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Abstract

The cross section for the production of Zγ in proton-proton collisions at 8 TeV is mea-
sured based on data collected by the CMS experiment at the LHC corresponding to an
integrated luminosity of 19.5 fb−1. Events with an oppositely-charged pair of muons
or electrons together with an isolated photon are selected. The differential cross sec-
tion as a function of the photon transverse momentum is measured inclusively and
exclusively, where the exclusive selection applies a veto on central jets. The observed
cross sections are compatible with the expectations of next-to-next-to-leading-order
quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZγ and
Zγγ are set that improve on previous experimental results obtained with the charged
lepton decay modes of the Z boson.
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1 Introduction
The study of Zγ production in proton-proton (pp) collisions at TeV energies represents an im-
portant test of the standard model (SM), which prohibits direct coupling between the Z bo-
son and the photon. Within the SM Zγ production is primarily due to radiation of photons
from initial-state quarks (ISR) or final-state leptons (FSR). However, new physics phenomena
at higher energies may be manifested as an effective self-coupling among neutral gauge bosons,
resulting in a deviation from their predicted zero values in the SM. Models of anomalous triple
gauge couplings (aTGC) have been introduced and discussed in Refs. [1–3].

This paper presents a measurement of Zγ production in pp collisions at a center-of-mass en-
ergy of 8 TeV, based on data collected with the CMS experiment in 2012, corresponding to an
integrated luminosity of 19.5 fb−1. For this analysis the decays of the Z boson into a pair of
muons (µ+µ−) or electrons (e+e−) are considered. The processes of ISR and FSR contribute to
`+`−γ (` = µ, e) production in the SM at leading order (LO), and these are exemplified by the
first two Feynman diagrams in Fig. 1. Photons can also be produced by jet fragmentation, but
these photons are not considered as signal in the present analysis and are strongly suppressed
by requiring that the photon is isolated. The production of Zγ through triple gauge couplings
is represented by the third diagram in Fig. 1.

Both ATLAS and CMS Collaborations have presented measurements of the inclusive Zγ cross
section and searches for anomalous ZZγ and Zγγ couplings using data collected at a center-
of-mass energy of 7 TeV [4, 5]. The larger 2012 data sample and the increased cross section at
8 TeV allow for the first measurement of the inclusive differential cross section for Zγ produc-
tion as a function of the photon transverse momentum pγ

T. Results on the differential Zγ cross
section for events with no accompanying central jets, referred to as exclusive cross sections, are
also presented, providing some insight into the effect of additional jets on the distribution of
pγ

T. The cross sections are measured for photons with pγ
T > 15 GeV and restricted to a phase

space defined by kinematic requirements on the final-state particles that are motivated by the
experimental acceptance. In addition, the photon is required to be separated from the leptons
by ∆R(`, γ) > 0.7 where ∆R =

√
(∆φ)2 + (∆η)2, φ is the azimuthal angle and η the pseudo-

rapidity. Furthermore, the dilepton invariant mass is required to be above 50 GeV. With this
selection the fraction of FSR photons is reduced and photons originating from ISR or aTGCs
are dominant.
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Figure 1: Leading-order Feynman diagrams for Zγ production in pp collisions. Left: initial-
state radiation. Center: final-state radiation. Right: diagram involving aTGCs that are forbid-
den in the SM at tree level.
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2 The CMS detector and particle reconstruction
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within this superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided
by the barrel and endcap detectors.

The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. The
ECAL provides coverage in pseudorapidity |η| < 1.479 in a barrel region (EB) and 1.479 <
|η| < 3.0 in two endcap regions (EE). A preshower detector consisting of two planes of silicon
sensors interleaved with a total of three radiation lengths of lead is located in front of the EE re-
gions. Muons are measured in the pseudorapidity range |η| < 2.4, with detection planes made
using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers.

The particle-flow (PF) algorithm [6–8] reconstructs and identifies each particle with an op-
timized combination of all subdetector information and categorizes reconstructed objects as
photons, muons, electrons, charged hadrons, and neutral hadrons. The energy of photons is
obtained from a cluster of energy depositions in ECAL crystals. The photon direction is deter-
mined by assuming it is associated to the main interaction vertex, defined as the vertex that
has the highest value for the sum of p2

T of the associated tracks that is also compatible with the
beam interaction point. The energy of electrons is determined from a combination of the track
momentum at the main interaction vertex, the ECAL cluster energy, and the energy sum of all
bremsstrahlung photons attached to the track [9, 10]. The energy of muons is obtained from
the corresponding track momentum measured in the silicon tracker and the muon detection
system. The energy of charged hadrons is determined from a combination of the track momen-
tum and the corresponding ECAL and HCAL energies. Finally, the energy of neutral hadrons
is obtained from the corresponding ECAL and HCAL energies.

