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1. Introduction

The discovery of the Higgs boson [1] opens the path to the exploration of the sector respon-

sible for the breaking of the electroweak symmetry and makes the Standard Model a fully

predictive theory, because all couplings are now uniquely fixed. Precision measurements of

the properties of the Higgs boson therefore represent a crucial test of the Standard Model,

and any deviation, however small, will open a window to new physics scenarios.

The main production mechanism of a Higgs boson at hadron colliders is gluon fusion.

Unfortunately, gluon-fusion suffers from large perturbative instabilities [2, 3, 4, 5], and the

uncertainty on the next-to-next-to leading order (NNLO) prediction still remains of the

order of 10%. In order to fully exploit the potential of the LHC, it is therefore crucial to

improve on the NNLO result by going to the next order in the perturbative expansion.

Recently, the next-to-next-to-next to leading order (N3LO) QCD correction to Higgs

boson production has been computed as an expansion around threshold, and it was shown

that the remaining QCD scale uncertainty is reduced to a small 2% [6]. Most of the

ingredients and subprocesses that go into the computation of ref. [6] have been published

separately over the last few years: the three-loop corrections to Higgs production in gluon

fusion, as well as the corrections from the emission of an additional parton at one or two

loops, have been computed in full generality in refs. [7, 8, 9, 10, 11]. In order to obtain

a finite result, appropriate ultra-violet and infrared counterterms need to be included [12,

13, 14]. The contributions from the emission of two partons at one loop and three partons

at tree-level, however, have not been computed for arbitrary kinematics so far, but they

are only known as an expansion around threshold. In particular, in refs. [15, 16, 17,

18, 19] the first two terms in the threshold expansion of the triple-real and double-real-

virtual corrections have been computed by reducing the corresponding phase-space and

loop integrals to a small set of master integrals, all of which belong to a special class

of integrals that we call soft integrals. These soft integrals are not only important when

computing the first two terms in the threshold expansion of the cross section, but they also

contribute to the full result for the cross section as boundary conditions to the differential

equations satisfied by the master integrals in full kinematics. Despite their importance, the

results for the individual soft integrals that contribute to the soft-virtual and next-to-soft

corrections at N3LO of refs. [16, 19] have never been published explicitly1.

The purpose of this paper is threefold: first, we close the aforementioned gap and we

present all the technical details that went into the computation of the N3LO cross section

in the soft-virtual and next-to-soft approximations of refs. [16, 19]. We discuss in detail

methods to perform the threshold expansion of one-loop matrix elements for the production

of a heavy colorless state in association with two partons to any desired order, at least in

principle. Second, we present techniques to compute the resulting soft master integrals

analytically as a Laurent expansion in the dimensional regulator with coefficients that are

polynomials in multiple zeta values. Finally, we give explicitly all the soft master integrals

1Some of the soft integrals contributing to the soft-virtual corrections to the cross section at N3LO have

been published in ref. [17] after the computation of ref. [16] had been completed.
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contributing to the results of refs. [16, 19], as well as several new soft master integrals

which only contribute at higher orders in the threshold expansion [6].

In a nutshell, our approach to threshold expansion can be described as follows: we

start by expanding both the phase-space measure and the interference amplitudes into a

power series in some small parameter quantifying the deviation from threshold. At every

order in the expansion, the phase-space integrals are mapped onto (cut) Feynman integrals

by virtue of reverse unitarity [3, 20], which identifies on-shell phase-space constraints with

cuts of Feynman propagators. The resulting cut integrals are then reduced to a small

set of soft master integrals using integration-by-parts (IBP) techniques [21]. Similarly,

the expansion of the one-loop matrix elements in the integrand is performed using the

strategy of regions [22], which allows to exchange the threshold expansion and the loop

integration, provided that contributions from all ‘regions’ in loop momentum space that

lead to singularities in the soft limit are included. Similar to the findings of ref. [8], we

observe that in the present case the relevant regions correspond to regions where the loop

momentum can be either ‘hard’, ‘soft’ or ‘collinear’ to one of the initial-state momenta.

While the IBP reduction of the hard and soft regions can be dealt with using standard

techniques, the collinear regions require some special attention, because the resulting in-

tegrals contain propagators which are non-linear in the Lorentz invariants, and they are

hence not amenable to standard techniques. We find that, due to the analytic structure

of these propagators, it is always possible to recast the collinear-type integrals into a more

standard form using partial fractioning, and we observe that the ensuing master integrals

are always soft integrals, independently of the region.

In a second part of the paper we discuss techniques to evaluate the soft master integrals

as Laurent expansions in the dimensional regulator, and we present two complementary

approaches to achieve this. The first technique is reminiscent of the method of ref. [15]

and allows one to obtain a multifold Mellin-Barnes representation with poles at integer

values for each soft master integral. The second method uses a particular factorisation of

the three-body phase-space measure, similar to the method presented in ref. [23] for purely

real emissions. This method allows to arrive at a simple parametric integral representation,

whose simplicity can be understood via the scale invariance properties of soft integrals.

The paper is organised as follows. In Section 2 we describe the setup of the problem

and introduce some notation. In Section 3 we outline the methods used for the expansion

around threshold and the technique of reverse unitarity. We discuss the reduction to

master integrals and list the complete set of master integrals for each region in Section 4.

In Section 5 we describe the methods used for their evaluation and we present analytical

results, either as an expansion in the dimensional regulator or exactly in terms of generalised

hypergeometric functions. We draw our conclusions in Section 6.

2. Double-real-virtual corrections to Higgs production

In this paper we consider the production of a Higgs boson (H) in association with two

massless partons (k and l) via the scattering of two massless partons in the initial state (i
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and j),

i(q1) + j(q2) → H(qH) + k(q3) + l(q4) . (2.1)

Here the partons i, j, k and l can be gluons or massless quarks of NF different flavours,

which are not directly coupled to the Higgs boson. We work in the large top-mass limit,

and we assume the gluons to couple directly to the Higgs boson via the effective operator

Leff = −1

4
C H Ga

µν G
µν
a . (2.2)

At N3LO all of these partonic processes enter the inclusive cross section in the large top-

mass limit through the interference of the relevant tree and one-loop amplitudes. To be

more concrete, let us write the contribution to the cross section as

σRRV
ij→Hkl(s, z, ǫ) =

Nij;kl

2s
C

(1)
ij→klH(z, ǫ) , (2.3)

where Nij;kl contains all averaging and symmetry factors and s ≡ s12 denotes the square of

the partonic center of mass energy. The mass of the Higgs boson will be denoted by mH ,

and for later convenience we introduce the following notations,

si1...ik ≡ q2i1...ik , qi1...ik ≡ τi1qi1 + . . .+ τikqik , (2.4)

where

τi =

{

+1 if i = 1, 2 ,

−1 if i > 2 ,
(2.5)

and

q2H = m2
H , z =

m2
H

s
, z̄ = 1− z . (2.6)

The dimensionless (coefficient) function C
(1)
ij→klH is defined as

C
(1)
ij→klH(z, ǫ) =

∫

dΦ3

∑

spins,colors

2Re
(

A(0)
ij→HklA

(1)∗
ij→Hkl

)

. (2.7)

If we set the scale introduced by dimensional regularisation µ equal to mH (a convention

which we shall adopt throughout this paper), then the coefficient function only depends

on z and the dimensional regulator ǫ, related to the dimension of space-time D via ǫ =
4−D
2 . Here A(L)

ij→Hkl denotes the L-loop amplitude for the the process ij → Hkl and the

differential three-particle phase-space measure is defined as

dΦ3 = (2π)Dδ(D)(q1234 − qH)
dDqH

(2π)D−1
δ+(q

2
H −m2

H)
4
∏

i=3

dDqi
(2π)D−1

δ+(q
2
i ) , (2.8)

where δ+(q
2 − m2) ≡ δ(q2 − m2)Θ(q0), with Θ the Heaviside step function. In the rest

of this paper we present methods to compute the coefficient function C
(1)
ij→klH(z) as an

expansion around threshold.
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3. Threshold expansion for real emissions at one loop

Our goal is to obtain the expansion of the coefficient function C
(1)
ij→klH(z, ǫ) close to z = 1,

where all the emitted final-state partons are soft. In other words, we want to expand

eq. (2.7) in the soft momenta q3 and q4. To be more concrete, let us define a set of rescaled

momenta pi as

qi =

{

z̄ pi , if i ∈ {3, 4} ,
pi , otherwise .

