated
for a 1 deg radius area, and the histograms are weighted by λ and the lensing efficiency to properly represent the mass distribution and the
lensing probed by the mass map. The thick grey line indicates the corresponding average number count in the full map. The redshift range
above z = 0.6 is marked with the shaded grey area, as these ranges overlap with the background sample. Right: a candidate supercluster is
shown by zooming in on a narrow redshift range of field 2 (red band in upper right panel on the left) where a peak in the cluster counts occurs.
Each circle indicates the location of a galaxy belonging to a Redmapper cluster. The large spatial extent (a transverse distance of 10 Mpc is
indicated in the panel) and the irregular shape characteristic of 3D superclusters is evident.
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ters in the entire SV field. The histograms are weighted by
the optical richness λ as well as the lensing efficiency of our
source sample (Fig. (1)). λ scales roughly linearly with the
total mass of the cluster [83]. We find that some of the mass
map peaks correspond to supercluster-like structures that are
localized in narrow redshift ranges, while others (e.g. field
3) show evidence for structures extending over wider redshift
range. On the other hand the large voids typically have fewer
clusters than average along the line of sight and some deep
underdense regions (candidate 3D voids) at specific redshifts.
In some cases there are also above average cluster counts in
small ranges in redshift (field 6), as expected from the pro-
jected nature of these mass maps. The redshift range above
z = 0.6 is marked with the shaded grey area, as this range
overlaps with the background sample thus complicating the
interpretation of the relationship with the mass map. In the fu-
ture we will carry out more detailed studies of the mass maps
using lensing tomography.

We show two cases for further investigations of potential
superclusters and voids identified through this method. First,
we look at the spatial distribution of the cluster members in
thin redshift slices, identical to the analysis in Melchior et al.
[70], and find structures such as the one shown in the right
panel of Fig. (5). The redshift extent ∆z =0.03 corresponds to
a line-of-sight distance of about 90 Mpc/h, while the trans-
verse size of the structure shown on the right is about 20
Mpc/h. The line of sight scale corresponds to the size of
the largest filamentary structures in cosmological simulations
[84]. These numbers indicate that this is a good candidate for
a 3D supercluster. The tight photo-z accuracy of the Redmap-
per clusters (σz ≈ 0.01(1+z)) gives us confidence in the iden-
tification of real 3D structures.

For the voids, we follow the method developed in Szapudi
et al. [85] and study the radial distribution of the foreground
Redmagic LRGs. We use LRGs within 0.5 deg radius of the
chosen position and calculate δLRG = (nLRG− n̄LRG)/n̄LRG in
100 Mpc/h radial bins, where nLRG is the number of LRGs in
that bin and n̄LRG is the average number of LRGs for the full
Redmagic catalog in the same radial bin. The radial profile for
one void is shown in the right panel of Fig. (6): it is consistent
with two large voids in this line of sight. We use a simple
“top-hat” void model [85] with an amplitude δLRG = −0.7,
an extent of 190 Mpc/h at a distance of 750 Mpc/h for the
first void, and another one with δLRG =−0.7, an extent of 120
Mpc/h at 1250 Mpc/h. The combination of these two void
models, smoothed by the photo-z uncertainty, matches well
with the data. We also observe that there could be a similarly
large but shallower void at higher redshift, also contributing
to the projected underdensity in the mass map.

The size and mass of the superclusters are of interest for
cosmology as they represent the most massive end of the
matter distribution. The is especially interesting as the DES
dataset allows us to extend our studies to z ≈ 1. We defer
more detailed studies of superclusters and voids to follow up
work.

VI. CORRELATION WITH GALAXY DISTRIBUTION

In this section we quantitatively analyze the extent to which
mass follows galaxy density in the data. To do this, we cross-
correlate the weak lensing mass map with the weighted fore-
ground galaxy density map. The correlation is quantified
via the Pearson cross-correlation coefficient as described in
Sec. VI A. We cross check the results using simulations in
Sec. VI B.

