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Abstract 

A detailed model of the High Luminosity LHC inner triplet region with new large-aperture 

Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was 

built and implemented into the FLUKA and MARS15 codes. In the optimized configuration, the 

peak power density averaged over the magnet inner cable width is safely below the quench limit. 

For the integrated luminosity of 3000 fb
-1

, the peak dose in the innermost magnet insulator 

ranges from 20 to 35 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to 

evaluate the cryogenic capability. In general, FLUKA and MARS results are in a very good 

agreement. 

PACS numbers: 29.20.-c, 29.20.db, 84.71.Ba 
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I. INTRODUCTION 

The Large Hadron Collider (LHC) was operated at 4 TeV per beam and 70% of nominal 

luminosity in 2012. After the consolidation of the accelerator, it will provide 300 fb
-1

 of 

integrated luminosity at center-of-mass energy of 13-14 TeV by 2021. Subsequently, CERN is 

planning to make a high luminosity upgrade (HL-LHC) to get 3000 fb
-1

 in 10 years [1], or 4000 

fb
-1

 as the ultimate target. 

One essential objective of the upgrade is to reduce β* down to 10-15 cm by means of stronger 

and larger aperture low-beta triplet quadrupoles in the high luminosity Insertion Regions (IRs). 

The envisaged solution [2] relies on the new Nb3Sn technology, which allows a more compact 

layout and ~30% higher performance with respect to NbTi coils, and on a 150 mm aperture, 

doubling the present one of 70 mm. In addition, a superconducting D1 separation dipole will 

replace the normal-conducting version, as well as new quadrupoles in the Matching Section are 

foreseen, still based on NbTi technology, but with a larger aperture. 

From the quench stability and radiation damage points of view, these magnets should cope 

with an exceptionally high luminosity. They need to be designed to operate at L = 5×10
34

 cm
-2

 s
-1

 

(corresponding to 5 times nominal LHC peak luminosity) or at an ultimate L = 7.5×10
34

 cm
-2

 s
-1

, 

with appropriate safety margins. Assumed design limits [3-5] are 13 and 4 mW/cm
3
 for Nb3Sn 

and NbTi coils, respectively, including a safety factor of 3 on expected quench limits. For long 

term radiation damage, a tentative dose limit is set to a few tens of MGy, mainly because of the 

degradation of the epoxy resin used to impregnate Nb3Sn coils [6]. As the first studies of 

radiation loads in the LHC upgrades have shown [3, 7], one could provide the operational 

stability and adequate lifetime of the IT superconducting magnets by using tungsten-based inner 

absorbers in the magnets. Another constraint is given by the total heat power to be evacuated 
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from the ensemble of the Inner Triplet (IT), Corrector Package (CP) and D1 magnets by the 

cryogenic equipment. 

This paper is divided in five parts. The first one is devoted to characterization of the pp-

collisions at the LHC interaction points as a source of irradiation of the IR magnets as well as to 

the approach used to design their protection via inner absorbers. The next part gives the details of 

the FLUKA and MARS models built to study the problem. Results of Monte Carlo calculations 

of 3D distributions of power density in the coils of the IT magnets are presented in the third part. 

The FLUKA and MARS predictions - being in an excellent agreement – are safely below the 

quench limits. The dynamic heat loads on the magnets are also presented in the section. Results 

on the quantities related to the radiation damage and lifetime of the IT magnet components – 

considered as ones of the most critical in the design of the HL-LHC IT magnets - are described 

in detail in the next part. The fifth part is devoted to the dependencies of the critical radiation-

induced quantities on the details of the IT magnet design and their relation to a possible design 

evolution.  

 

II. COLLISION DEBRIS AND TRIPLET MAGNETS 

A. Characterization of the radiation source 

Proton-proton inelastic collisions taking place in the LHC inside its four detectors generate a 

large number of secondary particles, on average about 100 (120) per a single proton-proton 

interaction of 3.5 (7) TeV beams, as calculated with DPMJET-III [8]. There are substantial 

fluctuations over different events. Moving away from the interaction point (IP), this multiform 

population evolves, even before touching the surrounding material, because of the decay of 

unstable particles (in particular neutral pions decaying into photon pairs). Figure 1 illustrates the 
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composition of the debris at 5 mm from the point of a 14 TeV center of mass collision, featuring 

a ~ 30% increase in number of particles, due to aforementioned decays, and a clear prevalence of 

photons (almost one half) and charged pions (~ 35%).  