(3.1)

After this rescaling both the phase-space measure and the matrix element in eq. (2.7)

depend on the scaling parameter z̄. It will be convenient to introduce a notation for how

a given quantity scales with z̄, e.g., we will write q1 ∼ 1 and q3 ∼ z̄ to refer to the scaling

behaviour defined by eq. (3.1). Our goal is to expand both the phase-space measure and the

amplitudes in this scaling parameter. In the rest of this section we discuss the expansion

of each of these objects in turn.

Let us start by discussing the threshold expansion of the phase-space measure. Chang-

ing variables to the rescaled momenta (3.1), it is obvious that the only quantity in eq. (2.8)

that depends non-trivially on the scaling parameter is the on-shell condition for the Higgs

boson,

δ+(p
2
H −m2

H) = δ+((p12 − z̄p34)
2 −m2

H) =
1

z̄
δ+(s12 − 2 p12 · p34 + z̄ s34) . (3.2)

At leading order in the threshold expansion we can simply ignore the term linear in z̄

appearing inside the δ function. If we want to study the subleading terms in the ex-

pansion, however, we need to take into account this term, i.e., we need to expand the δ

function around threshold. This can be achieved using reverse unitarity [3, 20] to interpret

phase-space integrals as Feynman integrals with cut-propagators, i.e., where some of the

propagators have been replaced by on-shell δ-functions,

δ+(q
2) →

(

1

q2

)

c

. (3.3)

The subscript c is a reminder that this propagator is cut. Cut propagators can be differ-

entiated just like normal propagators,

d

dx

(

1

F (x)

)n

c

= −n

(

1

F (x)

)n+1

c

dF (x)

dx
, (3.4)

but satisfy the extra condition

(

1

q2

)n

c

(q2)m =







(

1
q2

)n−m

c
, if n > m ,

0 , if m ≥ n ,
(3.5)

The soft expansion of the phase-space measure therefore reads,

dΦ3 = z̄3−4ǫ
∞
∑

n=0

dΦ
(S,n)
3 z̄n , (3.6)
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with

dΦ
(S,n)
3 = 2π (−s34)

n

(

1

s12 − 2p12 · p34

)1+n

c

4
∏

i=3

dDpi
(2π)D−1

(

1

p2i

)

c

. (3.7)

Note that this procedure necessarily introduces cut propagators raised to higher powers in

the subleading terms in the expansion. In Section 4 we will see that integrals involving

these additional powers of cut propagators can always be reduced to the case n = 0. As a

result, all phase-space integrations will be performed against the soft phase-space measure

defined by

dΦS
3 ≡ dΦ

(S,0)
3 = 2π δ+(s12 − 2p12 · p34)

4
∏

i=3

dDpi
(2π)D−1

δ+(p
2
i ) . (3.8)

Let us now turn to the threshold expansion of the integrand. This requires expanding

in z̄ both the tree-level and one-loop amplitudes appearing inside the matrix element in

eq. (2.7). The expansion of the tree-level amplitude can easily be obtained by introducing

the rescaled momenta (3.1) and expanding the resulting rational function in z̄.

The expansion of the one-loop amplitude, however, is more subtle. In order to under-

stand why, let us mention already now that the coefficient function is not meromorphic at

z = 1, but it can nevertheless be written in the form

C
(1)
ij→klH(z, ǫ) = z̄−1−4ǫC

(1,h)
ij→klH(z, ǫ) + z̄−1−5ǫC

(1,c)
ij→klH(z, ǫ) + z̄−1−6ǫC

(1,s)
ij→klH(z, ǫ) , (3.9)

where the functions C
(1,r)
ij→klH(z) for r ∈ {h, c, s} are holomorphic at z = 1 and therefore

admit a Taylor expansion around this point,

C
(1,r)
ij→klH(z, ǫ) =

∞
∑

k=0

C
(1,r,k)
ij→klH(ǫ) z̄k . (3.10)

A naive expansion of the loop integrand in z̄ fails to reproduce this analytic structure,

because the expansion of the loop integrand gives rise to a holomorphic function, and the

phase-space measure can only account for the term proportional to z̄−4ǫ (see eq. (3.6)). In

other words, the threshold expansion does not commute with the loop integration.

Indeed, it is well-known that for some kinematic limits the loop integration does not

commute with expansions of the loop integral, and hence a naive Taylor expansion of the

loop integrand is bound to fail. The strategy of regions instead allows one to recover the

correct expansion of the integral [22]. In this approach one sums up the expansions around

all loop momentum regions which can be identified to lead to singularities in the limit z → 1.

In ref. [8] it was argued that in the present case these different ‘regions’ can be classified

as ‘hard’ (h), ‘soft’ (s) and ‘collinear’ (c), depending on whether the loop momentum is

hard, soft or collinear to one of the hard partons. The three different terms in eq. (3.9)

are then associated with these three regions. The collinear region is further decomposed

into two different collinear regions, ‘collinear-1’ (c1) and ‘collinear-2’ (c2), where the loop

momentum is collinear to p1 or p2. Each region is associated with a specific scaling of

the (components of the) loop momentum k, similar to the rescaling (3.1) used to define
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the threshold expansion of the phase-space measure. In order to define these scalings, we

parametrise the momentum flowing through a suitable propagator by

kµ = α pµ1 + β pµ2 + kµ⊥ , (3.11)

where

α =
k · p2
p1 · p2

, β =
k · p1
p1 · p2

(3.12)

and the measure can then be written in this parametrisation as

dDk =
s12
2

dαdβ dD−2k⊥ . (3.13)

The different regions are then associated with the following scalings in z̄,

(h): k ∼ 1, such that dDk ∼ 1,

(c1): α ∼ z̄, k⊥ ∼
√
z̄, such that dDk ∼ z̄

D

2 ,

(c2): β ∼ z̄, k⊥ ∼
√
z̄, such that dDk ∼ z̄

D

2 ,

(s): k ∼ z̄, such that dDk ∼ z̄D.

The overall scaling of a given region in eq. (3.9) can then be understood by combining the

scalings of phase-space measure, eq. (3.6), and loop momentum measure in the different

regions.

At this stage we have to address a critical point in this procedure. The scalings we

have just defined are not invariant under the shift symmetry of the loop integral, i.e.,

the rescaling can only be applied once an adequate shift of the loop momentum has been

identified. We solve this issue in the following way: first, we note that, up to swaps of the

external momenta p3, p4, all the loop integrations appearing inside the one-loop amplitude

can be mapped to one of the following four pentagon topologies,

Pentn1,...,n5(p1,−p3,−p4, p2) ,

Pentn1,...,n5(p1, p2,−p4,−p3) ,

Pentn1,...,n5(p14, p4, p24,−p3) ,

Pentn1,...,n5(−p3, p1, p2,−p4) ,

(3.14)

with

Pentn1,...,n5(q1, q2, q3, q4)

=

∫

dDk

iπD/2

1

[(k − q1 − q2)2]n1 [(k − q2)2]n2 [k2]n3 [(k + q3)2]n4 [(k + q3 + q4)2]n5
.

(3.15)

Using the loop momentum scalings defined in the previous paragraph we have checked

explicitly that the first few terms of the z̄ expansions, obtained by summing up the expan-

sions of non-vanishing hard, collinear and soft regions of various pentagons, boxes, triangles

and bubbles defined through eq. (3.14), reproduce the same expansions as one can obtain
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from an expansion in Feynman parameter space by the methods of ref. [24]. Combined with

the expansion of the phase-space measure discussed at the beginning of this section, we

have therefore obtained a machinery to compute the threshold expansion of the coefficient

functions C
(1)
ij→klH(z, ǫ).