A. Quantifying the galaxy-mass correlation

We smooth both the convergence maps generated from
weak lensing and from the foreground galaxy density with a
Gaussian filter. These smoothed maps are used to estimate
the correlation between the foreground structure and the weak
lensing convergence maps. We calculate the correlation as a
function of the smoothing scale. The correlation is quantified
via the Pearson correlation coefficient defined as

ρκE κg =
〈κEκg〉
σκE σκg

, (16)

where 〈κEκg〉 is the covariance between κE and κg; σκE and
σκg are the standard deviation of the κE map, and the κg map
from either the foreground main galaxy sample or the fore-
ground LRG sample. In this calculation, pixels in the masked
region are not used. We also remove pixels within 10 ar-
cmin of the boundaries to avoid significant artefacts from the
smoothing.

Fig. (7) shows the Pearson correlation coefficient as func-
tion of smoothing scales from 5 to 40 arcmin. We find that
there is significant correlation between the weak lensing E-
mode convergence and convergence from different foreground
samples, with increasing correlation towards large smooth-
ing scale. This trend is expected for noise-dominated maps,
because the larger smoothing scales reduce the noise fluc-
tuations in the map significantly. A similar trend is found
when using the LRGs as foreground instead of the general
magnitude-limited galaxy sample. The lower Pearson corre-
lation between the mass map and LRG sample is because of
the larger shot noise due to the lower number density com-
pared to the magnitude-limited foreground sample. The error
bar on the correlation coefficient is estimated based on jack-
knife resampling. We divide the observed sky into jackknife
regions of size 10 deg2 and recalculate the Pearson correla-
tion coefficients, excluding one of the 10 deg2 regions each
time. We found that the estimated uncertainties do not de-
pend significantly on the exact value of patch size. We esti-
mate the correlation coefficient after removing one of those
patches from the sample to get jackknife realizations of the
cross-correlation coefficient ρ j. Finally, the variance is esti-
mated as

∆ρ =
N−1

N ∑
j
(ρ j− ρ̄)2, (17)

where j runs over all the N jackknife realizations and ρ̄ is the
average correlation coefficients of all patches.
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FIG. 7: This figure shows the Pearson correlation coefficient between foreground galaxies and convergence maps as a function of smoothing
scale for the ngmix galaxy catalog. The solid and open symbols show the E and B-mode correlation coefficients respectively. The black
circles are for the main foreground sample and the red circles for foreground LRGs. The grey shaded regions show the 1σ bounds for E and
B mode correlations from simulations for the main foreground sample with the same pixelization and smoothing (see Sec. VI B for details).
We do not show the similar simulation results for the LRG sample. The detection significance for the correlation is in the range ∼ 5−7σ at
different smoothing scales. The green points show the correlation between E and B-modes of the mass map. The various B-mode correlations
are consistent with zero. Uncertainties on all measurements are estimated based on jackknife resampling.
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FIG. 8: Same as Fig. (7) but using the im3shape galaxy catalog.

We find that the Pearson correlation coefficient between
κg from the main foreground galaxy sample (LRG sample)
and weak lensing E-mode convergence is 0.39±0.06 (0.36±
0.05) at 10 arcmin smoothing and 0.52±0.08 (0.46±0.07) at
20 arcmin smoothing. This corresponds to a ∼ 6.8σ (7.5σ)
significance at 10 arcmin smoothing and ∼ 6.8σ (6.4σ) at 20
arcmin smoothing. As a zeroth-order test of systematics we
also estimated the correlation between the B-mode weak lens-