Most of these particles are intercepted by the detector and its forward region shielding 

releasing their energy within the experimental cavern. However, the most energetic ones, emitted 

at small angles with respect to the beam direction, travel farther in the vacuum and reach the 

accelerator elements, causing a significant impact on the magnets along the Insertion Regions, in 

particular the final focus quadrupoles and the separation dipole. Figure 1 shows also the 

breakdown of the debris components going through the aperture of the TAS (Target Absorber 

Secondaries) absorber, a protection element consisting of a copper core 1.8-m long located at 20 

m from the IP and representing the interface between the detector and the accelerator. The TAS 

absorbers are installed at each side of the high-luminosity detectors, ATLAS in P1 and CMS in 

P5. Their protection role, in fact limited to the first quadrupole, is not needed for luminosities up 

to 0.2 × 10
34

 cm
-2

 s
-1

, which is the upgrade target of LHCb [9].  

Despite the fact that the number of particles per collision leaving the TAS aperture is more 

than one order of magnitude lower than the total number of debris particles, they carry about 

80% of the total energy, implying that 40% of the released energy at the IP exits on each side of 

the experiments. At the nominal HL-LHC luminosity (5 × 10
34

 cm
-2

 s
-1

), this represents about 

3800 W per side that is inevitably impacting the LHC elements and consequently dissipated in 

the machine and in the nearby equipment (e.g. electronics, racks,...) and in the tunnels walls. 

It is fundamental to study how these particles are lost in order to implement the necessary 

protections for shielding sensitive parts of the LHC magnets and the machine. For these 

purposes, Monte Carlo simulations of the particle interaction with matter play an essential role, 
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relying on a detailed implementation of physics models and an accurate 3D-description of the 

region of interest. 

 

FIG. 1. Number of debris particles per single proton-proton inelastic interaction at 5 mm from the 

interaction point (black histogram) and at the exit of each 60-mm TAS aperture (red). 

 

B.  Large aperture Nb3Sn magnets and inner shielding 

The LHC upgrade includes replacement of the IP1/IP5 inner triplet 70-mm NbTi quadrupoles 

with the 150-mm coil aperture Nb3Sn quadrupoles along with the new 150-mm coil aperture 

NbTi dipole magnet and orbit correctors. Moreover, a corrector package that includes a skew 

quadrupole and eight high-order magnets (from sextupole to dodecapole, normal and skew, 

based on the NbTi technology) will be located between the triplet and the D1. 

An octagonal stainless steel beam screen, equipped with 6-mm tungsten absorbers on the mid-

planes, is placed inside the cold bore all along the triplet, the CP and the D1, except in Q1 (up to 

~32.5m from IP) where the tungsten thickness is increased to 16 mm, compatible with the 

relaxed aperture requirements. The absorbers are in between the beam screen and the 1.9-K beam 

pipe: they are supported by the beam screen, and thermally connected to it, whereas they have 

FERMILAB-PUB-15-095-APC

: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy



negligible contact with the cold mass. Therefore, from the point of view of energy deposition, the 

beam screen function is two-fold:  

(i) It shields the coils from the debris by reducing the energy deposited in there, 

(ii) It removes a sizable part of the heat load from the 1.9 K cooling system, collecting it at 

higher temperature. 

The present HL-LHC layout foresees six cryostats on each side of the IP: four for the triplet 

quadrupoles (Q1, Q2A, Q2B and Q3), one for the CP and the last for the D1 dipole. The distance 

between the magnets in the interconnect regions is 1.5 - 1.7 m (as preliminarily assumed in this 

study) and an interruption of the beam screen is necessary therein. As a reasonable baseline, we 

adopt here a 500-mm interruption of the tungsten absorbers in the middle of the interconnect 

regions. 