Let us conclude this section by making a technical comment about the expansion in

the collinear regions. The procedure outlined above will effectively lead to an expansion

in
√
z̄ in the collinear region, because the transverse components of the loop momentum

scale like
√
z̄. In other words, there seems to be a contradiction to the statement that the

coefficient function in the collinear region, C
(1,c)
ij→klH(z, ǫ), is holomorphic at z = 1. In the

following we show that this coefficient function in the collinear region is indeed holomorphic

at z = 1, and therefore all terms proportional to powers z̄n/2, with n odd, must vanish. In

order to prove this statement, consider an integral of the form,

∫

dDk

iπD/2

kµ1

⊥ kµ2

⊥ . . . kµn

⊥

F (k, p1, p2)
, (3.16)

where F is a Lorentz invariant function which only depends on the loop momentum k

through the scalar products k2, k ·p1 and k ·p2. Using the scaling properties of the collinear

regions and the relations of eq. (3.12), it can be seen that all integrals which appear in the

z̄ expansions of the collinear regions of the four pentagon topologies defined in eq. (3.14)

indeed fall into this category. As the only source of
√
z̄ in the expansion are the transverse

components of the loop momentum k⊥, all terms in the expansion proportional to z̄n/2

with n odd must be proportional to an integral of the type (3.16). A sufficient condition

to prove that C
(1,r)
ij→klH(z, ǫ) is holomorphic at z = 1 is therefore that all integrals of the

type (3.16) vanish for odd values of n. In Appendix A we prove that this is indeed the

case. More precisely, we prove the following result,

∫

dDk

iπD/2

kµ1

⊥ kµ2

⊥ . . . kµn

⊥

F (k, p1, p2)

=











gµ1µ2...µn

⊥

1
∏n/2

i=1(D − 4 + 2i)

∫

dDk

iπD/2

(k2⊥)
n/2

F (k, p1, p2)
if n even,

0 if n odd,

(3.17)

where

gµν⊥ = gµν − pµ1p
ν
2 + pν1p

µ
2

p1 · p2
(3.18)

is the metric on the space transverse to the vectors p1 and p2, and

gµ1µ2...µn

⊥ =
1

2n/2(n/2)!

∑

σ∈Sn

g
µσ(1)µσ(2)

⊥ g
µσ(3)µσ(4)

⊥ . . . g
µσ(n−1)µσ(n)

⊥ . (3.19)

We note that eqs. (3.17) and (3.11) can be used efficiently to reduce any one-loop integral,

which appears in the collinear region, containing arbitrary powers of the Lorentz invariants

k·p3 and k·p4 in the numerator, to integrals containing only the Lorentz invariants k·p1, k·p2
and k2 in numerator and denominator.
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4. IBP reduction and master integrals

In the previous section we argued that the threshold expansion of the coefficient function

C
(1)
ij→klH receives contributions from hard, soft and collinear regions, see eq. (3.9). The

integrals appearing in the expansion are, however, not independent, but can be reduced to

a small set of master integrals using integration-by-parts (IBP) identities [21]. While IBP

identities have been introduced for Feynman integrals rather than phase-space integrals,

we can use reverse unitarity to interpret phase-space integrals as Feynman integrals with

cut-propagators, to which IBP identities are known to apply. Here we go one step further,

and we apply IBP identities combined with reverse-unitarity to the individual hard, soft

and collinear regions. As a result, we obtain for each region a small set of hard, soft or

collinear master integrals in terms of which the coefficients in the threshold expansion can

be expressed. Independently of the region, we will see that the master integrals will fall

into the class of so-called soft integrals, i.e., integrals with respect to the soft phase-space

measure (3.8) of a function that is independently homogeneous under a rescaling of the

initial momenta p1 and p2, as well as under a simultaneous rescaling of all the final-state

soft momenta. In the remainder of this section we review the IBP reduction in each region,

and we present the analytic results for the master integrals in each region. Details about

the computation of the master integrals will be given in Section 5.

4.1 The hard region

We start by discussing the master integrals coming from the hard region. Since the loop

momentum is hard, we can immediately expand in the soft final state momenta under the

integral sign, and the IBP reduction for the combined loop and phase-space integral follows

the same lines as for the purely real soft emission discussed in ref. [15]. We find that the

whole contribution from the hard region can be expressed in terms of only two master

integrals,

MH
1 =

11

22
=

∫

dΦS
3 Bub(s12) ,

MH
2 =

1

2

1

2

=

∫

dΦS
3

s13 s24 s34
Bub(s12) .

The double line denotes the Higgs boson, and the dashed line represents the phase-space

cut. All other internal uncut lines are scalar propagators. Moreover, Bub(p2) denotes the

usual one-loop bubble integral,

Bub(p2) =

∫

dDk

iπD/2

1

k2 (k + p)2
=

cΓ
ǫ (1− 2ǫ)

(−p2 − i0)−ǫ . (4.1)
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where we defined the usual loop factor

cΓ =
Γ(1 + ǫ) Γ(1− ǫ)2

Γ(1− 2ǫ)
. (4.2)

The computation of the master integrals will be discussed in detail in Section 5. Note

that Bub(s) = Bub(m2
H) + O(z̄), and so the hard master integrals can be written as a

bubble integral Bub(m2
H) multiplying one of the two soft master integrals appearing in the

double-real soft corrections at NNLO.

4.2 The soft region

Next, we discuss the contribution from the soft region, where k ∼ z̄. It is straightforward

to extend the methods of ref. [15] to the soft region at one loop. Indeed, since the loop

momentum scales in the same way as the final-state soft momenta, IBP reduction proceeds

in the same way as for purely real soft emissions at tree-level, except that the loop momen-

tum is not constrained to be on shell. At the end of this procedure, we find the following

set of soft master integrals,

MS
1 =

1
1

2
2

=

∫

dΦS
3

dDk

iπD/2

1

(−2kp1)k2(k2 − 2kp3)(2kp2 − 2p2p3)

MS
2 =

1

2
2

1

=

∫

dΦS
3

dDk

iπD/2

1

(−2kp1)(2kp2 − 2p2p3 − 2p2p4)(k2 − 2kp3)
,

MS
3 =

11

22

=

∫

dΦS
3

dDk

iπD/2

1

(k2 − 2kp3 − 2kp4 + 2p3p4)k2
,
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MS
4 =

11

22

=

∫

dΦS
3

dDk

iπD/2

1

(−2p1p4)(−2kp2)(k2 − 2kp3)(k2 − 2kp3 − 2kp4 + 2p3p4)k2
,

MS
5 =

1
1

2
2

=

∫

dΦS
3

dDk

iπD/2

1

(k2 + 2kp3)(k2 − 2kp4)(2kp2 − 2p2p4)(−2p1p3 − 2kp1)
,

MS
6 =

1

2

2

1

=

∫

dΦS
3

dDk

iπD/2

1

(−2p2p3)k2(2kp2 − 2p2p4)(−2p1p3 − 2kp1)(k2 + 2kp3)
,

MS
7 =

11

22

=

∫

dΦS
3

dDk

iπD/2

1

(−2p1p3)(−2p2p4)(k2 − 2kp4)(k2 + 2kp3)
,

MS
8 =

1

2
2

1

=

∫

dΦS
3

dDk

iπD/2

1

k2(2kp2 − 2p2p4)(−2p1p3 − 2kp1)(2p3p4)
,

– 10 –



MS
9 =

1

2
2

1

=

∫

dΦS
3

dDk

iπD/2

1

(2p3p4)k2(−2p1p3)(2kp2 − 2p2p4)(−2p1p3 − 2kp1)(k2 − 2kp4)
,

MS
10 =

1

2

1

2

=

∫

dΦS
3

dDk

iπD/2

1

(2kp2 − 2p2p4)(−2p1p3 − 2kp1)(k2 − 2kp4)(k2 + 2kp3)

× 1

(2p3p4)(−2p1p3)(−2p2p4)

MS
11 =

21

12

=

∫

dΦS
3

dDk

iπD/2

1

(k2 + 2kp3)k2(2kp2 − 2p2p4)(k2 − 2kp4)(−2p1p4)
,

MS
12 =

21

12

=

∫

dΦS
3

dDk

iπD/2

1

(k2 + 2kp3)k2(2kp2 − 2p2p4)(k2 − 2kp4)(−2p2p3)
,

MS
13 =

21

12

=

∫

dΦS
3

dDk

iπD/2

1

(2kp2 − 2p2p4)(k2 − 2kp4)(k2 + 2kp3)(−2p2p3)k2(−2p1p4)(−2p1p3 − 2kp1)
,
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MS
14 =

1
2

2
1

=

∫

dΦS
3

dDk

iπD/2

1

k2(−2kp1)(2kp2 − 2p2p4)(k2 − 2kp4)(2p3p4)(2kp2 − 2p2p3 − 2p2p4)
.