ing convergence and the κg maps. We find that the correla-
tion between κB and the main foreground sample is consistent
with zero at all smoothing scales. Similarly, the correlation
between E and B modes of κ is consistent with zero. For com-
parison, we show the same plot calculated for the im3shape
catalog in Fig. (8). We find very similar results, with slightly
larger correlation between κE and κB at the 1σ level.
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FIG. 9: Maps from simulations that are designed to mimic the data
in our analysis. The simulations are generated for a field of size
15×17.6 deg2 with similar redshift and magnitude selections for the
foreground and the background sample as the data. The true κ and
κg maps are shown in the first row, where κg is modelled for the main
foreground sample. The reconstructed κE and κB maps from the true
γ are shown in the first two panels of the second row, followed by the
κE and κB maps reconstructed from the ellipticity (ε) values. The
last row first shows the κE and κB constructed from ε with photo-z
uncertainties, then the same maps with an SV survey mask applied.
The last two panels on the bottom most closely match the data.
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FIG. 10: Pearson correlation coefficient ρXκg between the different
simulated maps shown in Fig. (9) as a function of smoothing scale. X
represents the different κ maps as listed in the legend. This plot is the
simulation version of Fig. (7), where one can see how the measured
values in the data could have been degraded due to various effects.
The qualitative trend of the correlation coefficients as a function of
smoothing scale is consistent with that observed in data. When re-
constructing κE from the true γ small errors are introduced due to the
nonlocal reconstruction, lowering the correlation coefficient by a few
percent. Adding shape noise to the shear measurement lowers the
signal significantly, with the level of degradation dependent on the
smoothing scale. Adding photo-z uncertainties changes the signal by
a few percent. Finally, placing an SV-like survey mask changes the
signal by ∼10%. The black curve with its error bars corresponds to
the shaded region in Fig. (7).

B. Comparison with mock catalogs

At this point, it is important to verify whether our mea-
surements in the data are consistent with what is expected.
We investigate this using the simulated catalogs described in
Sec. III C. As the simulations lack several realistic systematic
effects in the data, these tests mainly serve as a guidance for
us to understand: (1) the origin of the B-mode in the κ maps,
(2) the approximate expected level of ρκκg under pixelization
and smoothing, (3) the effect on ρκκg from photo-z uncertain-
ties and cosmic variance, and (4) the effect on the maps and
ρκκg from the survey mask.

We construct a sample similar to the SV data. The same
redshift, magnitude, and number density selections in Table I
are applied to the simulations to form a foreground and a back-
ground sample. We choose to simulate the main foreground
sample as the LRG foreground sample selection in the sim-
ulations is less controllable. For the background sample, we
add Gaussian noise with standard deviation σ =0.27 to each
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component of the true shear in the simulations to generate a
model for the ellipticities that matches the data (Jarvis et al.
in preparation). We then create a κg map from the main fore-
ground sample and a κ map from the background sample the
same way as is done in the data. The cross-correlation co-
efficient ρκκg is calculated from these simulated maps as in
Sec. VI. We consider the same range of smoothing scales for
the maps when calculating ρκκg as that in Fig. (8).

The simulations provide us a controlled way of separating
the different sources of effects. We construct the maps in the
following steps, in order of increasing similarities to data: (1)
pixelating and smoothing the true κ values; (2) constructing
the κ values from the true γ values; (3) construct the κ values
from the galaxy ellipticities which include shape noise (we
generate 20 realizations); (4) using a photo-z model for the
foreground and the background galaxies instead of the true
redshift; generate four different maps from different regions
on the sky; (6) use the SV survey mask. Note that in step (3)
we take the galaxy ellipticity to be the sum of a random com-
ponent (sampled from a Gaussian with standard deviation of
0.27) and the lensing shear, this model is designed to match
the data, which includes the intrinsic shape noise and other
measurement noise associated with e.g. the PSF modelling. In
step (4) we have modelled the photo-z errors from a spectro-
scopic sample that ran through the same photo-z code, taking
the spectroscopic redshift to be the “true” redshift.

The difference between step (1) and step (2) measures the
quality of the KS reconstruction method. The difference be-
tween step (2) and step (3) shows the effect of shape noise and
measurement noise. Steps (4), (5) and (6) then show the effect
of photo-z uncertainties, cosmic variance and masking. For
each SV-size maps, we generate 20 (shape noise)×4 (cosmic
variance)×2 (photo-z) ×2 (mask)=320 corresponding simu-
lations.