 

III. MONTE CARLO MODELING WITH FLUKA AND MARS CODES 

To design such a system in a consistent and confident way, coherent investigations have been 

undertaken with two independent Monte Carlo codes benchmarked up to the TeV energy region 

and regularly used in such applications: FLUKA at CERN [10, 11] and MARS15(2014) at 

Fermilab [12-14]. The studies were done for 7+7 TeV pp-collisions at the luminosity of 5×10
34

 

cm
-2

s
-1

 with a 0.295 mrad half-angle vertical crossing in IP1 (which was found earlier to be the 

worst case) using DPMJET-III as the event generator. 

An identical, very detailed geometry model was created and used in both the codes with same 

materials and magnetic field distributions in each of the components of the 80-m region from IP 

through the D1 dipole. Figs. 2 thru 6 show a 3D view of the model and details of the inner parts 

of the quadrupoles, orbit correctors and dipole D1.  
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FIG. 2. Computer model of HiLumi LHC inner triplet with correctors MCBX/CP and D1 dipole. 

 

 

FIG. 3. Details of the FLUKA-MARS model in the innermost region of the Q1 quadrupole. The major 

difference between Q2-Q3 and Q1 is that the tungsten liner in the former significantly thinner than that in 

the latter. The Nb3Sn coils are homogenized; inner coils are sub-divided azimuthally and radially for 

scoring. Nomex and S2 fiberglass insulating inserts are not included in the model; corresponding labels 

indicate their locations as discussed in the text for Table 2 below. 
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FIG. 4. Cross-sectional view of the FLUKA-MARS model in the central part of the MCBX orbit 

correctors. 

 

 
 

FIG. 5. Cross-sectional view of the FLUKA-MARS model in the central part of the D1 dipole. The coil is 

homogenized and sub-divided azimuthally and radially for scoring. 
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Fine-mesh distributions of power density as well as of accumulated for 3000 fb
-1 

integrated 

luminosity (~10-12 years of HiLumi LHC operation) absorbed dose, neutron fluence and 

Displacement-Per-Atom (DPA) along with dynamic heat load in every IT component were 

calculated with FLUKA and MARS in high-statistics runs. The power density and dynamic heat 

load results are normalized to the luminosity of 5×10
34

 cm
-2

s
-1

, while all other ones to the 3000 

fb
-1 

integrated luminosity. Longitudinal scoring bins are 10 cm, and azimuthal ones are 2
o
. 

Radially, power density is scored in the superconducting cable width, while dose, fluence and 

DPA are scored at the azimuthal maxima within the innermost layer equal to 3-mm or its 

thickness, whatever is thinner. 

 

 
 

FIG. 6. Cross-sectional view of the FLUKA-MARS model fragments with kapton cells in Q1-Q3 

quadrupoles (left) and MCBX correctors (right). 
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IV. OPERATIONAL RADIATION LOADS 

Power density isocontours at the IP end of the cold mass of the Q2A quadrupole are shown in 

Fig. 7. The longitudinal peak power density profile on the inner coils of the IT magnets at the 

azimuthal maxima is presented in Fig. 8. Results from FLUKA and MARS are in an excellent 

agreement. The peak value in the quadrupoles, 2 mW/cm
3
,
 
is 20 times less than the assumed 

quench limit of 40 mW/cm
3
 in Nb3Sn coils. The peak value of ~1.5 mW/cm

3
 in the NbTi based 

coils of the correctors and D1 dipole is almost ten times less of the known quench limit 13 

mW/cm
3
 in such coils. 

 

FIG. 7. Power density isocontours at the IP end of Q2A. 
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FIG. 8. Longitudinal peak power density profile on the inner coils of the IT magnets. 

 

 The total power dissipation in the IT region from the IP1 collision debris splits approximately 

50-50 between the cold mass and beam screen with the tungsten absorber: 630 W and 615 W, 

respectively, from the FLUKA calculations. Total heat load to various components of the inner 

triplet, including comparison between FLUKA and MARS data, is presented in Table I. One can 

see that, as far as total heat load is concerned, the two codes agree within about 2%. For the 45-m 

effective length of the cold mass, the average dynamic heat load on it is ~14 W/m. 
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TABLE I.  Integral power dissipation (W) in components of inner triplet calculated with FLUKA and 

MARS codes for two different interconnect (IC) gap lengths.  