The number of propagators of the soft master integrals depending on the loop momenta

ranges from two to five. Since we are working in the soft region, the loop integrals are not

the complete momentum space integrals, but they correspond to the eikonal approximation.

Note that the eikonal approximation of the loop integrals depends on the specific orienta-

tion with which it enters the soft phase-space integrals, or equivalently, which invariants

become soft. We have explicitly evaluated all loop integrals in the eikonal approxima-

tion by determining the scaling of the Feynman parameters in the limit using the package

asy.m [24]. We find that in all cases, except for one pentagon integral, the remaining

parametric integrations can be perfomed in closed form to all orders in the dimensional

regulator ǫ. For the remaining pentagon we are able to obtain Mellin-Barnes integral repre-

sentation valid to all orders in ǫ. In the following we give a brief summary of the results for

the soft virtual integrals. The bubble type integrals in MS
3 and MS

7 can just be computed

as in eq. (4.1), and will not be discussed any further. Note that we present the results in

the Euclidean region where all invariants are negative, and the analytic continuation to the

scattering region is given by

−m2
H − i0 → e−iπ m2

H , −s12 − i0 → e−iπ s12 , −s34 − i0 → e−iπ s34 . (4.3)

Note also that the loop integrals appearing inside the master integrals have the correct

homogeneity properties to turn the master integrals into soft integrals. The computation

of the master integrals will be discussed in Section 5.

Soft Triangle Integrals. The soft master integrals MS
2 and MS

8 contain a virtual in-

tegral with three propagators.
−p1234

p13 p24

=

∫

dDk

iπD/2

1

k2(−2kp1 − 2p1p3)(2kp2 − 2p2p4)

= −Γ(1− ǫ) Γ(1 + ǫ)2

ǫ2
(−s13)

−ǫ (−s24)
−ǫ (−s12)

−1+ǫ .

The integral corresponds to a completely off-shell triangle where two of the virtualities of

the external momenta (s24 = p224 and s13 = p213) scale as z̄.
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Soft Box Integrals. We observe that there are four configurations of loop integrals with

four propagators. Two of them arise from box master integrals with one off-shell leg and

two from configurations with two off-shell legs.

1. The loop integral appearing in the definition of MS
1 is given by

p3 p1

−p123p2

=

∫

dDk

iπD/2

1

k2(k − p3)2(−2kp1)(−2p2p3 + 2kp2)

=
2(−s12)

ǫ(−s13)
−ǫ−1(−s23)

−ǫ−1Γ(1− ǫ)3Γ(ǫ+ 1)2

ǫ2Γ(1− 2ǫ)
.

2. The soft master integrals MS
4 , MS

11 and MS
12 contain the loop integral

p3 p4

−p234p2

=

∫

dDk

iπD/2

1

k2(k − p3)2(k − p3 − p4)2(−2kp2)

= −2(−s34)
−ǫ−1Γ(1− ǫ)2Γ(ǫ+ 1)

ǫ2(s23 + s24)Γ(1− 2ǫ)
2F1

(

1, 1; 1 − ǫ;
s24

s23 + s24

)

,

where 2F1 denotes Gauss’ hypergeometric function,

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
. (4.4)

3. In MS
5 and MS

10 we find a limit of a two-mass-easy box integral.

p34 p1

−p1234p2

=

∫

dDk

iπD/2

1

(k + p3)2(k − p4)2(2kp2 − 2p2p4)(−2p1p3 − 2kp1)

= −(−s34)
−ǫ 2Γ(1− ǫ)2Γ(ǫ+ 1)

(ǫ+ 1)2(s13 + s14)(s23 + s24)Γ(1− 2ǫ)

× 2F1

(

1, 1; ǫ + 2; 1− s12s34
(s13 + s14)(s23 + s24)

)

.
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4. The four propagator loop integral appearing in master integral MS
6 is a limit of a

two-mass-hard box integral.

p3 p24

−p1234p1

=

∫

dDk

iπD/2

1

k2(k + p3)2(−2p1p3 − 2kp1)(2kp2 − 2p2p4)

= (−s12)
ǫ(−s13)

−ǫ−1(−s24)
−ǫ−1Γ(1− ǫ)Γ(ǫ+ 1)2

ǫ2
2F1

(

1, ǫ+ 1; 1− ǫ;−s23
s24

)

.

The loop integral in MS
9 is related to the integral above via the permutation of

external momenta (p1 → p2, p2 → p1, p4 → p3, p3 → p4).

Soft Pentagon Integrals. We also need the soft limits of two configurations of the

one-loop pentagon with one off-shell leg.

1. Unlike the other one-loop soft integrals we require, the pentagon integral appearing

in MS
13 does not permit a closed expression in terms of simple 2F1 hypergeometric

functions. Nonetheless, we are able to derive a compact Mellin-Barnes representation.

p1

p3 p4

p2

−p1234

=

∫

dDk

iπD/2

1

k2(k + p3)2(k − p4)2(2kp2 − 2p2p4)(−2p1p3 − 2kp1)

=
2ǫ(2ǫ+ 1)(−s34)

−ǫ−2

s12Γ(1− 2ǫ)

∫ +i∞

−i∞

dz1 dz2 dz3
(2πi)3

×
(

s13 + s14
s13

)z3 (

s24
s23 + s24

)z2 (s13(s23 + s24)

s12s34

)z1

×Γ(z1 + 1)Γ(−z2)Γ(−z3)Γ(z2 − z1)Γ(z3 − z1)Γ(z1 + ǫ+ 2)

×Γ(−z2 − ǫ− 1) Γ(z1 + z2 − z3 + 1)Γ(−z1 + z3 − ǫ− 1).

– 14 –



2. The pentagon integral required for MS
14 is given by

p1

p4 p2

p3

−p1234

=

∫

dDk

iπD/2

1

k2(−2p1p4 − 2kp1)(2kp2 − 2p2p3)(2kp2)(k + p4)2

= sǫ12(−s14)
−ǫ−1(−s23)

−ǫ−2Γ(1− ǫ)Γ(ǫ+ 1)2

ǫ2
2F1

(

1, ǫ+ 1; 1− ǫ;−s24
s23

)

+sǫ12(−s14)
−ǫ−1(− s24)

−ǫ−1 2Γ(1− ǫ)3Γ(ǫ+ 1)2

s23ǫ2Γ(1− 2ǫ)
.

4.3 The collinear region

In this section we discuss the reduction to master integrals in the collinear region. Unlike

the soft and the hard regions discussed in the previous sections, the phase-space integrals

in the collinear region cannot be reduced to master integrals using standard techniques.

This is due to the appearance of propagators which are non-linear in the combined phase

space and loop Mandelstam invariants. Effectively, the IBP relations do not close on certain

topologies, and we are not aware of a method capable of dealing with IBP identities relating

integral across different topologies. However, as we already pointed out in Section 3,

all the one-loop integrals appearing in the collinear region have the property that their

denominators only depend on the loop momentum k through the Lorentz invariants k2, k·p1
and k ·p2. This brings as a consequence that there exist relations among the denominators,

which can be used to find partial fraction identities to reduce all pentagons and boxes

to a number of different triangle topologies. After integration over the loop momentum

these triangles can be identified as linear combinations of only two types of bubbles. As a

consequence, we can write the contribution from the collinear region in the form

C
(1,c)
ij→klH(z) =

∫

dΦS
3

[

A({sij}, ǫ, z̄)Bub(s13) +B({sij}, ǫ, z̄)Bub(s13 + s14)

]

, (4.5)

where A and B are expanded as power series in z̄, whose coefficients are rational functions

of the Mandelstam invariants and the dimensional regulator ǫ. We dropped the real part

of the loop integrals, because they are real for s13, s14 < 0. We emphasise that eq. (4.5)

is true to all orders in the expansion parameter z̄ and can be proved simply by inspecting

the propagators in the collinear region.