1. Maps from simulations

Fig. (9) shows the various maps generated from one partic-
ular patch of the simulations in this procedure for 5 arcmin
pixels and 20 arcmin smoothing scales (consistent with that
in Fig. (2)). The amplitude of κE and κB both become larger
than in the true maps when shape noise is added, and the re-
sulting κE map has only slightly higher contrast than the κB
map. When photo-z uncertainties are included, we see that the
peaks and voids in the κE maps visibly move around. Apply-
ing the mask mainly changes the morphology of the structures
in the maps around the edges. Comparing the last κE panel in
Fig. (9) and Fig. (2), we see that the amplitude and qualitative
scales of the variation in the κE maps are similar. On the other
hand, if we compare the κg maps in the simulations with the
κg maps in Fig. (2), we find some qualitative differences be-
tween the simulations and the data. The simulation contains
more small scale structure and low-κg regions compared to
the data. We do not investigate this issue further here, as the
level of agreement in the simulations and the data is sufficient
for our purpose.

2. Correlation coefficients from simulations

Fig. (10) shows the mean Pearson correlation coefficient
between the different maps as a function of smoothing scales
for the 80 sets of simulated maps (4 different areas in the sky
and 20 realisations of shape noise each). The error bars indi-
cate the standard deviation of these 80 simulations.

We find ρκtrueκg ≈ 0.8− 0.9. Several factors contribute to
this. First, the foreground galaxy sample only includes a finite
redshift range, and not all galaxies that contribute to the κtrue
map. Second, the presence of a redshift-dependent galaxy bias
adds further complication to the correlation coefficient. The
effect of converting from the true shear γ to convergence low-
ers the correlation coefficient by about 3%. This is a measure
of the error in the KS conversion under finite area and reso-
lution of the shear fields. The main degradation of the signal
comes when shape noise and measurement noise is included.
Photo-z uncertainties in both the foreground and the back-
ground sample changes the correlation coefficient slightly. Fi-
nally, the survey mask lowers the correlation coefficient by
∼ 10%.

The final correlation coefficient after considering all the ef-
fects discussed above is shown by the black curve in Fig. (10)
and overplotted as the shaded region in Fig. (7). We find that
the dependence of ρκκg on the smoothing scale in the simula-
tion is qualitatively and quantitatively very similar to that seen
in Fig. (7).

VII. SYSTEMATIC EFFECTS

In this section we examine the possible systematic uncer-
tainties in our measurement. We focus on the cross correla-
tion between our weak lensing mass map κE and the main
foreground density map κg,main. To simplify the notation,
we omit the “main” in the subscript and use κg to represent
the main foreground map in this section. We investigate the
potential contamination from systematic effects on the cross-
correlation coefficient ρκE κg by looking at the spatial correla-
tion of various quantities with the κE map and the κg map.

As discussed in Appendix A, there are several factors that
can contaminate the δg maps. For example, depth and PSF
variations in the observed field can introduce artificial clus-
tering in the foreground galaxy density map. Although we
use magnitude and redshift selections according to the tests in
Appendix A, one can expect some level of residual effects on
the κg maps. The κE map is constructed from shear catalogs
of the background sample, thus systematics in the shear mea-
surement will propagate into the κE map. In Jarvis et al. (in
preparation), extensive tests of systematics have been carried
out on the shear catalog. Therefore here we focus on the sys-
tematics that are specifically relevant for mass mapping and
the correlation coefficient Eq. (16).

We identify several possible sources of systematics for
the background and foreground sample as listed in Table II.
We generate maps of these quantities that are pixelated and
smoothed on the same scale as the κE and κg maps. We then
evaluate the contribution of these effects to the correlation co-
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FIG. 11: The normalised cross-correlation coefficient r̂kE kg;Q is shown for 20 different systematic uncertainty parameters. The systematics
parameters, represented by Q, are listed in Table II and shown for two smoothing scales. The r̂kE kg;Q values are normalized by r̂kE kg to show
the relative magnitude of the systematic and the signal. The red dashed line indicates where the systematic is 5% of r̂kE kg . The error bars are
estimated from resampling the foreground and background galaxy sample in patches of size 10 deg2. The left panel is calculated for ngmix
while the right panel is for im3shape.