 

 

 

Component 

 

 

 

 

FLUKA 

 

 

MARS 

 

10 cm gap in ICs 50 cm gap in ICs 50 cm gap in ICs 

   Magnet       Beam screen 

cold mass 

  Magnet       Beam screen 

cold mass 

  Magnet       Beam screen 

cold mass 

Q1A+Q1B 

Q2A+orbit 

corrector 

Q2B+orbit 

corrector 

Q3A+Q3B 

Corrector 

package 

D1 

Interconnects 

Total 

        100               170 

       95                 60 

 

     115                 80 

 

     140                80 

       55                55 

 

      90                 60 

      20               140 

    615               645 

       100              170 

    100                65 

 

    120                80 

 

    140                80 

      60                55 

 

      90                60 

      20              105 

    630              615 

      95               170 

    100                 65 

 

    115                 80 

 

    135                 75 

      60                 65 

 

      90                55 

      15                85 

    615              600 

 

  

V. LIFETIME RADIATION LOADS 

The peak dose and DPA – the quantities that define radiation damage and lifetime of 

insulators and non-organic materials of the IT magnets, respectively – are calculated at the 

azimuthal maxima in the innermost tiny layers of each the IT component shown in Figs. 3-6. 

The longitudinal peak dose profiles on the inner coils and insulating materials are presented in 

Fig. 9. The values in the MCBX orbit correctors in the Q1-Q2A, Q2B-Q3 and Q3-D1 regions are 

given for the epoxy layer (FLUKA) and kapton layer (MARS); see Figs. 4-6 for details. Results 

from FLUKA and MARS are again in a good agreement. The larger aperture IT magnets and the 

tungsten absorbers implemented perform very well, reducing the peak values of both power 

density and absorbed dose in the HiLumi LHC IT to the levels which correspond to the LHC 

nominal luminosity. 
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The integrated peak dose in the IT magnet insulation reaches 30-36 MGy in the MCBX3 

corrector, 28-30 MGy in the quadrupoles and ~22 MGy in the D1 dipole. This is at the common 

limits for kapton (25-35 MGy) and CTD-101K epoxy (25 MGy) or slightly above them. The 

maximum peak dose in the coils is about 25 MGy for quadrupoles and ~15 MGy for the D1 

dipole. 

 

FIG. 9. Longitudinal peak dose profile on inner coils and nearby insulators. 

 

Another important issue is related to absorbed dose at the level of the beam screen. In order to 

mitigate electron cloud heating, a thin-film carbon coating is deposited on the inner surface. 

Mechanical stability of the coating depends on various factors including irradiation. The 

calculated peak absorbed dose in the stainless steel beam screen is shown in Fig. 10. 
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FIG. 10. Longitudinal peak dose profile (bottom) on different segments of the beam screen (top). 
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Table II summarizes the peak predicted absorbed dose in the hottest components of the inner 

triplet. One can see that in the hottest spots of the triplet the calculated absorbed dose for the 

target integrated luminosity is near or slightly above the lifetime limit which means that 

degradation of material properties becomes relevant. One has to point out that the real magnets 

are more complicated than the simulation models built for this study. For example, some 

insulating inserts made of S2 fiberglass and Nomex as shown, e.g., in Fig. 3, were not included 

in the model. Nevertheless, to estimate the radiation loads to these components slightly beyond 

the current model, Table II includes the extrapolated peak dose values in such inserts using the 

calculated spatial dose gradients. That is why some peak values in Table II do not correspond to 

the data shown in Fig. 9.  

Table II. Predicted radiation load (MGy) to organic materials in hottest components of the inner triplet.  

 

Component 

 

Common name 

 

Material 

Maximum 

calculated value 

per I0=3000 fb
-1

 

 

Limit 

Q2B 

Q2B 

Q2B 

Q2B 

Q2B 

Q2B 

Q2B 

Insulation 

Insulation 

Insulation/Glue 

Insulation 

Insulation 

Support material 

Insulation 

Kapton 

G10 

Epoxy CTD-101K 

S2 fiberglass 

G11 

Nomex 

Polyimide 

34 

25 

24 

24 

24 

6.7 

6.7 

25-35 

20 

25 

15 

25-40 

15 

25 

MCBX3 

MCBX3 

Insulation 

Insulation/Glue 

Kapton 

Epoxy CTD-101K 

30 

27 

25-35 

25 

D1 

D1 

Insulation 

Insulation 

Kapton 

G10 

22 

20 

25-35 

20 
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Degradation of the critical properties of inorganic materials of the IT magnets – Nb3Sn and 