Next, we express bubble integrals in terms of tadpoles via the identity

Bub(s) = −cΓ
1− ǫ

1− 2ǫ

1

Γ(1 + ǫ)

1

s

∫

dDk

iπD/2

1

k2 + s
. (4.6)

Since the single denominator in eq. (4.6) is clearly linear in all Lorentz invariants, this

representation allows for a straightforward and efficient application of the IBP reduction
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technique to the combined soft phase space and (now trivial) one loop integral. We find

that in the collinear region we can reduce all integrals to just four soft master integrals,

MC
1 =

2

1
1

2

=

∫

dΦS
3 (−s13 − s14)Bub(s13 + s14) ,

MC
2 =

2

1
1

2

=

∫

dΦS
3 (−s13)Bub(s13) ,

MC
3 =

2

1

2

1

=

∫

dΦS
3

(−s13 − s14)

s13s24s34
Bub(s13 + s14) ,

MC
4 =

2

1
1

2

=

∫

dΦS
3

(−s13)

s24s34
Bub(s13) ,

(4.7)

where the dotted lines represent numerator factors. We stress that the master integrals

appearing in the collinear region are again soft integrals, and hence they can be computed

using the same techniques as the master integrals in the soft and hard regions. This will

be discussed in Section 5.

5. Evaluation of soft one-loop integrals

In the previous section we have seen that, independently of the region they originate from,

the master integrals appearing in the threshold expansion are always soft integrals, i.e.,

they all take the form

MI
i =

∫

dΦS
3 F

I
i (p1, p2, p3, p4; ǫ) , (5.1)

where dΦS
3 denotes the soft phase-space measure of eq. (3.8), and the integrand is homoge-

neous with respect to a rescaling of the soft momenta as well as of the initial-state momenta

p1 and p2,

F I
i (λ p1, p2, p3, p4; ǫ) = λαiI F I

i (p1, p2, p3, p4; ǫ) ,

F I
i (p1, λ p2, p3, p4; ǫ) = λβiI F I

i (p1, p2, p3, p4; ǫ) ,

F I
i (p1, p2, λ p3, λ p4; ǫ) = λγiI F I

i (p1, p2, p3, p4; ǫ) ,

(5.2)

for some αiI , βiI , γiI .
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In this section we present methods to evaluate soft integrals analytically. We discuss

two methods: the first is based on the derivation of a Mellin-Barnes representation for

soft integrals, while the second exploits a particular phase-space factorisation as well as

the homogeneity of the soft integrals to derive a parametric integral representation for

soft integrals. For an additional method, using differential equation techniques, we refer

to ref. [23]. We note that although we concentrate exclusively on the case of double-real

emissions at one loop, all these techniques can in principle be generalised to arbitrary

numbers of loops and legs in an obvious way.

5.1 Mellin-Barnes representations for soft integrals

In this section we describe a general method to write a given soft integral as a (possibly

multi-fold) Mellin-Barnes (MB) integral with poles at integer values of the integration

variables. In ref. [15] such a procedure was introduced for soft integrals of purely real

emissions at tree-level. In this section we briefly review the procedure of ref. [15], and in

the end we argue that it can easily be extended beyond tree-level. As the procedure is

essentially identical to the purely real case, we will be brief and refer to ref. [15] for details.

The procedure of ref. [15] starts from the observation that at tree level one may assume

without loss of generality that the integrand F is a product of powers of two-particle

Mandelstam invariants. Indeed, this can always be achieved by replacing every sum of

two-particle invariants in the denominator by its MB representation, using the well-known

formula
1

(A+B)λ
=

1

Γ(λ)

∫ +i∞

−i∞

dz

2πi
Γ(−z) Γ(z + λ)

Az

Bz+λ
, (5.3)

where the contour separates the poles at z = n from those at z = −λ− n, n ∈ N.

Next, we parametrise the soft phase space using the energies and the angles of the soft

momenta in the center-of-mass frame of the initial-state system. We write, with s12 = 1,

p1 =
1

2
(1, 1, 0, . . .) , p2 =

1

2
(1,−1, 0, . . .) , pi =

1

2
Ei βi , i = 3, 4 , (5.4)

where βi is the four-velocity in the direction of pi. The soft phase-space measure becomes,

dΦS
3 = (2π)3−2D 22−2D δ(1 −E3 − E4)E

D−3
3 ED−3

4 dE3 dE4 dΩ
D−1
3 dΩD−1

4 , (5.5)

where ΩD−1
i parametrises the solid angle of the soft momentum pi. Due to our assump-

tion that the integrand is a product of powers of two-particle Mandelstam invariants, the

integration over the energies is simply a Beta function. The remaining angular integrals

can be written as MB integrals with poles at most at integer values of the integration

variables [25, 26].

If we follow this procedure, every tree-level soft integral can be written as a multifold

MB integral with poles at integer values of the integration variables. If the integrand

contains loop integrals which evaluate to complicated special functions, this claim is no

longer necessarily true. It does, however, stay true if the loop integral itself admits an MB

representation of the same type. In our case, the integrand contains at most hypergeometric

– 17 –



functions, which admit the MB representation

2F1(a, b; c;x) =
Γ(c)

Γ(a)Γ(b)

∫ +i∞

−i∞

dz

2πi
Γ(−z)

Γ(z + a)Γ(z + b)

Γ(z + c)
(−x)z . (5.6)

An exception is one pentagon integral, which we did not express in terms of simple hyper-

geometric functions, but it still admits a multifold MB representation of a similar type,

see eq. (4.5). We can therefore obtain an MB representation of the desired type for all soft

integrals considered in this paper.

The MB integrals obtained in this way can be evaluated using standard techniques. In

some cases it is possible to perform all the MB integration in closed form without expanding

in ǫ, and one obtains generalised hypergeometric functions,

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞
∑

n=0

∏p
i=1(ai)n

∏q
j=1(bj)n

zn

n!
. (5.7)

Whenever we are not able to obtain a closed expression in terms of hypergeometric func-

tions, we resolve the poles in ǫ using standard techniques [27]. The result is a Laurent series

in ǫ whose coefficients are MB integrals whose contours are straight vertical line. In all

cases these integrals can be evaluated numerically in a fast and efficient way. Alternatively,

one can close the integration contours at infinity and sum up the residues of the poles of

the Gamma functions in terms of nested harmonic sums [28] that evaluate to multiple zeta

values.

5.2 Soft integrals from phase-space factorisation

We present in this section an alternative way to compute the soft integrals of Section 4,

based on a factorisation of the phase space that separates the soft part of the phase space

from the phase space for the emission of the Higgs boson.

We start by writing the phase space for the production of a Higgs bosons in association

with two massless partons as a convolution

dΦ3 =

∫

dµ2

2π
dΦ2(m

2
H , µ2; p12) dΦ2(0, 0;Q) , (5.8)

where dΦ2(m
2
1,m

2
2; q) denotes the phase-space measure for the decay of a heavy state with

momentum q into two particles with masses m1 and m2,

dΦ2(m
2
1,m

2
2; q) = (2π)D δ(D)(q−q1−q2)

dDq1
(2π)D−1

δ+(q
2
1−m2

1)
dDq2

(2π)D−1
δ+(q

2
2−m2

2) . (5.9)

Note that for now we work with the full phase-space measure, and we expand in z̄ at the

end. A soft integral of the type (5.1) can then be written as

MI
i =

∫

dµ2

2π
dΦ2(m

2
H , µ2; p12)FI

i (p1, p2, Q) , (5.10)

where we defined

FI
i (p1, p2, Q) =

∫

dΦ2(0, 0;Q)F I
i (p1, p2, p3, p4; ǫ) . (5.11)
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Let us first concentrate on the computation of the integral FI
i . The homogeneity of the

integrand of the original soft integral, eq. (5.2), combined with the fact that the integration

measure does not depend on p1 and p2, implies that FI
i is homogeneous under a rescaling

of any of its arguments,

FI
i (λ p1, p2, Q) = λαiI FI

i (p1, p2, Q) ,

FI
i (p1, λ p2, Q) = λβiI FI

i (p1, p2, Q) ,

FI
i (p1, p2, λQ) = λγiI FI

i (p1, p2, Q) .

(5.12)

Lorentz invariance then implies that the non-trivial functional dependence of FI
i can only

be through the ‘cross ratio’

u =
(p1 · p2)Q2

2 (p1 ·Q) (p2 ·Q)
. (5.13)

Without loss of generality, we may write

FI
i (p1, p2, Q) =

(Q2)(γiI−αiI−βiI)/2

(p1 ·Q)−αiI (p2 ·Q)−βiI

f I
i (u) . (5.14)

We can also give a kinematical meaning to the cross ratio u: it is related to the angle θ12
between p1 and p2 in the rest frame of Q,

u =
1− cos θ12

2
. (5.15)

Note that this cross ratio is precisely the argument of the hypergeometric function in the

box integral appearing in MS
5 and MS

10.