FIG. 12: Pearson correlation coefficient rkE Q where Q represents the quantities listed in Table II. We show the statistics for two smoothing
scales and for both ngmix (left) and im3shape (right). The right-most points in both panel correspond to the detection signal in Figure 7 and
Figure 8. The error bars are estimated from resampling the foreground and background galaxy sample in patches of size 10 deg2. Note that
this is a different statistic from that in Figure 11, thus the y-axis values are not directly comparable.

evaluate the contribution of these effects to the correlation co-
efficient (Eqn. 16) based on the following simple diagnostic
quantity:

r̂kE kg;Q =
r̂kE Qr̂kgQ

r̂QQ
(18)

with r̂XY being the cross-correlation function, which is ef-
fectively the unnormalized Pearson correlation coefficient be-

tween X and Y , or

r̂XY = hXY i. (19)

Equation 18 measures the contribution from some system-
atics field Q to r̂kE kg . We calculate r̂kE kg;Q with Q being
any of the 20 quantities in Table II (excluding the signal).
Figure 11 shows the normalized cross-correlation coefficient
r̂kE kg;Q/r̂kE kg values for all the quantities considered for 10
and 20 arcmin smoothing, with the red dashed line at 5%.

FIG. 11: The normalised cross-correlation coefficient ρ̂κE κg;Θ is shown for 20 different systematic uncertainty parameters. The systematics
parameters, represented by Θ, are listed in Table II and shown for two smoothing scales. The ρ̂κE κg;Θ values are normalized by ρ̂κE κg to show
the relative magnitude of the systematic and the signal. The red dashed line indicates where the systematic is 5% of ρ̂κE κg . The error bars are
estimated from resampling the foreground and background galaxy sample in patches of size 10 deg2. The left panel is calculated for ngmix
while the right panel is for im3shape.
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estimated from resampling the foreground and background galaxy sample in patches of size 10 deg2. The left panel is calculated for ngmix
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FIG. 12: Pearson correlation coefficient rkE Q where Q represents the quantities listed in Table II. We show the statistics for two smoothing
scales and for both ngmix (left) and im3shape (right). The right-most points in both panel correspond to the detection signal in Figure 7 and
Figure 8. The error bars are estimated from resampling the foreground and background galaxy sample in patches of size 10 deg2. Note that
this is a different statistic from that in Figure 11, thus the y-axis values are not directly comparable.

evaluate the contribution of these effects to the correlation co-
efficient (Eqn. 16) based on the following simple diagnostic
quantity:

r̂kE kg;Q =
r̂kE Qr̂kgQ

r̂QQ
(18)

with r̂XY being the cross-correlation function, which is ef-
fectively the unnormalized Pearson correlation coefficient be-

tween X and Y , or

r̂XY = hXY i. (19)

Equation 18 measures the contribution from some system-
atics field Q to r̂kE kg . We calculate r̂kE kg;Q with Q being
any of the 20 quantities in Table II (excluding the signal).
Figure 11 shows the normalized cross-correlation coefficient
r̂kE kg;Q/r̂kE kg values for all the quantities considered for 10
and 20 arcmin smoothing, with the red dashed line at 5%.

FIG. 12: Pearson correlation coefficient ρκE Θ where Θ represents the quantities listed in Table II. We show the statistics for two smoothing
scales and for both ngmix (left) and im3shape (right). The right-most points in both panel correspond to the detection signal in Fig. (7) and
Fig. (8). The error bars are estimated from resampling the foreground and background galaxy sample in patches of size 10 deg2. Note that this
is a different statistic from that in Fig. (11), thus the y-axis values are not directly comparable.

efficient (Eq. (16)) based on the following diagnostic quantity:

ρ̂κE κg;Θ =
ρ̂κE Θρ̂κgΘ

ρ̂ΘΘ
(18)

with ρ̂XY being the cross-correlation function, which is ef-
fectively the unnormalized Pearson correlation coefficient be-
tween X and Y , or