NbTi superconductors, copper stabilizer and mechanical structures – is usually characterized not 

by absorbed dose but by integrated neutron fluence and by DPA accumulated in the hottest spots 

over the expected magnet lifetime. DPA is the most universal way to characterize the impact of 

irradiation on inorganic materials. In both FLUKA and MARS, all products of elastic and 

inelastic nuclear interactions as well as Coulomb elastic scattering (NIEL) of transported charged 

particles (hadrons, electrons, muons and heavy ions) from ~1 keV to TeV energies contribute to 

DPA using energy-dependent displacement efficiency. For neutrons at <20 MeV (FLUKA) and 

<150 MeV (MARS), the ENDF-VII database with NJOY99 processing is used in both the codes. 

The longitudinal peak neutron fluence and peak DPA profiles on the IT magnet coils are 

presented in Fig. 11. The peaks are generally observed at the inner coils; therefore, the data is 

given there. With the vertical crossing in IP1, the MCBX3 orbit corrector is the exception with 

the peak in the outer coil in the vertical plane (see Fig. 4). To see this effect, the MARS data in 

Fig. 11 for MCBX3 is given for the outer coil, while FLUKA shows results for the inner coil as 

in all other magnets.  

Contrary to the power density and dose distributions driven by electromagnetic showers 

initiated by photons from neutral pion decay, DPA peaks at the non-IP end of the Q1B 

quadrupole. At that location, about 70% of DPA is from neutrons with kinetic energy below 20 

MeV, ~25% from transported nuclear recoils with the energy above 0.25 keV per nucleon, and 

the rest is due to other transported particles and non-transported recoils. One can also see from 

Fig. 11 that a quite definite scaling is observed between the values of peak neutron fluence and 

peak DPA. 
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FLUKA and MARS results on neutron fluence are in a quite good agreement. Results on DPA 

from two codes are also very similar in the Q1A through Q3B region with the MARS’s ones 

being slightly higher than those from FLUKA. At the same time discrepancy in DPA prediction 

increases in the opposite direction in D1, despite the consistency of neutron fluence values. Our 

attempts to explain this effect in the DPA behavior at the very end of the studied region have 

been unsuccessful so far. 

 

FIG. 11. Longitudinal peak neutron fluence and peak DPA profiles along the hottest regions in the IT 

magnet coils. 

The peak in the Q1B inner coil is about 2×10
-4

 DPA per 3000 fb
-1

 integrated luminosity. In 

other IT components it is about (1±0.5)×10
-4

. These numbers should be acceptable for the 

superconductors and copper stabilizer provided periodic annealing during the collider 

shutdowns. Taking into account a good correlation of DPA with neutron fluence in the coils, one 

can also compare the latter with the known limits. In the quadrupole coils, the peak fluence is 

~2×10
17

 cm
-2

 which is substantially lower than the 3×10
18

 cm
-2

 limit used for the Nb3Sn 
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superconductor. In the orbit corrector and D1 dipole coils, the peak fluence is ~5×10
16

 cm
-2

 

which is again lower than the 10
18

 cm
-2

 limit used for the NbTi superconductor. 

The integrated DPA in the magnet mechanical structures are 0.003 to 0.01 in the steel beam 

screen and tungsten absorber, ~ 10
-4

 in the collar and yoke, and noticeably less outside. These are 

to be compared to a ~10 DPA limit for mechanical properties of these materials. Neutron 

fluences in the IT mechanical structures range from 3×10
16

 cm
-2 

to 3×10
17

 cm
-2

 compared to the 

10
21

 cm
-2 

to 7×10
22

 cm
-2

 limits. 

VI. CRITICAL DEPENDENCIES AND DESIGN EVOLUTION 

The beam screen equipped with tungsten absorbers represents the backbone element for the 

protection of the IT magnets. Therefore, the details of its design play a crucial role in 

determining its actual effectiveness. 