This suggests that the most natural frame in which to parametrise the phase space in

eq. (5.11) is the rest frame of Q. Writing pi =
1
2Ei βi with βi = (1, ~ni), the phase-space

measure in this frame becomes

dΦ2(0, 0;Q) = 21−D (2π)2−D (Q2)(D−4)/2 dΩD−1
3 , (5.16)

and the invariants are

s34 = Q2 , s12 = 2
(p1 ·Q)(p2 ·Q)

Q2
(1− cos θ12) ,

s13 = −(p1 ·Q)β1 · β3 , s14 = −(p1 ·Q)β1 · β3 ,
s23 = −(p2 ·Q)β2 · β3 , s24 = −(p2 ·Q)β2 · β3 ,

(5.17)

with β̄i = (1,−~ni). Here we used the fact that in the rest frame of Q the final-state

massless particles are back-to-back and their energy is
√

Q2/2. The remaining integral

over the solid angle can in all cases be performed using the formula [25, 26]

∫

dΩD−1
3

(βi · β3)m (βj · β3)n

= 22−m−n−2ǫ π1−ǫ Γ(1−m− ǫ)Γ(1− n− ǫ)

Γ(1− ǫ)Γ(2−m− n− 2ǫ)
2F1

(

m,n; 1− ǫ; 1− βi · βj
2

)

.

(5.18)
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The scalar product appearing in the right hand side can take the following values,

β1 · β2 = β1 · β2 = 1− cos θ12 = 2u ,

β1 · β2 = β1 · β2 = 1 + cos θ12 = 2(1− u) .
(5.19)

Note that in some cases the integrand may contain hypergeometric functions depending

on angular variables. We can reduce the problem to the angular integral (5.18) by intro-

ducing an MB representation for these hypergeometric functions. Eventually, we can in

this way explicitly determine the function f I
i (u) in eq. (5.14). We stress that although the

computation was done in the rest frame of Q, the result is independent of the frame.

Inserting eq. (5.14) into eq. (5.10), we are left with the computation of the remaining

phase-space integral in eq. (5.10). We write Q = αp1+β p2+Q⊥, with p1 ·Q⊥ = p2 ·Q⊥ = 0

and we work in the center-of-mass frame of the collision, and the on-shell conditions for Q

and the Higgs boson enforce α + β = 1 + O(z̄) and Q2
⊥ = α(1 − α) − µ2. Note that this

implies 0 < α < 1 and 0 < µ2 < α(1 − α). In terms of this parametrisation the invariants

are

s12 = 1 , Q2 = µ2 = α (1− α)u , 2 p1 ·Q = 1− α , 2 p2 ·Q = α , (5.20)

and the phase-space measure can be written as

dΦ2(m
2
H , µ2; p12) =

1

4
(2π)−2+2ǫ [α (1− α) (1 − u)]−ǫ dαdΩD−2

Q +O(z̄) , (5.21)

where ΩD−2
Q parametrises the solid angle of Q in the center-of-mass frame. Putting every-

thing together we see that the integrals over α and over the solid angle are trivial, and so

we get, with δ = (γ − α− β)/2,

MI
i =

1

2α+β (4π)2−ǫ

Γ(2− ǫ+ α+ δ)Γ(2 − ǫ+ β + δ)

Γ(1− ǫ)Γ(4− 2ǫ+ α+ β + 2δ)

∫ 1

0
duuδ (1− u)−ǫ f I

i (u) . (5.22)

We obtain in this way a representation for the soft integral as a simple integral over

the function f I
i . This last integral is usually easy to carry out. In many cases it can

be performed using the Euler-integral representation of the generalised hypergeometric

function,

3F2(a1, a2, a3; b1, b2; z)

=
Γ(b2)

Γ(a3)Γ(b2 − a3)

∫ 1

0
duua3−1 (1− u)b2−a3−1

2F1(a1, a2; b1;u z) .
(5.23)

In those cases where the function f I
i is more complicated, we can either insert an MB

representation for it, or alternatively perform the integral over u order by order in ǫ in

terms of harmonic polylogarithms [29].

5.3 Analytic results for the master integrals

In this section we present the analytic results for all the master integrals introduced in

Section 4. As only the real part of the master integrals enters the final result for the cross

section, we only present result for the real part, which we normalise according to

Re
(

MI
i

)

= cΓ cos(πǫ)ΦS
3 (ǫ)M

I
i , (5.24)
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where cΓ is defined in eq. (4.2) and ΦS
3 (ǫ) denotes the soft phase-space volume,

ΦS
3 (ǫ) =

∫

dΦS
3 =

1

2 (4π)3−2ǫ

Γ(1− ǫ)2

Γ(4− 4ǫ)
. (5.25)

We have computed all the master integrals of Section 4 using the two different approaches

described in the previous section, and we found complete agreement between the ap-

proaches. With the exception of the pentagon integrals MS
13 and MS

14 we present the

results for the master integrals as a Laurent expansion in the dimensional regulator up to

terms of transcendental weight six for the soft and the hard regions and up to transcen-

dental weight five for the collinear region. For MS
13 and MS

14 we were only able to obtain

the Laurent expansion up to terms of weight three and five respectively, which is however

sufficient to compute the Higgs boson cross section up to finite terms 2. Whenever we

were able to do so, we also include results for the master integrals valid to all orders in ǫ

in terms of generalised hypergeometric functions, which can easily be expanded in ǫ using

the HypExp package [30]. Note that all integrals presented in this section satisfy recursion

relations with respect to the space-time dimension [31]. We have checked that our results

satisfy these dimensional recurrence relations.

5.4 Analytic results for the hard region

MH
1 =

1

ǫ (1− 2ǫ)
(5.26)

=
1

ǫ
+ 2 + 4ǫ+ 8ǫ2 + 16ǫ3 + 32ǫ4 + 64ǫ5 +O(ǫ6) ,

MH
2 = −4(3− 4ǫ)(1 − 4ǫ)

ǫ4
3F2(1, 1,−ǫ; 1 − ǫ, 1− 2ǫ; 1) (5.27)

= −18

ǫ4
+

96

ǫ3
+

1

ǫ2
(−96 + 12ζ2) +

1

ǫ
(−64ζ2 + 60ζ3) + 64ζ2 − 320ζ3 + 186ζ4

+ ǫ (320ζ3 − 992ζ4 + 24ζ2ζ3 + 444ζ5) + ǫ2 (992ζ4 − 128ζ2ζ3 − 2368 ζ5 + 60ζ23

+ 1111ζ6) +O(ǫ3) .

5.5 Analytic results for the soft region

MS
1 =

Γ(4− 4ǫ)Γ(1− 2ǫ)2Γ(1 + ǫ)

2ǫ4Γ(2− 6ǫ)Γ(1 − ǫ)
(5.28)

=
3

ǫ4
− 4

ǫ3
+

1

ǫ2
(24 − 18ζ2) +

1

ǫ
(112 + 24ζ2 − 138ζ3) + 672− 144ζ2 + 184ζ3 − 621ζ4

+ (4032 − 672ζ2 − 1104ζ3 + 828ζ4 + 828ζ2ζ3 − 4014ζ5) ǫ+
(

24192 − 4032ζ2 − 5152ζ3

− 4968ζ4 + 5352ζ5 − 1104ζ2ζ3 + 3174ζ23 − 27501

2
ζ6

)

ǫ2 +O(ǫ3) ,

2At least for the 37 first terms in the threshold expansion, see ref. [6].
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MS
2 =

Γ(4− 4ǫ)Γ(1 − 2ǫ)3Γ(1 + ǫ)

ǫ2Γ(4− 6ǫ)Γ(1− ǫ)3
(5.29)

=
1

ǫ2
+

11

3ǫ
+

61

3
− 5ζ2 +

(

117 − 55

3
ζ2 − 44ζ3

)

ǫ+
(

687− 305

3
ζ2 −

484

3
ζ3 −

869

4
ζ4

)

ǫ2

+
(

4077 − 585ζ2 −
2684

3
ζ3 −

9559

12
ζ4 + 220ζ2ζ3 − 1332ζ5

)

ǫ3 +
(

24327 − 3435ζ2

− 5148ζ3 −
53009

12
ζ4 +

2420

3
ζ2ζ3 − 4884ζ5 + 968ζ23 − 79655

16
ζ6

)