ρ̂XY = 〈XY 〉. (19)

Equation 18 measures the contribution from some system-

atics field Θ to ρ̂κE κg . We calculate ρ̂κE κg;Θ with Θ being
any of the 20 quantities in Table II (excluding the signal).
Fig. (11) shows the normalized cross-correlation coefficient
ρ̂κE κg;Θ/ρ̂κE κg values for all the quantities considered for 10
and 20 arcmin smoothing, with the red dashed line at 5%. The
error bars are estimated by jackknife resampling similar to that
described in Sec. VI A, and the two panels show the results
for ngmix and im3shape respectively. The normalized cross-
correlation coefficient is a measure of the fractional contam-
ination in the Pearson coefficient (Eq. (16)) from each of the
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TABLE II: Quantities examined in our systematics tests.

Map name Description
kE (signal) κE from γ1, γ2 for background sample
kg (signal) κg from main foreground sample
kB κB from γ1, γ2 for background sample
ns f star number per pixel
ng b galaxy number per pixel for background sample
snr signal-to-noise of galaxies in im3shape

mask fraction of area masked in galaxy postage stamp
g1 average γ1 for background sample
g2 average γ2 for background sample
psf e1 average PSF ellipticity
psf e2 average PSF ellipticity
psf T average PSF size (ngmix only)
psf fwhm average PSF size (im3shape only)
psf kE κE generated from average PSF ellipticity
psf kB κB generated from average PSF ellipticity
zp b mean photo-z for background sample
zp f mean photo-z for foreground sample
ebv mean extinction
skysigma standard deviation of sky brightness in ADU
sky mean sky brightness in ADU
maglim mean limiting i-band AB magnitude
exptime mean exposure time in seconds
airmass mean airmass

systematics maps Θ.
We find that for ngmix all quantities show contributions to

the systematic uncertainties at 10 arcmin smoothing to be at
the level of 5% or lower, while the systematics increase to
up to 15% when smoothing at the 20 arcmin scale (though
with large error bars on the systematics estimation). For
im3shape, most of the values stay below 5% for both smooth-
ing scales. The largest contribution in both cases come from
the variation in the PSF properties (psf e1, psf e2, psf kB).
This is expected, as the modelling of the PSF is known to be
a significant challenge in weak lensing. Since all these PSF
quantities are correlated with each other, and many other pa-
rameters (g1, g2, snr, maglim) are correlated with the PSF
properties, we do not expect the total systematics contami-
nation to be a direct sum of all these parameters. Instead,
we discuss in Appendix B how one can isolate the indepen-
dent contributions of the systematics via a Principal Compo-
nent Analysis approach and correct for them. We find that the
correction changes the final Pearson correlation coefficient by
3.5% relative to the original ρκE κg measured in Sec. VI.

Finally, to check the level of systematic contamination in
our κE map itself, we also calculate the Pearson correlation
coefficient (Eq. (16)) between the various maps in Table II and
our κE map. Note that this contamination may or may not be
pronounced in Fig. (11) since the statistics plotted there also
take into account the correlation of κg with the various quanti-
ties. This test is independent of the foreground map, therefore
is important for applications of the κE map that do not also use
the foreground maps. Fig. (12) shows the resulting 21 Pear-
son correlation coefficients. We find that the signal shown in
the right-most points in the plot (ρκE κg ) is larger than all other

correlations by at least a factor of ∼3.
We also note that in both of these tests, the area of the map

is not big enough to ignore the fact that some of these cor-
relations can be intrinsically non-zero, even if there were no
systematics contamination in the maps.

VIII. CONCLUSIONS

In this work, we present a weak lensing mass map based on
galaxy shape measurements in the 139 deg2 SPT-E field from
the Dark Energy Survey Science Verification data. We have
cross-correlated the mass map with maps of galaxy and cluster
samples in the same dataset. We demonstrate that candidate
superclusters and voids along the line of sight can be identified
exploiting the tight scatter of the cluster photo-z’s.

