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Abstract

We study the inflationary evolution of a scalar field h with an unstable potential for the case

where the Hubble parameter H during inflation is larger than the instability scale ΛI of the potential.

Quantum fluctuations in the field of size δh ∼ H
2π imply that the unstable part of the potential is

sampled during inflation. We investigate the evolution of these fluctuations to the unstable regime,

and in particular whether they generate cosmological defects or even terminate inflation. We apply

the results of a toy scalar model to the case of the Standard Model (SM) Higgs boson, whose quartic

evolves to negative values at high scales, and extend previous analyses of Higgs dynamics during

inflation utilizing statistical methods to a perturbative and fully gauge-invariant formulation. We

show that the dynamics are controlled by the renormalization group-improved quartic coupling λ(µ)

evaluated at a scale µ = H, such that Higgs fluctuations are enhanced by the instability if H > ΛI .

Even if H > ΛI , the instability in the SM Higgs potential does not end inflation; instead the universe

slowly sloughs off crunching patches of space that never come to dominate the evolution. As inflation

proceeds past 50 e-folds, a significant proportion of patches exit inflation in the unstable vacuum, and

as much as 1% of the spacetime can rapidly evolve to a defect. Depending on the nature of these

defects, however, the resulting universe could still be compatible with ours.
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I. INTRODUCTION

The discovery of the Higgs boson with mass 125 GeV and Standard Model (SM)-like cou-

plings at the Large Hadron Collider [1, 2] has ushered in a new era in particle physics, with

particular emphasis on studying the properties of the Higgs field. One of the most important

aspects of a SM Higgs boson with the observed mass is that its potential becomes unstable at

high scales—the quartic coupling λ in the potential V (h) ≈ λ(µ)
4
h4 (ignoring the mass-squared

term, negligible at high energy) evolves through the renormalization group equations to nega-

tive values at scales µ > ΛI . In the SM, ΛI is in the range 109-1016 GeV (within 2σ uncertainties

on the top and Higgs masses).

One implication of this instability is that our Universe (with the Higgs and SM only) is

metastable, meaning that, while the electroweak vacuum is stable on time scales longer than

the age of the Universe, it can ultimately decay through a Coleman-De Luccia instanton [3] at

late times. The presence of this instability has been known a long time [4–7], and has been

explored more recently in, e.g., [8–11]. While an interesting observation, the metastability of

the electroweak vacuum with a 125 GeV Higgs boson does not phenomenologically impact the

existence of our Universe at the present time.

The instability in the Higgs potential may be more relevant, however, in influencing the evo-

lution of the Universe during inflation. This is because quantum fluctuations in the Higgs field

during inflation, δh ∼ H
2π

(where H is the Hubble parameter during inflation), can locally drive

the Higgs vacuum expectation value (vev) to the unstable part of the potential—in particular,

if the instability scale is relatively low, ΛI∼< 1014 GeV, this can readily occur even for modest

values of H∼> ΛI . Consequently, the existence of the instability could imply a constraint on H

or the form of the Higgs potential during inflation, and may be particularly relevant if a large

tensor-to-scalar ratio r ∼ 0.1, corresponding to H ∼ 1014 GeV, is observed in future cosmic

microwave background (CMB) experiments. This has been the subject of a number of papers

[12–24].

Because of the scale dependence of the Higgs potential, the nature of the Higgs as a field that

breaks electroweak symmetry, and the fact that inflation creates causally disconnected regions
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of space that are free to evolve independently, a number of subtleties must be addressed in

order to correctly study the Higgs field during inflation. These complications impact the result

substantially and, as a result, there is disagreement between various results in the literature.

First, one must understand what transition from the electroweak to unstable vacuum during

inflation means physically for the existence of our Universe. During inflation, spacetime that

eventually becomes part of our Universe is continually passing out of causal contact—inflation

is based on the idea that a single homogeneous patch evolves into e3N distinct Hubble volumes,

where N ∼> 50 is the number of e-folds of inflation required to obtain a Universe flat and ho-

mogeneous like ours. Thus, even if a single Hubble patch (of size H−1 in physical coordinates)

transitions to the unstable vacuum during inflation or ultimately crunches due to the negative

energy density in the Higgs field, the background is still dominated by the inflaton and causally

disconnected patches still undergo exponential expansion. So, one expects the spacetime to

continue to inflate globally, and any resulting defect to be inflated away. For these reasons it

is unclear, in contrast to the assumption of [17], why a single local fluctuation of the Higgs vev

to the unstable regime during inflation would be fatal for our Universe. Only if a significant

fraction of the ∼ e3N Hubble volumes crunch (in particular, near the end of inflation when

they are not diluted by further expansion of space) does one expect the resulting large inhomo-

geneities to potentially be inconsistent with the small perturbations observed in our Universe.

Meanwhile, if patches exhibiting a Higgs vev∼> ΛI are present at the end of inflation and not

stabilized by, e.g., reheating, these patches could destroy the patches of electroweak vacuum

as the various patches come back into causal contact. The proportion of Hubble volumes that

transition and when they transition is thus important, and one must appropriately evolve the

Higgs field during inflation to evaluate the existence of a Universe like ours.

Many approaches have employed the Hawking-Moss instanton calculation [25] to determine

the probability that the Higgs transitions to the top of the potential barrier (from where it

is assumed to subsequently evolve towards the true vacuum) during an e-fold of inflation,

P ∼ exp(−8π2∆V
3H4 ) [15, 19, 20]. Here, ∆V = V (h = Λmax) − V (0), where V (h = Λmax) is

the maximum value of the Higgs effective potential—in the SM, h = Λmax occurs just before

the quartic becomes negative. This approach would in principle be suitable to calculate, e.g.,
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the proportion of patches at the top of the barrier during a given e-fold. However, as the

preceding discussion indicates, in order to understand the evolution of the space as a whole we

are interested in the full distribution of the Higgs vev values during and at the end of inflation.

Furthermore, for large H4 � ∆V (as for the SM Higgs potential with H∼> ΛI), the exponent

goes to zero and the unknown prefactor becomes important. As a result, the HM calculation

is insufficient to fully study the dynamics of the Higgs field during inflation.

An alternative approach, valid when H4 ∼> ∆V , remedies these problems by allowing for

a thermal diffusion of the field in its potential, with a temperature characterized by the de-

Sitter temperature TdS = H
2π

. Such a treatment is encapsulated in the Fokker-Planck equation

[12, 17, 18]. By treating a statistical ensemble of baby universes, a probability distribution

P (h, t) for the Higgs vev h in a patch is derived as a function of the duration of inflation.