ǫ4 +O(ǫ5) ,

MS
3 =

Γ(4− 4ǫ)Γ(2− 3ǫ)

(1− 2ǫ)2ǫΓ(4− 6ǫ)Γ(1 − ǫ)
(5.30)

=
1

ǫ
+

14

3
+ (24− 6ζ2)ǫ+

(400

3
− 28ζ2 − 42ζ3

)

ǫ2 +
(2320

3
− 144ζ2 − 196ζ3 − 195ζ4

)

ǫ3

+
(

4576 − 800ζ2 − 1008ζ3 − 910ζ4 + 252ζ2ζ3 − 1302ζ5

)

ǫ4 +
(81920

3
− 4640ζ2 − 5600ζ3

− 4680ζ4 + 1176ζ2ζ3 − 6076ζ5 + 882ζ23 − 9219

2
ζ6

)

ǫ5 +O(ǫ6) ,

MS
4 = −10

ǫ5
+

220

3ǫ4
+

1

ǫ3
(−160 + 96ζ2) +

1

ǫ2

(320

3
− 704ζ2 + 672ζ3

)

+
1

ǫ

(

1536ζ2 (5.31)

− 4928ζ3 + 2436ζ4

)

− 1024ζ2 + 10752ζ3 − 17864ζ4 − 5760ζ2ζ3 + 16872ζ5

+ ǫ
(

−7168ζ3 + 38976ζ4 + 42240ζ2ζ3 − 123728ζ5 − 20160ζ23 + 34710ζ6
)

+O(ǫ2) ,

MS
5 = − 4Γ(4− 4ǫ)Γ(1 − 3ǫ)

ǫ(1 + ǫ)(1− 2ǫ)Γ(3 − 6ǫ)Γ(1− ǫ)
3F2(1, 1, 1 − ǫ; 2− 3ǫ, 2 + ǫ; 1) (5.32)

= −12

ǫ
ζ2 − 8ζ2 − 36ζ3 + (−112ζ2 − 24ζ3 + 33ζ4)ǫ+ (−672ζ2 − 336ζ3 + 22ζ4 + 720ζ2ζ3

− 450ζ5)ǫ
2 +

(

− 4032ζ2 − 2016ζ3 + 308ζ4 + 480ζ2ζ3 − 300ζ5 + 1512ζ23 +
16881

4
ζ6

)

ǫ3

+O(ǫ4) .

MS
6 = − Γ(4− 4ǫ)Γ(1 − 2ǫ)3Γ(1 + ǫ)

2ǫ3(1 + 2ǫ)Γ(1 − 6ǫ)Γ(1 − ǫ)2Γ(2− ǫ)
(5.33)

= − 3

ǫ3
+

25

ǫ2
+

1

ǫ
(−79 + 15ζ2) + 161− 125ζ2 + 132ζ3 +

(

− 319 + 395ζ2 − 1100ζ3

+
2607

4
ζ4

)

ǫ+
(

641 − 805ζ2 + 3476ζ3 −
21725

4
ζ4 − 660ζ2ζ3 + 3996ζ5

)

ǫ2 +
(

− 1279

+ 1595ζ2 − 7084ζ3 +
68651

4
ζ4 + 5500ζ2ζ3 − 33300ζ5 − 2904ζ23 +

238965

16
ζ6

)

ǫ3 +O(ǫ4) ,
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MS
7 =

Γ(4− 4ǫ)Γ(1− 3ǫ)

ǫ3(1− 2ǫ)Γ(2 − 6ǫ)Γ(1− ǫ)
3F2(1,−ǫ, ǫ; 1 − 2ǫ, 1− ǫ; 1) (5.34)

=
6

ǫ3
+

4

ǫ2
+

1

ǫ
(56 − 42ζ2) + 336 − 28ζ2 − 288ζ3 +

(

2016 − 392ζ2 − 192ζ3 −
2433

2
ζ4

)

ǫ

+
(

12096 − 2352ζ2 − 2688ζ3 − 811ζ4 + 1980ζ2ζ3 − 8262ζ5

)

ǫ2 +
(

72576 − 14112ζ2

− 16128ζ3 − 11354ζ4 + 1320ζ2ζ3 − 5508ζ5 + 6804ζ23 − 204663

8
ζ6

)

ǫ3 +O(ǫ4) ,

MS
8 = −2Γ(4− 4ǫ)Γ(1− 2ǫ)3Γ(1 + ǫ)

ǫ3Γ(3− 6ǫ)Γ(1 − ǫ)3
3F2(1, 1 − 2ǫ, ǫ; 2− 3ǫ, 1 − ǫ; 1) (5.35)

= − 6

ǫ3
− 16

ǫ2
+

1

ǫ
(−112 + 36ζ2)− 672 + 96ζ2 + 306ζ3 + (−4032 + 672ζ2 + 816ζ3

+ 1410ζ4)ǫ+ (−24192 + 4032ζ2 + 5712ζ3 + 3760ζ4 − 1842ζ2ζ3 + 8757ζ5)ǫ
2

+
(

− 145152 + 34272ζ3 + 24192ζ2 + 26320ζ4 − 4912ζ2ζ3 + 23352ζ5 − 7824ζ23

+
57177

2
ζ6

)

ǫ3 +O(ǫ4) ,

MS
9 =

11

ǫ5
− 143

3ǫ4
+

1

ǫ3
(−165− 59ζ2) +

1

ǫ2

(4301

3
+

767

3
ζ2 − 488ζ3

)

+
1

ǫ

(

− 5005 (5.36)

+ 885ζ2 +
6344

3
ζ3 −

9291

4
ζ4

)

+ 15015 − 23069

3
ζ2 + 7320ζ3 +

40261

4
ζ4 + 2576ζ2ζ3

− 14502ζ5 + ǫ
(

− 45045 + 26845ζ2 −
190808

3
ζ3 +

139365

4
ζ4 −

33488

3
ζ2ζ3 + 62842ζ5

+ 10708ζ23 − 849273

16
ζ6

)

+O(ǫ2) ,

MS
10 = −16

ǫ5
+

256

3ǫ4
+

368

3ǫ3
+

1

ǫ2

(

− 5920

3
− 240ζ2 + 320ζ3

)

+
1

ǫ

(27088

3
+ 1760ζ2 (5.37)

− 7904

3
ζ3 + 3144ζ4

)

− 34368 − 1680ζ2 + 4352ζ3 − 16852ζ4 + 2976ζ2ζ3 + 14704ζ5

+ ǫ
(

124944 − 26240ζ2 +
98912

3
ζ3 − 23488ζ4 + 640ζ2ζ3 −

275248

3
ζ5 + 2496ζ23

+ 104650ζ6

)

+O(ǫ2) ,

MS
11 = −19

ǫ4
+

646

3ǫ3
+

1

ǫ2

(

− 3496

3
+ 114ζ2

)

+
1

ǫ

(

4864 − 1292ζ2 + 762ζ3

)

− 19456 (5.38)

+ 6992ζ2 − 8636ζ3 + 3381ζ4 + ǫ
(

77824 − 29184ζ2 + 46736ζ3 − 38318ζ4 − 4572ζ2ζ3

+ 22830ζ5

)

+O(ǫ2) ,

MS
12 = −18

ǫ4
+

186

ǫ3
+

1

ǫ2

(

− 846 + 120ζ2

)

+
1

ǫ

(

2730 − 1240ζ2 + 816ζ3

)

− 8190 (5.39)

+ 5640ζ2 − 8432ζ3 + 3516ζ4 + ǫ
(

24570 − 18200ζ2 + 38352ζ3 − 36332ζ4 − 5376ζ2ζ3

+ 23880ζ5

)

+O(ǫ2) ,
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MS
13 = −50

ǫ5
+

374

3ǫ4
+

1

ǫ3

(4502

3
+ 458ζ2

)

+
1

ǫ2

(

− 8022 − 3866

3
ζ2 + 3256ζ3

)

(5.40)

+O(ǫ−1) ,

MS
14 =

4

ǫ5
+

2

3ǫ4
+

1

ǫ3

(

− 210 − 55ζ2

)

+
1

ǫ2

(2554

3
+

391

3
ζ2 − 394ζ3

)

(5.41)

+
1

ǫ

(

− 794 + 1725ζ2 +
2638

3
ζ3 −

5721

4
ζ4

)

− 6834 − 27445

3
ζ2 + 12810ζ3 +

9887

4
ζ4

− 10032ζ5 +O(ǫ) .