We constructed mass maps from the foreground Redmagic
LRG and general magnitude-limited galaxy samples under the
assumption that mass traces light. We find that the E-mode of
the convergence map correlates with the galaxy based maps
with high statistical significance. We repeated this analysis
at various smoothing scales and compared the results to mea-
surements from mock catalogs that reproduce the galaxy dis-
tribution and lensing shape noise properties of the data. The
Pearson cross-correlation coefficient is 0.39± 0.06 (0.36±
0.05) at 10 arcmin smoothing and 0.52± 0.08 (0.46± 0.07)
at 20 arcmin smoothing for the main (LRG) foreground sam-
ple. This corresponds to a ∼ 6.8σ (7.5σ) significance at 10
arcmin smoothing and ∼ 6.8σ (6.4σ) at 20 arcmin smooth-
ing. We get comparable values from the mock catalogs, indi-
cating that statistical uncertainties, not systematics, dominate
the noise in the data. The B-mode of the mass map is consis-
tent with noise and its correlations with the foreground maps
are consistent with zero at the 1σ level.

To examine potential systematic uncertainties in the conver-
gence map we identified 20 possible systematic tracers such
as seeing, depth, PSF ellipticity and photo-z uncertainties. We
show that the systematics effects are consistent with zero at
the 1 or 2σ level. In Appendix B, we present a simple scheme
for the estimation of systematic uncertainties using Principal
Component Analysis. We discuss how these contributions can
be subtracted from the mass maps if they are found to be sig-
nificant.

The results from this work open several new directions of
study. Potential areas include the study of the relative distribu-
tion of hot gas with respect to the total mass based on X-ray
or SZ observations, estimation of galaxy bias, constraining
cosmology using peak statistics, and finding filaments in the
cosmic web. The tools that we have developed in this paper
are useful both for identifying potential systematic errors and
for cosmological applications. The observing seasons for the
first two years of DES are now complete [86] and survey an
area well over ten times that of the SV data, though shallower
by about half a magnitude. The full DES survey area will
be ∼ 35 times larger than that presented here, at roughly the
same depth. The techniques and tools developed in this work
will be applied to this new survey data, allowing significant
expansion of the work presented here.
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Appendix A: Foreground sample selection

As discussed in Sec. III B, we consider two factors that can
affect the selection of our foreground sample – spatial varia-
tion in depth and spatial variation in seeing. If not taken care
of, these effects will result in apparent spatial variation of the
foreground galaxy number density that is not due to the cos-
mological clustering of galaxies. Below we describe tests for
each of these and determine a set of selection criteria based on
the analysis.

1. Depth variation

Spatial variation in the depth of the images can cause the
apparent galaxy number density to vary, as more or less galax-
ies survive the detection threshold. We would like to con-
struct a foreground galaxy sample which minimizes this vary-
ing depth effect. A simple solution is to place a magnitude
selection slightly shallower than the limiting magnitude in all
of the areas considered, so that the sample is close to complete
in that magnitude range.

We find that in our area of interest, with a magnitude selec-
tion at i < 22, we have 97.5% of the area that is complete to
this magnitude limit. We use the 10σ galaxy limiting magni-
tude to define depth, which is a conservative measure for the
completeness, as we detect many more galaxies below 10σ .
The detail methodology of estimating the limiting magnitude
of the data is described in Rykoff et al. (in preparation). The
2.5% slightly shallower is not expected to yield significant
change in our results.

2. Seeing variation

Spatial variation in seeing can lead to spatial variation in
apparent galaxy number density, as large seeing leads to less
effective star-galaxy separation as well as higher probability
of blending in crowded fields. To test this, we first select a
foreground sample with i < 22 and 0.1 < z < 0.5 according to
Sec. III B. Then we look at the correlation between the galaxy
number density in this foreground sample and the average see-
ing values at these locations, both calculated on a grid of 5×5
arcmin2 pixels without smoothing. Fig. (13) shows the galaxy
number density versus seeing. The black data points show the
mean and standard deviation (multiplied by 10 for easy visu-
alisation) of the scatter plot in 15 seeing bins. There is a small
anti-correlation between these two values at the 6% level. This
is at an acceptable level for us to continue the analysis without
masking out the extreme high/low seeing regions.