After the preliminary studies described in the previous section, new estimates were necessary 

to include: 

− the real absorber material, INERMET 180 that has a density of 18 g cm
-3

, about 8% less 

than pure tungsten, implying a reduced shielding performance, 

− the first prototype drawing [15] that takes into account the machinability of INERMET 

and the required size of the cooling tubes as dictated by preliminary cryogenics estimates, 

− the reduction of the beam screen thickness (from 2 to 1 mm) necessary to let the structure 

respond elastically to possible deformations occurring during a quench. 

Figure 12 (left) shows the transverse section of the beam screen model (BS#2) embedding the 

aforementioned modifications. It can be compared to the model (BS#1) used in the calculations 

reported in the previous section (see Figs. 3-6). The longitudinal peak dose profile on the inner 

coils of the IT magnets is presented in Fig. 13 (left) for the case of BS#1 (black points) and of 
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BS#2 (red points). In the latter case, the accumulated peak dose turns out to be systematically 

higher all along the IT magnets, almost doubling its value in the Q3 and reaching about 55 MGy 

in the MCBX3 corrector (however in an azimuthal position that in the MCBX design being 

detailed in the meantime lies in the collar outside the coil region). Along the Q2, most of the 

impacting debris, positively charged, is pushed by the magnetic field from the crossing angle 

side to the opposite one, i.e. from top to bottom in the assumed crossing scheme, where the 

outgoing beam points upwards. This moves the energy deposition peak through different 

azimuthal regions, which in the revised design (BS#2) are no longer shielded by the beam screen 

absorbers, hence yielding the resulting substantial increase. In order to address this drawback, we 

considered a third version of the beam screen (BS#3), where the INERMET absorbers were 

extended as much as possible to cover the coils towards the poles (see Fig. 12, right). The 

estimated peak dose distribution (green points in Fig. 13, left) shows a significant improvement 

in the Q3-CP region, when compared to the BS#2 case. It should also be noted that, mainly due 

to the reduced absorber density, the sharing of the total deposited power between the cold mass 

and beam screen gets unbalanced, moving to 55-45 and making the heat released in the cold 

mass approach 700W (at 5×10
34

 cm
-2

 s
-1

). 
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FIG. 12. Left: beam screen model as per the first conceptual design (BS#2) [15]. Right: beam screen 

model with the modification of the absorbers driven by energy deposition considerations (BS#3). 

 

Another crucial aspect is the longitudinal interruption of the beam screen and its absorbers, 

which is necessary between two consecutive cryostats in order to host a bellow and a BPM. As 

mentioned in the previous section, we initially assumed a 500-mm gap. Shorter gaps are possible 

if the BPMs are going to be equipped with absorber layers like the ones in the beam screen. To 

mimic this case, we looked at the effect of a 100-mm gap, which should be considered as the 

most optimistic case. The peak dose dependence on the gap length is presented in Fig. 13 (right) 

where the improvement achieved downstream the Q2A-Q2B, Q2B-Q3 and especially Q3-CP 

interconnects is visible, with a reduction from 55 to 35 MGy in the MCBX3 for the BS#2 design. 

Therefore, the actual implementation of the absorber layers in the design of both the beam screen 

and the relevant BPMs considerably affects the maximum dose expected in the IT coils. 
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FIG. 13. Longitudinal distributions of peak dose on the inner coils of the IT magnets referring to different 

beam screen designs (top) and to different lengths of the beam screen gap in the interconnects (bottom). 
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VII. CONCLUSIONS 

It was shown that 80% of the energy released in pp-collisions leak through the TAS apertures 

on the two sides of the experiments, resulting in 3.8-kW dynamic heat load impacting the HL-

LHC accelerator components on each side around IP1 and IP5. Very detailed descriptions of 

geometry, materials and magnetic fields for all the components in the inner triplet regions were 

implemented into the FLUKA and MARS15 models to find the optimal parameters of the 

protective components needed to assure the operational performance of the IP1/IP5 150-mm 

aperture Nb3Sn final focus quadrupoles along with the 150-mm aperture NbTi D1 separation 

dipoles and corrector magnets. Results of simulations with the two independent codes were 

found to be in a good agreement. It was demonstrated that the proposed system of the tungsten-

based inner absorbers assures the quench stability of the IT magnets with a safety margin close to 

or exceeding a factor of 10 as well as manageable dynamic heat loads on the IT cryogenic 

system.  The peak DPA in non-organic materials of the IT magnet coils is about 2×10
-4

 DPA per 

3000 fb
-1

 integrated luminosity that should be acceptable for the superconductors and copper 

stabilizer provided annealing during the collider shutdowns. The peak dose accumulated in the 

magnet non-organic materials at the same integrated luminosity is close to the established limits. 