While it has been argued that the Fokker-Planck approach reproduces a Hawking-Moss-like

distribution in the late-time equilibrium limit (see, e.g., [26]), the Fokker-Planck equation

incorporates dynamics not captured by the Hawking-Moss calculation. As a result, the Fokker-

Planck treatment is more suitable for studying the behavior of the Higgs field during inflation

and the implications for our Universe. While Ref. [17] restricted their focus to the case that the

transition of a single Hubble patch in our past light cone to the unstable vacuum destroys the

entire Universe, Ref. [12], in contrast, assumed that any patches transitioning to the unstable

regime during inflation rapidly but benignly crunch. They thus focused on the proportion of

electroweak patches that survive until the end of inflation te,

PΛ ≡
∫ Λmax

−Λmax

dhP (h, te). (1)

To calculate PΛ, they solved the FP equation subject to the boundary condition P (|h| =

Λmax, t) = 0 on the grounds that, for |h| ≥ Λmax, the unstable potential causes |h| to roll off

to infinity and the patch to crunch. However, the background energy density in patches with

|h| ≥ Λmax is generally still dominated by the inflaton, and rapid runoff of |h| and flattening of

P only occurs once the classical force due to the unstable potential dominates over the quantum

fluctuations. This happens when

h∼> hclassical ≡
(

3

−2πλ

)1/3

H � Λmax. (2)
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As such, imposing P (|h| = Λmax, t) = 0 artificially suppresses the probability to find |h| ∼ Λmax,

and hence PΛ.

Ref. [18] corrected this unphysical boundary condition by solving the Fokker-Planck equation

with boundary condition P (|h| = Λc, t) = 0 for Λc ≥ hclassical, which captures the bulk of the

distribution at |h| < hclassical and so is suitable for calculating PΛ in the case H > ΛI .
1 This

change drastically increased the electroweak survival probability and consequently revealed

that, provided patches in the unstable regime do crunch benignly, inflation can always last

long enough to replace the lost patches. So, the instability in the SM Higgs potential does not

necessarily preclude the existence of our Universe in this case.

While laying to rest the question of transition probabilities during inflation, Ref. [18] left

some questions unanswered. For instance, Ref. [18] remained agnostic as to the exact implica-

tions of P (h, te) for our Universe, considering the two limiting cases of “benign crunching” and

that a single unstable patch in our past light-cone destroys all electroweak patches. In addition,

a number of technical points remained unclear. For instance, there is the question of which

potential V (h) to use in solving the evolution equation. For the Higgs boson, one is tempted

to use the effective potential Veff as computed in, e.g., [27], or the appropriate analog in de

Sitter (dS) space as computed in, e.g., [19]. The value of Veff(h), however, is gauge-dependent

(except at stationary points) [28]. Consequently, as recently emphasized in Refs. [29–31], one

must be careful in extracting physical quantities from the effective potential. Furthermore, field

values such as Λmax are gauge-dependent, potentially presenting a problem when attempting

to determine whether or not a patch has fluctuated to the unstable regime. Note, though,

that this caveat does not necessarily imply that the survival probability defined in Eq. (1) is

unphysical, as it is based on relative field values—the field is simply assumed to evolve to the

electroweak (unstable) regime if |h|
Λmax

< (>) 1 at te.

The purpose of this paper is to address these outstanding issues for the case of the Higgs

boson, including the viability of our Universe given the SM Higgs potential instability and a

gauge-invariant evolution of the field—we will find several conceptual improvements over [18],

1 The PΛ calculated in [18] were independent of the exact choice of Λc provided it was chosen to be above

where the distribution rapidly flattens for |h| ≥ Λc ≥ hclassical, consistent with the observation therein that

the boundary condition employed to solve the FP equation is unphysical.
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though numerically our results are unchanged. To do this, we first set aside the Fokker-Planck

approach, and consider the evolution and growth during inflation of the two-point correlation

function of scalar field fluctuations for a toy model with V (h) = λ
4
h4, assuming λ < 0 such

that the potential is unstable. This will elucidate both how to extend such a model to the case

of the physical Higgs boson in an appropriately gauge-invariant and physical way, and how to

capture the effects of the full SM in such a model. Consequently, it will assist us in correctly

interpreting the results of the Fokker-Planck calculation for the SM Higgs.

Specifically, in Sec. II, we do a mode decomposition of h, integrate out the sub-horizon modes

and compute the evolution of the vev fluctuations, assuming a Gaussian distribution. In doing

so, we gain an important physical insight: the variance of the distribution becomes infinitely

broad after a finite number of e-folds of inflation. This indicates that, during each subsequent

e-fold, we expect the vev in a significant proportion of surviving patches to rapidly diverge,

giving rise to a sizable number of crunching patches and defects. If inflation were to successfully

end after this point, the resulting Universe would likely exhibit large inhomogeneities, and

consequently look rather unlike ours. With this physical insight, in Sec. III we recalculate the

two-point correlation function for the fluctuations in perturbation theory. Doing so reveals that

a stochastic approach, such as that employed in Sec. II, captures the leading, gauge-invariant

contributions to the correlator provided certain identifications are made. In particular, we see

that the quartic is a function of scale µ, λ(µ), which must be fixed in the calculation. The

perturbative calculation shows that the appropriate coupling to use to study the evolution of

the Higgs field is the renormalization group (RG)-improved Higgs quartic coupling evaluated at

the Hubble scale during inflation, λ(H). This is gauge-invariant, and hence physical. Moreover,

it encapsulates the sub-horizon effects of the SM gauge bosons and fermions. The perturbative

calculation also reveals how to treat the additional degrees of freedom in the full SM Higgs

doublet. Armed with this enhanced understanding, we return in Sec. IV to the Fokker-Planck

equation, and use these results to interpret the resulting probability distribution function for

the SM Higgs boson and hence our Universe. Finally, we conclude.
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II. TOY MODEL: λh4 FIELD EVOLUTION IN THE GAUSSIAN APPROXIMATION

We begin by calculating the evolution of a scalar field in dS space employing a toy model

frequently used in the literature and outlined in [26]. This model illustrates many of the

important features, and serves as a check on the results, of the full SM Higgs case analyzed in

Secs. III and IV. It consists of a quartically-coupled real scalar,

V (h) =
λ

4
h4 (3)

where λ is taken to be constant. This simple model will turn out to be a good approximation

for the Higgs field during the early stages of inflation, provided λ is chosen appropriately. In

the case of the Higgs, the value of the coupling λ(µ) depends on the relevant energy scale—we

will see in the next section that an appropriate choice is µ = H, and here we implicitly consider

λ < 0 such that the above potential is unstable as for the Higgs field during a period of inflation

with H > ΛI . In addition, we assume the scalar h is minimally-coupled and that its potential

does not receive large corrections due to the inflaton energy density. Non-minimal curvature

coupling [19, 23], coupling to the inflaton [14] or higher-dimension operators [18, 32] can serve

to stabilize or destabilize the potential during inflation. Within the context of this simplified

model we show that the correlation function for the scalar field fluctuations, 〈δh2(t)〉, diverges

in finite time, and we discuss the implications of this divergence for our Universe.