Appendix B: Correcting for systematic contamination using
PCA

As shown in Sec. VII, we can use Eq. (18) to check for any
outstanding systematic contamination in our κE map and its
correlation with the κg map. Here we present a general treat-
ment to correct for these systematic contaminations, similar
to that used in Ross et al. [87] and Ho et al. [88].

Assume that our measured κE map is a linear combination
of the true κE,true map and some small coefficient αi times the
systematics maps {Mi} that can potentially contaminate the
κE maps (e.g.seeing, PSF ellipticity). That is

κE = κE,true +
N

∑
i

αiMi, (B1)

where we have a total of N systematics maps. Similarly, we
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FIG. 13: Galaxy number density as a function of the seeing in the
area of consideration. The black line shows the mean and standard
deviation (multiplied by 10 for easy visualisation) of the scatter plot
in 15 seeing bins.

have the expression for the measured κg in the same way

κg = κg,true +
N

∑
i

βiMi, (B2)

where βi is the linear coefficient in this case.
Assuming the true maps are uncorrelated with the system-

atics maps, we have

〈κE,trueMi〉= 0; (B3)

〈κg,trueMi〉= 0. (B4)

Correlating the measured κE with a single systematics map
gives

〈κEM j〉= 〈(
N

∑
i

αiMi)M j〉. (B5)

We can construct a set of systematics maps that are uncorre-
lated between each other, or 〈MiM j 6=i〉 = 0, and then extract
all the coefficients αi from the observables as follows:

〈κEM j〉= α j〈M jM j〉;

α j =
〈κEM j〉
〈M jM j〉

;

κE,true = κE −
N

∑
i

〈κEMi〉
〈MiMi〉

Mi. (B6)

And similarly for κg, we have

κg,true = κg−
N

∑
i

〈κgMi〉
〈MiMi〉

Mi. (B7)
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FIG. 14: The systematics map for κE (left) and κg (right) shown
is compiled using a linear combination of 20 principal components
extracted from the systematics maps listed in Table II.

To construct a set of systematics maps {Mi} uncorrelated be-
tween each other from a set of systematics maps correlated
with each other {M′i} (i.e. those listed in Table II), we in-
voke the Principal Component Analysis (PCA) method. In
this case, each of the pixelated maps, after normalizing by its
scatter, {M′i} form a data vector, and the extracted eigenvec-
tors form a orthogonal basis set, which we can use as {Mi}.
We find that the principal component maps correspond strik-
ingly to physical properties of the data. Fig. (14) shows the
systematics maps corresponding to κE and main sample κg
extracted using this PCA method, or the second terms on the
right-hand-side of Eq. (B6) and Eq. (B7). We find that the
main contributions come from large-scale structures and are at
a very low level compared to the original maps (see Fig. (2)).
We subtract these systematics maps from the original κE and
κg maps according to Eq. (B6) and Eq. (B7). The Pearson
correlation coefficient changes by 3.5% relative to the origi-
nal ρκE κg measured in Sec. VI, suggesting the contamination
to the cross-correlation coefficient is not significant.

It is worth noting that there are a few assumptions that go
into the calculation above, which need to be accounted for
when interpreting these results. First, we have assumed that
the systematic maps have no correlation with the true κE and
κg maps. For a large enough area, this should be true, but for
small maps we can expect some correlation just by chance.
Hence the quantitative “improvement” we get in the Pearson
correlation coefficient must be carefully checked with simu-
lations with larger area than used here. Second, since the
method is based on PCA, the effectiveness of the correction
depends on finding the important systematics maps that can
contribute linearly to the contamination. That is, if the sys-
tematics come from a non-linear combination of the various
maps (e.g. multiplication of two maps), then one would not
automatically correct for it without putting in this correct non-
linear combination of maps in the first place.