Jets used for the exclusive measurement presented in this paper are reconstructed from PF
objects, clustered by the anti-kT algorithm [11, 12] with a distance parameter of 0.5. The mea-
sured jet momentum is the vectorial sum of all particle momenta in the jet and is found from
the simulation to be within 5–10% [13] of the initial jet momentum over the whole pT range
and detector acceptance. An offset correction is applied to take into account the extra energy
clustered in jets due to additional pp interactions within the same bunch crossing (pileup) [14].

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [15].

3 Signal and background modeling
Simulation samples for the signal process, `+`−γ + n partons (n = 0, 1, 2) at matrix element
level are produced with the event generator SHERPA 1.4 [16] for the muon and electron channels
separately. The cross sections are calculated at next-to-leading order (NLO) in quantum chro-
modynamics (QCD) using MCFM 6.4 [17] and the CT10 [18] parton distribution functions (PDF).
Additional PDF sets are provided by CT10 to represent the uncertainties in the PDFs. These
are used to estimate the PDF uncertainties in the cross sections following the prescription in
Ref. [19]. The effect of using the CT10 PDF sets, where the value of the strong coupling con-
stant αs is varied in the fit, has been studied and is considered as an additional uncertainty.
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The uncertainties from factorization, renormalization, and photon fragmentation scales are es-
timated by varying each of these scales up and down by a factor of two. The uncertainty in the
exclusive cross section calculation is obtained by following the recommendation in Ref. [20] of
adding in quadrature the scale uncertainties of the `+`−γ NLO and the `+`−γ + 1 parton LO
calculations. We also compare the measurement with a next-to-next-to-leading-order (NNLO)
calculation of the inclusive cross section provided by Ref. [21].

The major sources of background to the Zγ process are Drell–Yan (DY) + jets, WW, WZ, ZZ, and
tt production. These are simulated with the MADGRAPH 4 [22] matrix element generator, using
the CTEQ6L PDF set [23], and interfaced with PYTHIA 6.4.26 [24] to describe parton showers,
fragmentation, and initial and final state radiation of photons. The cross sections for tt and
diboson production are normalized to the NLO QCD calculation from MCFM. The DY+jets
sample is normalized to the NNLO QCD calculation of FEWZ [25]. It is used to describe the
background of nonprompt and misidentified photons. All events containing a prompt photon
that passes the signal requirements are removed from this sample. The QCD simulation, which
is used for the background determination, is produced using PYTHIA. All samples are passed
through a detailed simulation of the CMS detector based on GEANT4 [26] and reconstructed
using the same algorithms as used for data.

4 Event selection
The measurements presented in this paper rely on the reconstruction and identification of iso-
lated muons, electrons, and photons. The exclusive cross section measurement is also depen-
dent on the reconstruction of jets. Details of the identification and selection of muons (electrons)
can be found in Ref. [27] (Ref. [28]).

Leptons from Z boson decays are typically isolated, i.e., separated in ∆R from other particles.
A requirement on the lepton isolation is used to reject leptons produced in decays of hadrons.
The muon isolation is based on tracks from the main interaction vertex as this is always iden-
tified as the source of the lepton pair. The isolation variable Itrk is defined as the pT sum of
all tracks except for the muon track originating from the main interaction vertex within a cone
of ∆R(µ, track) < 0.3. The value of Itrk is required to be less than 10% of the muon pT. For
electrons the isolation variable is the pT sum of neutral hadrons, charged hadrons, and photon-
like PF objects in a cone of ∆R < 0.3 around the electron. Contributions of the electron to the
isolation variables are suppressed using a veto region. This isolation variable is required to
be smaller than 10% (15%) of the electron pT for electrons in the EB (EE). An event-by-event
correction is applied, which keeps the selection efficiency constant as a function of pileup in-
teractions [29].