The equation of motion for a canonically-normalized scalar field h in a dS background is

given by

ḧ+ 3Hḣ−
(
~∇
a

)2

h+ V ′(h) = 0. (4)

We decompose the scalar field in terms of a homogeneous background value h̄(t) and local

fluctuations δh(x, t). We will assume h̄(0) = 0, h̄(t) = 0 throughout inflation; taking non-zero

values will only lead to faster divergence. In this case, Eq. (4) is the equation of motion for the

fluctuations of the Higgs field, which can be decomposed into mode functions

δh(x, t) =

∫
d3k

(2π)3
a~kδhk(t)e

i~k·~x + h.c., (5)

where the creation and annihilation operators a~k, a~k
† satisfy the usual communtation relations.
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We now consider the evolution of the fluctuations in the context of the Hartree-Fock (HF) or

Gaussian approximation, where we can write all higher-point correlators in terms of 〈δh2(t)〉.
As we discuss in Sec. IV, this is a good approximation before fluctuations become large and

self-interactions become relevant. Using the Gaussian approximation we can linearize Eq. (4),

including the interactions, and then inserting Eq. (5) into Eq. (4) gives the mode equation

δ̈hk(t) + 3H ˙δhk(t) +

{(
k

a

)2

+ 3λ
〈
δh2(t)

〉
}
δhk(t) = 0, (6)

where
〈
δh2(t)

〉
=

∫ k=εaH

k=1/L

d3k

(2π)3
|δhk(t)|2 (7)

is the two-point correlation function for the value of the scalar field in a Hubble patch, obtained

by integrating over all superhorizon modes with k ≤ εaH. ε is an O(1) constant chosen

to distinguish between sub- and superhorizon modes, though our results will ultimately be

independent of ε. We will take tk to be the time that the physical wavelength of the mode

exceeds the horizon size and the mode freezes out, given by k = εa(tk)H.

In writing Eq. (6) with the integral of Eq. (7) taken over superhorizon modes only, we have

neglected subhorizon mode correlations. These terms can be cancelled using local counterterms

in order to derive an equation describing the evolution of superhorizon modes, and as such the

dominant effects of subhorizon modes can be reabsorbed into renormalization of the coupling

λ—we return to this point in Sec. III. In addition, note that Eq. (7) requires an infrared (IR)

cutoff, corresponding to the fact that we are studying fluctuations relative to a homogeneous

background value and so only consider modes that were subhorizon at the onset of inflation. We

choose a co-moving box of length L whose size is simply given by the region of space over which

the initial condition h̄(0) = 0 is a good approximation, corresponding to an IR cutoff k ≥ a0H

where a0 is the scale factor as the onset of inflation.2 The IR cutoff corresponds to the longest

observable scale (or “resolution”) for observing mode fluctuation relative to a homogeneous

background value, which is limited to a causally-connected region at the beginning of inflation

[33].

2 The modes with k < a0H effectively determine h̄(0) within this box.
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Now, consider the evolution of 〈δh2(t)〉 assuming that

|λ|
〈
δh2(t)

〉
� H2. (8)

In this case, modes are effectively massless, yielding the usual result in dS space

δhk(t) =
H√
2k3

(
1− i k

aH

)
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L ≤ k ≤ εaH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙δhk(t) + 3λ
〈
δh2(t)

〉
δhk(t) = 0. (10)

The evolution equation for 〈δh2(t)〉 can be found by multiplying by δh∗k(t) and integrating over

superhorizon modes. The derivative term is simplified using

∫
d

dt
|δhk(t)|2 =

d

dt

(∫
|δhk(t)|2

)
− 4πk2

(2π)3
|δhk(tk)|2

d

dt
(εaH) =

d

dt

〈
δh2(t)

〉
− H3

4π2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of 〈δh2(t)〉 is then

d

dt

〈
δh2(t)

〉
= −2λ

H

〈
δh2(t)

〉2
+
H3

4π2
. (12)

The solution to this equation is

〈
δh2(t)

〉
=

1√
−2λ

H2

2π
tan

(√
−2λ
N
2π

)
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

λ < 0, it is equally valid for λ > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of λ → 0, we obtain the

familiar result for a massless field in dS space

〈
δh2(t)

〉
=
H2N
4π2

. (14)
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Second we observe that, for λ > 0, the interaction tends to reduce the size of the fluctuations

and stabilize the scalar field—the distribution of field values approaches an equilibrium state,

as described in [26]. The more interesting case is when λ < 0, as for the SM Higgs with H > ΛI

such that λ(H) < 0. In this case, we see that the superhorizon fluctuations grow even more

rapidly than for a massless field, and in fact diverge after a finite number of e-folds,

Nmax =
π2

√
−2λ

. (15)

What does this divergence mean physically? As mentioned previously, 〈δh2(t)〉 is the cor-

relation function for local superhorizon mode fluctuations (“local” meaning the field value is

averaged over a Hubble-sized patch). It is analogous to more familiar correlation functions such

as 〈δφ2(t)〉, where φ is the inflaton and δφ represents the local quantum fluctuations around

the homogeneous background value. In the same way that the local fluctuations in the infla-

ton value give rise to local fluctuations in energy density, the fluctuations δh(x, t) give rise to

different values of the field value in different patches and hence different local energy densities.

If the field value in a particular patch fluctuates to a very large value such that |λ| δh4 ∼>
H2M2

P , the energy density in the field ρh ≈ V (δh) < 0 may cancel the inflaton energy density

ρφ ∼ H2M2
P , producing a patch in which the local energy density is small or negative. This

backreaction causes the patch to stop inflating and crunch, giving rise to a defect such as a

black hole. More precisely, solving the Friedmann equations reveals that, once the field value

in a patch exits the slow-roll regime, |δh|∼>
√

3
−λ , the field value diverges rapidly and the patch

quickly evolves to a singularity, within ∼ 1 e-fold. In the Gaussian approximation, though, the

typical size of a field fluctuation in a patch is of order
√
〈δh2(t)〉. Consequently, such large

fluctuations are extremely rare throughout most of inflation. Moreover, the rare occurrence

of backreacting and non-inflating patches does not disrupt inflation globally, and the resulting

defects would be diluted by inflation, minimizing observational implications.

However, when N approaches Nmax, large field value fluctuations are no longer rare; a

significant fraction of the patches that eventually evolve into the observable Universe would

develop instabilities. Consequently, the resulting Universe would exhibit large inhomogeneities

as a result of the defects produced—in the case of our Universe, large inhomogeneities would be
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inconsistent with the small curvature perturbations ∆2
R ≈ 2 × 10−9 observed by, e.g., WMAP

[34] and Planck [35]. In addition, if the proportion of non-inflating patches becomes O(1), the

analysis of [36] suggests that the inflating regions could not percolate and undergo the necessary

amount of inflation (inflating regions would fracture or “crack”). The inflating space as a whole

becomes unstable, and inflation ends. Thus if Nmax∼< No, where No ≈ 50 − 60 is the number

of e-folds needed to satisfy observational bounds on flatness and homogeneity, then a relatively

homogeneous Universe such as ours would not be consistent with the existence of a scalar field

such as h exhibiting an instability in its potential. We will return to this point in Sec. IV.

Consequently, having No ≤ Nmax is necessary, but not sufficient, to guarantee the existence

of our Universe. After inflation ends, rapid reheating must occur to stabilize the potential and

prevent collapse of the entire spacetime. Finite temperature effects generate a positive mass-

squared for h, m2
eff ∼ T 2

R, where TR is the re-heat temperature. As long as m2
eff & λ〈δh〉2, the

field is rapidly thermalized and driven to 〈δh2〉 = 0. This is easily satisfied, since the maximum

re-heat temperature is Tmax
R ∼ √HMP , while 〈δh2〉 is typically of size H2N

(2π)2
.