To provide a reasonable safety margin, it implies that the limits need better understanding, 

advanced radiation-resistant materials should be considered and the ways to further improve 

protection efficiency of the inner absorber system need a further attention (e.g., a 100-mm gap in 

the beam screen and its absorbers rather than a 500-mm one). Finally, whereas the study 

demonstrated the effectiveness of the conceptual design solution corroborated by a robust cross-
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validation of the calculation tools, detailed numbers should not be taken as references carved in 

stone, since the actual design is still evolving, with the impact discussed in the previous section.   

 

ACKNOWLEDGEMENTS 

This work was supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-

07CH11359 with the U.S. Department of Energy through the US LARP Program, and by the 

High-Luminosity LHC Project. 

 

REFERENCES 

[1] O. Brüning, L. Rossi, “High Luminosity Large Hadron Collider: A description for the 

European Strategy Preparatory Group,” CERN ATS 2012-236. 

[2] E. Todesco et al., “Design Studies for the Low-beta Quadrupoles for the LHC Luminosity 

Upgrade,” CERN ATS 2013-018. 

[3] N.V. Mokhov, I.L. Rakhno, Phys. Rev. ST Accel. Beams 9, 101001 (2006). 

[4] N. Kimura et al., “Heat transfer characteristics of Rutherford-type superconducting cables in 

pressurized He II,” IEEE Trans. Appl. Super- cond., vol. 9, no. 2, pp. 1097–1100, 1999. 

[5] L. Chiesa et al., “Thermal studies of a high gradient quadrupole magnet cooled with 

pressurized, stagnant superfluid”, IEEE Trans. Appl. Supercond. 11 (2001) 1625-8 

[6] Composite Technology Development, Inc., Data-sheets. 

[7] L.S. Esposito, F. Cerutti, E. Todesco, IPAC2013, TUPFI021, p. 1379. 

FERMILAB-PUB-15-095-APC

: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy



[8] S. Roesler, R. Engel and J. Ranft, The Monte Carlo event generator DPMJET-III, 

Proceedings of the Monte Carlo 2000 Conference, Lisbon, October 23rd–26th 2000, 

Springer-Verlag Berlin, pp. 1033-1038, 2001. 

[9] L.S. Esposito et al., Power load from collision debris on the LHC Point 8 insertion magnets 

implied by the LHCb luminosity increase, IPAC2013, TUPFI022, p. 1382. 

[10] A. Ferrari, P. Sala, A. Fasso, J. Ranft, FLUKA, A multi-particle transport code, CERN-

2005-010 (2005); http://www.fluka.org 

[11] T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassó, A. Ferrari, P.G. Ortega, A. Mairani, P.R. 

Sala, G. Smirnov and  V. Vlachoudis, "The FLUKA Code: Developments and Challenges for 

High Energy and Medical Applications", Nuclear Data Sheets 120, 211-214 (2014). 

[12] N.V. Mokhov, C. James, The MARS Code System User’s Guide, http://www-

ap.fnal.gov/MARS/ 

[13] N.V. Mokhov, S.I. Striganov, "MARS15 Overview", in Proc. of Hadronic Shower 

Simulation Workshop, Fermilab, AIP Conf. Proc. 896 (2007) pp. 50-60. 

[14] N. Mokhov, P. Aarnio, Y. Eidelman, K. Gudima, A. Konobeev, V. Pronskikh, I. Rakhno, S. 

Striganov, I. Tropin, Progress in Nuclear Science and Technology 4, 496 (2014).  

[15] R. Kersevan et al., private communication.  

 

FERMILAB-PUB-15-095-APC

: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy

http://www.fluka.org/
http://www-ap.fnal.gov/MARS/
http://www-ap.fnal.gov/MARS/