5.6 Analytic results in the collinear region

MC
1 =

Γ(4− 4ǫ)Γ(3 − 3ǫ)Γ(1 + 2ǫ)

ǫ (1− 2ǫ)2Γ(5− 5ǫ)Γ(1 − ǫ)Γ(1 + ǫ)
(5.42)

=
1

2ǫ
+

31

24
+ ǫ

(1241

288
+

1

2
ζ2

)

+ ǫ2
(62215

3456
+

31

24
ζ2 − 7ζ3

)

+ ǫ3
(3525449

41472
+

1241

288
ζ2

− 217

12
ζ3 −

269

8
ζ4

)

+ ǫ4
(209334151

497664
+

62215

3456
ζ2 −

8687

144
ζ3 −

8339

96
ζ4 − 7ζ3ζ2 − 189ζ5

)

+O(ǫ5) ,

MC
2 =

Γ(4− 4ǫ)Γ(1 − 2ǫ)2Γ(1 + 2ǫ)

ǫΓ(5− 5ǫ)Γ(1− ǫ)2Γ(1 + ǫ)
(5.43)

=
1

4ǫ
+

37

48
+

1679ǫ

576
+

(87193

6912
− 9

2
ζ3

)

ǫ2 +
(4874375

82944
− 111

8
ζ3 −

81

4
ζ4

)

ǫ3

+
(282663625

995328
− 1679

32
ζ3 −

999

16
ζ4 −

207

2
ζ5

)

ǫ4 +O(ǫ5) ,

MC
3 = − Γ(4− 4ǫ)Γ(1 − 3ǫ)Γ(1 + 2ǫ)

ǫ4 (1− 2ǫ)Γ(1− 5ǫ)Γ(1 − ǫ)Γ(1 + ǫ)
3F2(1, 1,−ǫ; 1 − 2ǫ, 1− ǫ; 1) (5.44)

= − 9

ǫ4
+

48

ǫ3
+

1

ǫ2
(−48− 3ζ2) +

1

ǫ
(16ζ2 + 156ζ3)− 16ζ2 − 832ζ3 +

2853

4
ζ4

+ ǫ (832ζ3 − 3804ζ4 + 84ζ2ζ3 + 3624ζ5) +O(ǫ2) ,

MC
4 =

Γ(4− 4ǫ)Γ(1 − 2ǫ)2Γ(1 + 2ǫ)

2ǫ4 Γ(2− 5ǫ)Γ(1 − ǫ)2Γ(1 + ǫ)
3F2(1, ǫ− 1,−ǫ; 1 − 2ǫ, 1− ǫ; 1) (5.45)

=
3

ǫ4
− 4

ǫ3
+

1

ǫ2
(18− 3ζ2) +

1

ǫ
(60 + 4ζ2 − 72ζ3) + 290 − 12ζ2 + 96ζ3 −

1245

4
ζ4

+ ǫ (1420 − 44ζ2 − 396ζ3 + 415ζ4 + 54ζ3ζ2 − 1467ζ5) +O(ǫ2) .

6. Conclusions

This paper discussed the expansion around threshold of the one-loop corrections to the

production of a heavy colorless state in association with two partons. We introduced
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techniques to compute the coefficients in the expansion, in principle to any desired order,

and to express the result in terms of a small set of soft master integrals. These results

are the missing pieces which went into the computation of the inclusive gluon-fusion Higgs

production cross section as an expansion around threshold [6, 16, 19].

Our main tool to reduce the coefficients appearing in the threshold expansion to a

linear combination of soft master integrals is reverse unitarity, which allows one to map

phase-space integrals to cuts of Feynman integral. We perform this expansion separately

for the phase-space measure and for the interference diagrams, and we observe that the

phase-space integrals always reduce to integrals against the soft phase-space measure. The

one-loop matrix elements are expanded in the soft limit using the strategy of regions, and

the relevant regions are identified with the regions where the loop momentum is either

hard, soft or collinear to one of the initial-state momenta. In each region, we combine the

expanded interference diagrams with the corresponding phase-space measure and use IBP

identities to reduce them to soft master integrals, independently of the region.

The soft master integrals themselves are evaluated using two different approaches.

The first method allows to derive a Mellin-Barnes representation for the soft integrals with

poles at most at integer locations, provided that a similar Mellin-Barnes representation

for the loop integration can be obtained. In our case most of the Mellin-Barnes integrals

can be done in closed form to all orders in the dimensional regulator. In the remaining

cases we were able to obtain a representation of the integral as a Laurent expansion in the

dimensional regulator. The second method builds upon a specific factorisation of the phase

space and exploits the knowledge of the scaling behavior of the integral with the external

momenta to arrive at a one-fold parametric integral representation for the soft integral,

which can be performed using modern integration techniques.

The results for the soft master integrals presented in this paper are sufficient to obtain,

at least, the first 37 terms in the threshold expansion of the N3LO gluon-fusion cross section,

and conjecturally they provide the full set of boundary conditions to compute all the phase-

space master integrals in general kinematics appearing in inclusive N3LO cross sections for

the production of a heavy colorless state. We therefore anticipate that the results of this

paper will have a substantial impact on future results for hadron collider cross sections at

N3LO, e.g., Drell-Yan production or Higgs production via bottom-quark fusion.
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A. Derivation of eq. (3.16)

Here we wish to derive the tensor reduction of the following generic integral

Iµ1..µn(p1, p2) =

∫

dDk

iπD/2

kµ1

⊥ kµ2

⊥ . . . kµn

⊥

F (k, p1, p2)
(A.1)

which was stated in eq. (3.16). A general tensor Ansatz would yield that the tensor integral

Iµ1..µn(p1, p2) can be written as a linear combination of {gµν , pµ1 , pν2}. But since

k⊥.p1 = 0 = k⊥.p2, (A.2)

we must also have that

(pi)µk
Iµ1..µn(p1, p2) = 0, for i = 1, 2 and k = 1, 2, .., n (A.3)

and therefore Iµ1..µn(p1, p2) can only depend on {gµν , pµ1 , pν2} through the transverse metric

gµν⊥ = gµν − pµ1p
ν
2 + pµ2p

ν
1

p1.p2
. (A.4)

Given that Iµ1..µn(p1, p2) is fully symmetric under any permutations of the Lorentz indices

µ1, .., µn, the tensor structure is fully determined to be that of eq. (3.16),i.e.

Iµ1..µn(p1, p2) =
1

C(n)
gµ1..µn

⊥ I(n, p1, p2) (A.5)

where gµ1..µn

⊥ is defined in eq. (3.19), C(n) still has to be determined and

I(n, p1, p2) =

∫

dDk

iπD/2

(k2⊥)
n/2

F (k, p1, p2)
. (A.6)

To determine the coefficient C(n) we contract each of any n/2 of the n Lorentz indices on

both sides of eq. (A.5) with any one of the remaining n/2 indices. Due to the symmetry it

is irrelevant how this contraction is done and the result is

C(n) = gµ1..µn

⊥ gµ1µ2 ..gµn−1µn
(A.7)

Using

gµ1..µn

⊥ = gµ1µ2

⊥ gµ3..µn

⊥ +

n
∑

l 6=k=3

gµlµ2

⊥ gµkµ1

⊥ gµ3.. 6µk.. 6µl..µn

⊥ (A.8)

we can explicitly carry out the contraction over µ1 and µ2 to get

C(n) =
(

D⊥g
µ3..µn

⊥ + 2
n
∑

l>k=3

gµlµk

⊥ gµ3.. 6µk.. 6µl..µn

⊥

)

gµ3µ4 ..gµn−1µn
(A.9)

=
(

D⊥ + (n− 2)
)

gµ3..µn

⊥ gµ3µ4 ..gµn−1µn
(A.10)

=
(

D⊥ + (n− 2)
)

C(n− 2) (A.11)
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where D⊥ = (g⊥)
µ
µ = D − 2 and in the second line we used the identity

n

2
gµ1..µn

⊥ =

n
∑

l>k=1

gµlµk

⊥ gµ1.. 6µk.. 6µl..µn

⊥ . (A.12)

Given that C(2) = D⊥ it follows that

C(n) =

n/2
∏

i=1

(D⊥ + 2(i− 1)) (A.13)

which completes the derivation of eq. (3.16).
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