In deriving these results, we have employed several approximations. First, we have assumed

|λ| 〈δh2(t)〉 � H2, such that the fluctuations are effectively massless and the evolution of the

superhorizon modes can be considered in the slow-roll approximation. If λ < 0, modes become

tachyonic once |λ| 〈h2(t)〉∼> H2, leading to their rapid growth. This coupled with the rapid (i.e.,

not slow-roll) evolution of superhorizon modes in this regime accelerates the divergence of field

fluctuations, making the above estimate of Nmax an upper bound. However, the accelerated

growth of 〈δh2(t)〉 near Nmax means that this assumption is not violated significantly before

〈δh2(t)〉 diverges, such that Nmax is a reasonable limit on the number of e-folds of inflation

within the Gaussian approximation. For the same reason, a bound derived by requiring that

a non-negligible but smaller than O(1) fraction of patches are forming defects will not be

significantly more constraining than Nmax.3

Second, as mentioned, we are working in the Hartree-Fock approximation, such that 〈δh4〉 =

3 〈δh2〉2. This holds if the operator h is a Gaussian stochastic quantity, but breaks down

3 Likewise, while the divergence is assumedly unphysical and would be regulated if we cut off δh by, e.g.,

throwing away backreacting patches, such a procedure would not affect these results until the fraction of

backreacting patches became non-negligible at N ∼< Nmax.
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for a field with self-interactions, λ 6= 0, as is the case for the Higgs field. In particular,

once the fluctuations become large (for δh∼> H), the potential term in Eq. (12) and the self-

interactions will become important. For λ < 0, this will enhance the fluctuations, potentially

increasing the proportion of unstable patches at any given e-fold—we return to this point in

Sec. IV. In particular, we will see that self-interactions can drastically modify the behavior of

the most unstable patches. Consequently, while the limit Nmax is valid within the Gaussian

approximation, an actual limit onN for the case of the SM Higgs may be substantially different,

depending on the behavior of (and cosmological constraints on) the crunching patches.

Finally, we have considered λ as constant and negative. We argue why this choice is appro-

priate for the Higgs field with H > ΛI in the next section.

III. PERTURBATIVE CALCULATION OF
〈
δh2(t)

〉
AND CONNECTION TO STAN-

DARD MODEL HIGGS BOSON

As shown in the previous section, scalar field fluctuations are initiated and grow due to

the quantum noise from dS. Moreover, for V (h) = λ
4
h4 with λ < 0, 〈δh2(t)〉 diverges in finite

time, signaling the breakdown of our slow-roll solution and an end of the usual inflationary

scenario. Although we have used the HF approximation for demonstration, the growth of the

fluctuations can be captured by a perturbative calculation, which is consistent with the result

Eq. (13) within the range that the perturbative calculation is valid.4 Perturbation theory

eventually breaks down due to the logarithmic growth of scalar correlators—thus, by calculating

〈δh2(t)〉 perturbatively, we can determine when the breakdown occurs and identify this with

the singularity of Eq. (13), providing a non-trivial check of the results of the previous section.

Most importantly, the perturbative calculation will elucidate how to extend the results for the

toy λh4 model considered in Sec. II to the case of the full SM, our ultimate goal.

We summarize in Fig. 1 the relevant diagrams for computing the evolution of the two-point

correlation function in the SM. We start by computing the first two graphs in Fig. 1 in λh4

4 The HF approximation effectively resums the leading IR logarithms that arise in the perturbative calculation

of the two-point correlation function. It has been shown that the stochastic approach of, e.g., [26] gives IR

logarithms consistent with a perturbative QFT calculation [37–40].
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Leading IR logs
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t

x y| {z }
Subleading IR logs

FIG. 1. Sample Feynman diagrams included in our calculation of the Higgs two-point correlation

function. The first two graphs (labeled “Leading IR logs”) contribute to the late-time divergence

of the Higgs two point correlation
〈
δh2(t)

〉
. The last three graphs do not directly contribute to the

leading divergence, but serve to renormalize the Higgs self-coupling λ. The points x, y are assumed

to be separated by less than one Hubble length during inflation and the gauge boson propagators, for

reasons we explain in the text, include only the transverse degrees of freedom.

theory. We will find that computing these first two graphs reproduces the leading behavior that

we observed in the previous section. We will also argue that the other graphs do not contribute

to the leading divergence of the Higgs two-point correlation function. This observation will

allow us to connect our toy model to the SM.

To be explicit, we compute the two-point correlation function utilizing the “in-in” formal-

ism. (For a review of the “in-in” formalism and its applications to cosmology, see [41].) The

expectation value of an operator 〈O〉 to a given order n in perturbation theory is

〈O(t)〉 =
∑

n

(−i)n
∫ t

−∞
dt1 · · ·

∫ tn−1

−∞
dtn
〈[[
OI(t), HI(tn)

]
, · · ·HI(t1)

]〉
, (16)

where the superscript I denotes that the operators are in the interaction picture, and HI is the

interaction Hamiltonian density,

HI =
1

4
λ
(
hI(z)

)4
+

1

2
δm2

(
hI(z)

)2
+

1

2
δξR(z)

(
hI(z)

)2
. (17)

13



In this Hamiltonian we have included counterterms for the mass and curvature coupling, δm2

and δξ, both of which are induced through RG effects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

〈h(t, ~x)h(t, ~y)〉 =
〈
hI(t, ~x)hI(t, ~y)

〉

+ (−i)
∫ t

−∞
dtz
√
−g(tz)

∫
d3~z
〈[
hI(t, ~x)hI(t, ~y),

1

4
λ
(
hI(z)

)4
+

1

2
δm2

(
hI(z)

)2
+

1

2
δξR(z)

(
hI(z)

)2
]〉

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.

Defining

ρ(x, y) = i
〈[
hI(x), hI(y)

]〉
, F (x, y) =

1

2

〈{
hI(x), hI(y)

}〉
, (20)

we have

〈h(t, ~x)h(t, ~y)〉 = F (x, y)−
∫ t

d4z a3(tz) [F (x, z)ρ(y, z) + ρ(x, z)F (y, z)]
(
3λF (z, z) + δm2 + δξR(z)

)
,

(21)

with

F (x, y) =
1

2

∫
d3k

(2π)3hk(tx)h
∗
k(ty)e

i~k·(~x−~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3λF (z, z) = 3λ

∫ aΛ

ΛIR

d3k

(2π)3 |hk(tz)|
2 (23)

= 3λ

[
Λ2

8π2
+
H2

8π2
ln

[(
aΛ

ΛIR

)2
]]

, (24)
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where the IR cut-off is taken to be ΛIR = a0H, as in Sec. II. There are two types of terms

present in Eq. (24).5 First, there are the IR logarithms of the form log(a/a0) = N , due to

the superhorizon modes, that give rise to the divergence of the correlator 〈δh2〉 as observed

in the previous section. Second, there are terms due to UV physics, including quadratic and

logarithmic divergences. These terms are identical to terms that would be present in Minkowski

space, as the high-energy subhorizon modes only see the local spacetime (which appears flat)

and not the expansion. As such, these terms can be cancelled by local counterterms δm2, δξ,

δm2 = −3λ(µ)
Λ2

8π2
, 12δξ = −3λ(µ)

4π2
log

(
Λ2

µ2

)
. (25)

As in Minkowski space, the UV divergences are accompanied by logarithms of the renormaliza-

tion scale and the energy scale H, log(µ2/H2). We have chosen a renormalization condition for

the mass-squared and non-minimal coupling such that the renormalized m2(µ) and ξ(µ) vanish

at µ = H.

Putting the pieces together, the correction to the two-point correlation function goes as

3λF (z, z) + δm2 + δξR =
3λ(µ)H2

8π2

(
2N + ln

µ2

H2

)
. (26)

The choice of renormalization scale resums the logarithms and ensures the theory remains

perturbatively under control in the UV—specifically, the logarithms vanish for the choice µ =

H, and the coupling is the RG-improved tree-level coupling λ(µ = H). We note that the effects

of the IR logarithms from higher-order corrections are also minimized by choosing µ = H. In

the remainder of the calculation, we will be focused on extracting the leading IR logarithms,

which determine the rate at which the two-point correlation diverges. First, though, we note

that this simple analysis suggests how contributions from additional Standard Model particles

are to be included. The contributions from loops of SM particles in the UV are shown as the

“subleading IR logs” diagrams in Fig. 1. Loops of transverse gauge bosons and fermions actively

renormalize the coupling λ(µ) from the UV cut-off of the theory Λ down to µ = H. At scales

below µ = H, however, the propagators of these fields do not have logarithmic divergences

5 We have dropped exponentially suppressed terms that go as ΛIR/aH.
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at late time and hence do not contribute to the divergent part of 〈δh2〉—we elaborate on this

point further below.

The leading term in Eq. (21) is

F (t, ~x; t, ~y) =
H2

4π2

(
ln

1

ΛIRr
+ 1− γ

)
+

1

2π2

1

a2r2
, (27)

≈ H2

4π2
N (28)

with r = |~x− ~y| evaluated at r ≈ (aH)−1, keeping the leading IR logarithm. The leading IR

logarithm due to second term of Eq. (21) is

− 3λ

∫ t

d4z a3(tz)
H2

8π2
H (tz − t0) [F (x, z)ρ(y, z) + ρ(x, z)F (y, z)]

= (−i) 3λ

∫

tz ,k

a3(tz)
H2

8π2
H (tz − t0)

[
u2
k(t)u

∗2
k (tz)e

−i~k·(~x−~y) − h.c.
]

≈ − λ

24π2
H2N 3. (29)

We can compare this with the result of Eq. (13), expanded in the limit of
√
−λN � 1,

〈
δh2(t)

〉
HF
≈ H2

4π2
N − λH2

24π4
N 3. (30)

The two results agree, consistent with the claim that the HF approach resums the leading IR

logarithms that arise in perturbation theory.6

We see that perturbation theory breaks down (signaled by the subleading term exceeding

the tree-level term) after a critical number of e-folds

N > π

√
6

|λ| ≡ Nc∼
> Nmax. (31)

Although we have only calculated the breakdown of perturbation theory at leading order, we

can see that the result is consistent with Nmax derived from Eq. (13). In addition, for λ < 0,

the subleading term gives a positive contribution to 〈δh2(t)〉, further supporting the claim that

the correlator diverges in finite time.7

6 A similar analysis has been done in Refs. [39, 40] using the stochastic approach.
7 The perturbative calculation also breaks down in finite time for λ > 0. This corresponds to the fluctuations

approaching a stabilized, equilibrium solution [26]—this solution is also apparent in the late-time limit of

Eq. (13) with λ > 0.
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In this analysis, the leading IR logarithmic divergences play the crucial role. They originate

from (1) the time integral associated with the scalar correlation functions F and ρ in the super-

horizon limit, and (2) the spatial momentum integral of the superhorizon modes involving the

correlation function F . In other words, as the superhorizon modes of a minimally-coupled light

scalar are undamped, its correlation functions are enhanced by scalar loop corrections, leading

to logarithmic growth with the scale factor a.8 By contrast, fermions and transverse gauge

bosons have decaying superhorizon mode functions (in the IR). Woodard and collaborators

(see, for example, [37, 38, 42] and references therein) accordingly classified minimally-coupled

light scalar fields as active fields and others as passive—diagrams involving the passive fields,

such as the last three graphs in Fig. 1, do not contribute to the leading IR divergence. As

a result, diagrams contributing to the leading IR divergence at a given order in perturbation

theory are composed solely of scalar propagators. This is the first key observation that allows

us to connect our toy model to the SM—if we are only interested in extracting the leading IR

divergence, the calculation including only the scalar field still applies in the exactly same way.

The second observation crucial to connect our calculation to the SM is that, while the

additional SM fields do not contribute to the leading IR logs directly, they do renormalize the

quartic coupling in the ultraviolet (UV), and hence determine λ(µ). In particular, as hinted

at in the calculation and discussion below Eq. (26), λ for the SM should be chosen as the RG-

improved SM quartic evaluated at µ = H, λ(H). The basic idea is that, since SM fermions and

vector bosons cannot generate the leading IR logarithms, when including all of the diagrams

as in Fig. 1 one would obtain schematically

〈
δh2(t)

〉
=

~H2

4π2
(N + c1)− ~2λH2

24π4

(
N 3 + d1N 2 + d2N + d3

)
+O(~3), (32)

where we have restored ~ to show the order in perturbation theory. The contributions from

additional SM particles are encoded in the coefficients of the subleading IR logs, c1 and di. These

contributions are minimized by choosing an optimal renormalization scale µ. In particular, the

toy model analysis and the effective potential in curved spacetime [19] indicates the optimal

8 Note that we obtained a higher power of logarithmic divergence from n = 1 than from n = 0, suggesting that

perturbatively higher order diagrams involving more scalar propagators (and thus more time and momentum

integrals) generally give a rise to higher powers of the IR divergence.
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renormalization scale is µ ≈ H. Said another way, the curvature R = 12H2 effectively plays

the role of the UV cut-off of the scalar-only theory.

So, in summary, the dynamics of the superhorizon Higgs fluctuations are captured by both

mode evolution in the Hartree-Fock approximation and perturbative calculation for a simple

scalar model with V (h) = λ
4
h4, where λ = λ(µ = H) is the RG-improved SM quartic evaluated

at µ = H. To complete the connection, some comments are in order regarding the additional

scalar degrees of freedom of the SM Higgs multiplet and the gauge invariance of this analysis.

One may explicitly calculate the gauge-invariant (composite) operator
〈
H†H

〉
, where H is the

full SM Higgs multiplet,

H =
1√
2


 χ1 + iχ2

h̄+ δh+ iχ3


 . (33)

Notably, H contains additional light bosonic degrees of freedom that should experience a similar

growth in fluctuations. While these degrees of freedom are eaten by the SM gauge bosons in

a background with
〈
H†H

〉
6= 0, like the Higgs they remain effectively massless as long as

g2 〈δh2(t)〉∼< H2 (where g represents the SM gauge coupling), and so should exhibit 〈δχ2
i (t)〉 ≈

〈δh2(t)〉, at least during the early stages of inflation. Accounting for these contributions in the

Hartree-Fock approximation, the mode equation for the superhorizon modes becomes (taking

V (H) = λ(H†H)2)

3Hḣk(t) + λ

(
3
〈
δh2(t)

〉
+
∑

i

〈
δχ2

i (t)
〉
)
hk(t) ≈ 3Hḣk(t) + 6λ

〈
δh2(t)

〉
hk(t) = 0. (34)

Comparing with Eq. (10), we see that, if the χi fields remained light, 〈δh2(t)〉 would effectively

diverge as if it had a factor of 2 larger coupling,

〈
H†H

〉
=

1√
−λ

H2

2π
tan

(√
−λN

π

)
, Nmax =

π2

2
√
−λ

. (35)

Similarly, including the additional degrees of freedom (for instance, in the second diagram of

Fig. 1) in the perturbative calculation we have carried out in this section, Eq. (30) becomes

〈
H†H

〉
≈ H2

2π2
N − λH2

6π4
N 3. (36)

Again, the two results agree in the limit
√
−λN � 1. Note that, although the χi acceler-

ate the divergence initially, their effects should decouple as g2
〈
H†H

〉
becomes comparable to
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H2. Moreover, as g2 � λ, this decoupling occurs before the breakdown of the perturbative

expansion—in particular, terms of O(~3λg2) will become relevant in Eq. (36), canceling against

the subleading term. Consequently, for the SM, the appropriate limit Nmax in the Gaussian

approximation should lie somewhere between Eq. (15) and Eq. (35).

Having made the connection between the simplified model of Sec. II and the full Standard

Model via the perturbative calculation, we finish this section by commenting on the phenomeno-

logical implications of the upper bound on the number of e-folds, N ≤ Nmax. As argued, the

appropriate numerical value for λ for the case of the SM Higgs is λ(µ = H). At scales µ� ΛI ,

the quartic coupling in the SM approaches a conformal regime with λ ≈ −0.01 for the best-fit

values of the relevant parameters. The corresponding limit on inflation is

50∼< Nmax∼< 70, (37)

where the lower (upper) limit corresponds to treating the χi as always light (decoupled).9 This

is intriguingly close to the No ∼ 50-60 e-folds required for consistency with cosmic microwave

background (CMB) observations. Thus, if the Hubble scale during inflation is much larger than

the instability scale, H � ΛI , new physics may be required to stabilize the Higgs potential and

make our Universe observationally viable. The imminent discovery of primordial B-modes in

the CMB would therefore merit a more precise determination of Nmax. For λ ≈ −5× 10−3, as

perhaps appropriate for H∼> ΛI ,

70∼< Nmax∼< 100, (38)

such that our Universe could perhaps arise after 50-60 e-folds of inflation even if the Higgs

potential is unstable. Note again, just as we did for the HF approximation in Sec. II, that the

proper limit for the SM Higgs may depend on the dynamics of the most unstable patches in

which non-Gaussian nature of the field is relevant—we address this issue in Sec. IV.

As observed at the end of Sec. II, inflating fewer than Nmax e-folds is a necessary, but

not sufficient, condition for a successful inflationary epoch. If 〈δh2(te)〉 ∼> Λ2
I , where te is the

time at the end of inflation, a majority of patches have Higgs vevs in the unstable regime

9 Within the HF approximation, one can estimate the impact of realistic χi decoupling by treating χi as light

until g2
〈
δh2(t)

〉
≈ H2—doing so, one finds that the divergence is delayed by ∼ 15-20% relative to Eq. (35).
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at the end of inflation. Patches with δh > (<) Λmax subsequently evolve towards the true

(electroweak) vacuum and, as the horizon expands post-inflation, the different patches come

back into causal contact with one another. This gives rise to a Universe with regions of different

Higgs vev separated by domain walls, in which the lower-energy-density true vacuum regions

would percolate and come to dominate space, again precluding a Universe such as ours. Indeed,

the existence of a single true vacuum patch at the end of inflation may be sufficient to overwhelm

the electroweak patches, making our Universe unlikely even if such patches are extremely rare

as a result of the huge number of patches e3Nend present at the end of inflation [17, 18]. However,

we avoid this situation by having a sufficiently high re-heat temperature, T 2
R & 〈δh2(t)〉. The

Higgs then becomes rapidly thermalized and settles down to the electroweak vacuum.

We have now shown how to compute the upper bound on the number of e-folds that inflation

can proceed before large local field fluctuations produce large inhomogeneities, precluding a

relatively homogeneous Universe such as ours. So far we have only done this either assuming

a Gaussian distributed field (Sec. II), or carrying out a perturbative expansion that breaks

down just as the instabilities become important (this section). In the next section, we consider

the Fokker-Planck equation that, once supplied with the correct potential, reproduces the non-

Gaussian tails of the distribution and allows us to gain more information about the rare but

important unstable patches. This will in turn allow us to better understand the Universe that

emerges.

IV. STANDARD MODEL HIGGS IN THE FOKKER-PLANCK EQUATION

The Fokker-Planck (FP) approach to studying the evolution of scalar field fluctuations in a

dS background was previously applied to the Higgs in Refs. [12, 17, 18]. Here we make use of

what we learned in Secs. II and III about Higgs potential during inflation to make contact with

previous results, notably those in [18]. We will not find significant numerical differences with

Ref. [18], but we will be able to better interpret those results.

The FP equation,
∂P

∂t
=

∂

∂δh

[
V ′(δh)

3H
P +

H3

8π2

∂P

∂δh

]
, (39)
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describes the evolution of a probability distribution function, P (δh, t), which can be interpreted

as the probability for the field to take a value δh in a Hubble patch at time t. The first term

on the right-hand side is a drift term due to the external potential, while the second term is a

diffusion piece due to quantum fluctuations of the Higgs in an inflationary background. P (δh, t)

can then be used to calculate superhorizon correlation functions via

〈δhn(t)〉 =

∫
dδh (δh)nP (δh, t). (40)

This formalism is intended to capture the non-trivial infrared behavior exhibited in dS space

by scalar field fluctuations and correlators such as 〈δh2(t)〉 (as considered in Sec. II) [26].

As stated in the introduction, one important question for the SM Higgs boson is which

potential V (h) to use. From the perturbative approach of Sec. III, it is clear that the leading

divergent behavior of field distributions and correlators is captured by a stochastic description

of field dynamics (such as HF) if one simply uses a tree-level quartic potential with constant

coupling, taken to be the RG-improved quartic coupling evaluated at the scale H. This resums

UV logarithms of the form log(µ2/H2) that appear in perturbation theory and as such, in the

case of the Higgs, encodes the local, subhorizon effects of the SM gauge bosons and fermions,

which decouple on superhorizon scales. Consequently, the results of the FP equation solved

for a model with V (h) = λ′

4
h4 and the identification λ′ ≈ λ(H) should describe well the

dynamics of the Higgs field fluctuations during inflation. In particular, this prescription should

unambiguously capture the leading divergent behavior.

The advantage of the FP approach relative to the HF approximation employed in Sec. II is

that the FP equation incorporates non-Gaussianity, which is relevant for any self-interacting

scalar field, particularly at large field values. In the case of an unstable potential, such as that

of the Higgs with H > ΛI , self-interactions can accelerate the rate at which the fluctuations

diverge in a patch, producing long tails in the distribution P (δh, t). These tails can be seen

in Fig. 2, which shows P (δh, t) after N = 25 e-folds of inflation for λ(H) = −0.01. At small

|δh|, the dynamics are dominated by the stochastic noise term, and the distribution broadens

steadily over the course of inflation, as in the Gaussian approximation. However, at large
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FIG. 2. Probability distribution of the Higgs, P (δh, t), evaluated at N = 25 for the case of

λ(H) = −0.01 (blue, solid). Also shown is a Gaussian distribution, corresponding to the Hartree-

Fock approximation of Sec. II, with variance
〈
δh2(t)

〉
given by Eq. (13) (black, dashed).

|δh|—specifically, for

δh∼> δhclassical ≡
(

3

−2πλ

)1/3

H (41)

—the classical force due to the potential, V ′(h) = λh3 comes to dominate over the quantum

fluctuations, causing the tails of the distribution to spread out rapidly. For comparison, we

also show a Gaussian distribution with variance 〈δh2(t)〉 given by Eq. (13); the distributions

are similar for |δh|∼< δhclassical ≈ 4H, but the FP distribution exhibits higher probability to find

the field at larger values |δh|∼> δhclassical.

Note that one potential subtlety does arise in solving the FP equation for the SM Higgs

due to the presence of the additional χi bosonic degrees of freedom in the full Higgs multiplet,

discussed at the end of Sec. III—specifically, they potentially obfuscate the most appropriate
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choice of λ′ for best replicating Higgs behavior during inflation. For instance, following Eqs. (35)

and (36), λ′ ≈ 2λ(H) would be the correct choice if the χi remain lighter than H. But, as their

mass m2
χi
∼ g2 〈δh2〉 becomes important, their effects decouple, so that this is not the correct

prescription at late time. In fact, because the impact of the potential only becomes significant

once |δh|∼> δhclassical, at which point mχ ∼ g |δh|∼> H, the choice λ′ = λ(H) should be a better

approximation. Thus, we concentrate on this choice here.

The regions of the distribution P (δh, t) with large δh contribute significantly to correlation

functions, causing them to diverge rapidly—much more rapidly than in the Gaussian approx-

imation, for instance. While one would reasonably expect Higgs self-interactions to accelerate

the rate of divergence, there is a question as to what extent this divergence is physical. The

evolution of δh to arbitrarily large value is clearly unphysical—at very least, for |δh| ∼ MP ,

Planck-suppressed operators would influence the evolution of δh. Moreover, as mentioned in

Sec. II, once δh exits the slow-roll regime in a patch when

|δh|∼> δhc ≡
(

3

−λ

)1/2

H, (42)

the slow-roll approximation employed by the FP equation breaks down, the vev in the patch

quickly diverges, and the patch evolves to a singularity. Such patches effectively disappear

when they crunch, so it is not clear that they should be included in P (δh, t) or when calculating

〈δhn(t)〉. However, truncating the probability distribution at a particular value of δh will of

course cut off the divergence of the correlators, in contrast to the Hartree-Fock approach where

backreaction and the disappearance of patches is neglected. Consequently, determining when

our Universe stops being viable based on the divergence of, e.g., 〈δh2(t)〉 or 〈V (δh)〉 as in Sec. II

is no longer sensible, and we instead need an alternative prescription to interpret P (δh, t) for

the fate of our Universe.

One reasonable approach, as employed in Refs. [12, 18], is to assume that any patches that

transition to the unstable regime benignly crunch during inflation, and thus to concentrate on

the proportion of patches PΛ that survive in the electroweak vacuum at the end of inflation

(see Eq. (1)). In order to do so, based on the observation that δh diverges rapidly and P (δh, t)

flattens out to small values for |δh| ∼> δhclassical, one can solve the FP equation approximating
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P (|δh| ≥ Λc, t) = 0, where Λc ≥ δhclassical, as in Ref. [18]. This prescription well captures

the bulk of the distribution at |δh| < δhclassical and so is suitable for calculating PΛ. Such an

analysis reveals that inflation can always last long enough to replace the lost patches. So, in

this case, the instability in the SM Higgs potential does not abort inflation or preclude the

existence of our Universe.

However, as discussed previously, if a significant proportion of crunching or unstable patches

are present at the end of inflation, the resulting universe might not look like our Universe. While

unstable patches with |δh| > Λmax can be stabilized by efficient reheating (see the discussion

at the end of Sec. II), the defects and large inhomogeneities formed by crunching patches with

|δh|∼> δhc at the end of inflation may well be inconsistent with the small curvature perturbations

observed in our Universe. Moreover, if the proportion of crunching patches becomes O(1),

inflation is expected to terminate altogether as space becomes dominated by collapsing regions

[36]. Consequently, in this work, we employ a slightly different approach to Ref. [18], and

concentrate on the minimal level of inhomogeneity one would expect to be generated at any

point during inflation due to the Higgs instability. Specifically, we numerically solve the FP

equation to determine the proportion of surviving patches that are transitioning out of the

slow-roll regime at each e-fold of inflation,

fN ≡
∫ δhc
−δhc dδh {P (δh,N )− P (δh,N − 1)}

∫ δhc
−δhc dδhP (δh,N − 1)

. (43)

The extremely rapid crunching of these patches would likely give rise to defects at the end of

inflation even if efficient reheating occurred.

In Fig. 3, we show fN as a function of N for two different choices of λ(H). After a certain

number of e-folds, the proportion of patches transitioning out of the slow-roll regime begins

to drastically increase, before eventually asymptoting to a steady state where approximately

the same proportion of patches form defects at any given N . The number of e-folds, NFP, at

which fN first reaches a particular value is given in Tab. I for several choices of λ(H). For

comparison, we show the limit on the number of e-folds, Nmax,HF, that one determines from

considering the divergence 〈δh2(t)〉 in the Hartree-Fock approximation (see Sec. II). The lower

(upper) bound on Nmax corresponds to treating the additional χi degrees of freedom in the
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FIG. 3. The proportion of surviving patches transitioning out of the slow-roll regime fN (Eq. (43))

at N e-folds of inflation for two choices of quartic coupling λ(H) = −0.005 (red) and −0.01 (blue).

full SM Higgs multiplet as light (heavy and decoupled) throughout inflation—a limit derived

incorporating realistic decoupling of χi likely lies ∼ 15-20% above the lower bound. Finally,

we show the number of e-folds at which a particular fN is reached for a Gaussian distribution

with variance given by Eq. (13), NHF, in order to explicitly demonstrate the claim in Sec. II

that, in the Hartree-Fock approximation, a negligible proportion of patches are forming defects

until N approaches Nmax.

As previously discussed, a legitimate assumption is that, in order to avoid large inhomo-

geneities and thus produce our Universe, inflation must end before a significant proportion of

patches are forming defects during each e-fold. In the case of the FP approach, this translates

into the requirement that fN at the end of inflation be smaller than some critical value, f crit
N ,

which constrains the duration of inflation, N ≤ N crit. Conceptually, this is equivalent to re-

quiring N ≤ Nmax in the Hartree-Fock approach of Sec. II—as Tab. I demonstrates, requiring
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λ(H) Nmax,HF

fN = 10−5 fN = 10−3 fN = 10−2

NFP NHF NFP NHF NFP NHF

-0.005 70∼< Nmax∼< 99 40 95 60 96 – 97

-0.010 49∼< Nmax∼< 70 27 66 44 67 – 68

-0.015 40∼< Nmax∼< 57 22 53 35 55 86 55

TABLE I. Number of e-folds at which fN first reaches a specific value (10−5, 10−3, 10−2), as computed

by the FP equation, NFP, or by a Gaussian distribution with variance given by Eq. (13), NHF. Dashes

denote that the asymptotic value of fN is smaller than that given. Also shown is the range of Nmax,HF

derived from the divergence of
〈
δh2(t)

〉
in the HF approach. Lower (upper) bounds correspond to

light (heavy and decoupled) χi as in Eq. (15) (Eq. (35)). To ascertain when fN reaches a particular

value relative to when
〈
δh2(t)

〉
diverges, NHF should be compared to the upper limit. See text for

more details.

fN ≤ f crit
N in the Gaussian approximation would yield N crit ≈ Nmax for most reasonable values

of f crit
N .

In terms of such a constraint, the main difference between the HF and FP approaches is

that the non-Gaussian self-interactions captured by the FP approach cause fN to reach non-

negligible values much more rapidly, and well before the bulk of the distribution has spread

out significantly in the Gaussian approximation. Consequently, if the formation of a small

proportion of defects at the end of inflation is prohibited (i.e., if f crit
N is small), the FP approach

indicates that the existence of an instability in the Higgs potential is very likely inconsistent

with our observed Universe. However, another notable difference between the HF and FP limits

is that, if fN from the FP calculation asymptotes to a value f∞ < f crit
N , then the instability in

the SM Higgs potential does not appear to preclude our Universe—a longer period of inflation

will be sufficient to replace the crunching patches and dilute away the defects, consistent with

the results of [18]. Notably, as f∞ ∼< 10−2 � O(1) for the representative values of λ(H)

considered, the Higgs instability does not appear capable of aborting inflation.

Of course, the key question is what proportion of patches can be forming defects at the end of

26



inflation such that the resulting inhomogeneities are still consistent with the observed Universe?

Or, in other words, what is an appropriate value for f crit
N ? One well-motivated guess is that

the defects produced are Primordial Black Holes (PBHs), and a variety of limits on PBHs have

been determined for different ranges of masses and lifetimes (see, e.g., [43, 44] and references

therein). However, for relatively light PBHs (MBH ∼< 106 g ≈ 6 × 1029 GeV) that are formed

early and evaporate quickly, as we expect to be the case for those generated by the crunching

patches, potential constraints are limited. If one assumes that evaporating PBHs leave Planck-

mass relics, then one can obtain a bound by requiring that these relics do not overclose the

Universe [45]. In this case, the resulting constraint on the fractional energy density that can be

contained in PBHs at the time of their formation and evaporation is very stringent because the

relics dilute like matter and so their relative abundance increases during radiation-domination.

Since we expect the energy density in crunching patches to be comparable to that in surviving

patches, this would likely imply a very small value of f crit
N � 10−10 for best-fit values of the

relevant parameters.10 If PBH evaporation does not produce relics, then the radiation from the

PBHs simply contributes to the radiation at reheating, and the resulting universe is consistent

with ours provided reheating stabilizes any remaining unstable (but uncrunched) patches.

We thus return full circle to Ref. [18]. We started our discussion here by considering the

toy model of Sec. II, which illuminated how to think about infrared divergences in scalar field

correlation functions. This calculation reproduced the Gaussian bulk of the scalar field vev

probability distribution over the e3N Hubble volumes produced during N e-folds of inflation,

but left unclear how to connect to the SM Higgs. We then turned to the perturbative calculation

of Sec. III, which showed how to connect the toy scalar model to the SM Higgs, though the

calculation was limited to two loops. The results of these two calculations did, however, indicate

how to correctly apply the FP equation to the SM Higgs case. Unlike the other approaches, the

FP equation computes the evolution of the non-Gaussian tails and re-sums the contributions

from higher loops in perturbation theory. Numerically we obtain similar results to [18], but we

have gained insight on the proper application of the formalism and results.

10 This estimate assumes H ≥ ΛI ∼> 1011 GeV and TR ∼> H (such that unstable patches are stabilized during

reheating). Intriguingly, such a bound favors lower values of TR (and hence ΛI), which would give a shorter

period of the relative abundance of relics to increase.
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V. CONCLUSIONS

We have examined the evolution of the Higgs field during inflation in the case of an unstable

Higgs potential (i.e., the quartic coupling runs negative) and a Hubble parameter during infla-

tion H that is larger than the scale ΛI at which the potential becomes unstable. We applied

new methods that both allowed us to systematically deal with the gauge dependence in the SM

Higgs potential, and to understand how to apply our results to the evolution of the spacetime

as a whole. In particular, we found that the leading IR divergent behavior of Higgs fluctuations

is captured by the Fokker-Planck equation solved for the tree-level potential V (h) = λ
4
h4, where

λ is the RG-improved Standard Model quartic evaluated at a scale µ = H. As in our previous

work [18], we found that the instability in the Higgs potential does not terminate inflation,

even when H � ΛI .

However, we do find that, as inflation proceeds, a larger and larger fraction of the patches

develop an instability and even crunch in each e-fold of inflation. For typical values of the SM

Higgs quartic coupling, approximately 10−3 to 10−2 of the patches would be destroyed during

the last e-fold of inflation. The defects produced by these crunching patches could yield large

inhomogeneities such that the resulting Universe would not look like ours. Moreover, inasmuch

as inflation usually dilutes away any unwanted defects, the Higgs instability can regenerate

defects at the end of inflation.

The exact level of Higgs-instability-related defects that can be tolerated depends very much

on the nature of these defects. For instance, some unstable patches are expected to crunch and

yield light Primordial Black Holes. If the rapid evaporation of these Primordial Black Holes

leaves Planck-mass relics, there are very stringent constraints from requiring the relics not

exceed the present energy density in the Universe. On the other hand, if no relics remain from

evaporation, the Primordial Black Hole evaporation simply contributes to the radiation during

reheating, and the resulting universe may indeed look like ours. Thus, our conclusion is that

the Higgs instability need not be fatal to high scale inflation. We reserve a closer examination

of the post-inflationary evolution for future work.
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