Quality selection criteria are applied to the reconstructed photons to suppress the background
from hadrons misidentified as photons. The ratio of the energy deposition in the HCAL tower
behind the ECAL cluster to the energy deposition in the ECAL has to be below 5%. The back-
ground is further suppressed by a requirement on the shower shape variable σηη [30], which
measures the shower width along the η direction in a 5×5 matrix of crystals centered on the
crystal of highest energy in the cluster. The electromagnetic shower produced by a photon is
expected to have a small value of σηη . Therefore, a selection of σηη < 0.011 (0.033) in the EB
(EE) region is applied. To suppress electrons misidentified as photons, photon candidates are
rejected if measurements in the silicon pixel detector are found and these measurements are
consistent with an electron, which is incident on the ECAL at the location of the photon cluster.
The isolation variables based on PF charged hadrons Ic, neutral hadrons In, and photon objects
Iγ are calculated as the sum of pT in a cone of ∆R < 0.3 around the photon. Contributions of the
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photon itself are suppressed using a veto region. Again, the isolation values are corrected for
the average energy deposition due to pileup. The isolation requirements used in the EB region
are In < 1.0 + 0.04pγ

T, Iγ < 0.7 + 0.005pγ
T, and Ic < 1.5. In the EE region In < 1.5 + 0.04pγ

T,
Iγ < 1.0 + 0.005pγ

T, and Ic < 1.2 are required.

Events are selected online using a dimuon or dielectron trigger with thresholds of pT > 17 GeV
for the leading and pT > 8 GeV for the subleading lepton. Candidate events are required to
have two same-flavor opposite-charge selected leptons and a selected photon. Muons with
|η| < 2.4 relative to the main interaction vertex are selected, while electrons need to satisfy
|ηSC| < 1.44 or 1.57 < |ηSC| < 2.5, where ηSC is determined by the cluster position in the ECAL
with respect to the center of the CMS detector. This excludes the transition region between
EB and EE. The pT of each lepton has to be greater than 20 GeV, and the dilepton mass M`` is
required to be greater than 50 GeV. At least one photon candidate with pγ

T > 15 GeV is required.
The η range for photons is determined by the coverage of the ECAL and the silicon tracker and
is the same as for electrons. The minimum distance between the photon and the leptons must
be ∆R(`, γ) > 0.7. In the very rare cases when a second photon is reconstructed, the photon
with the higher pγ

T is used for the differential cross section measurement.

A tag-and-probe method, similar to that presented in Ref. [31], is used to measure the lepton
reconstruction efficiencies. The photon reconstruction efficiency is determined with a modi-
fied tag-and-probe method that makes use of the Z boson mass peak in the Mµµγ distribution
for FSR photons. Scale factors are obtained from the measured efficiencies to correct the sim-
ulation. In Fig. 2 the observed pγ

T distribution and the invariant mass of the two leptons and
the photon candidate M``γ are compared to the SM expectation. The level of agreement is dis-
cussed in Section 5. The final cross section measurement, with the background estimate coming
from data, indicates that the observed deviation in the pγ

T distribution is due to the imperfect
modeling of the DY+jets background in the simulation.

5 Background estimation
The dominant background for this measurement is DY+jets containing nonprompt photons,
e.g., through π0 or η decays, or hadrons misidentified as photons. A template method is used
to estimate this background from data. This method relies on the power of an observable to
discriminate between signal photons and background. The signal yield is obtained from a
maximum-likelihood fit to the observed distribution of such an observable using the known
distributions (“templates”) for signal photons and background.

The cross sections are measured with two different template observables. One template method
uses the shower shape variable σηη . The separation between the two photons from the decay of
light particles such as π0, albeit small, leads to a larger σηη value than for single photons. The
shower width of strongly interacting particles that mimic a photon signature also tends to be
larger.

The other template observable is Iγ,nfp, which is the pT sum of all PF photon objects in a cone
of ∆R < 0.4 around the photon. The abbreviation “nfp” stands for “no footprint of the pho-
ton” and indicates the removal of energy associated with the photon from the isolation vari-
able. This energy is removed by excluding all particles whose ECAL clusters overlap with the
photon cluster from the isolation variable. This makes Iγ,nfp, and hence the signal template,
independent of pγ

T. Since the background particles are often produced in cascade decays, Iγ,nfp
for them is expected to be greater on average than for signal photons.
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Figure 2: Left: pγ
T distribution after the full event selection compared to the SM prediction.

Right: the distribution of the invariant mass M``γ. The mass distribution has a peak at the
Z boson mass, which arises from FSR photons. Events with ISR photons appear in the large
tail above the Z boson mass where a large fraction of background is expected. The displayed
uncertainties include only the statistical uncertainties in data and simulated samples.

5.1 Extraction of signal and background templates

The signal templates for both template variables are taken from data. A sample of photons with
a background contamination of less than 1% is obtained from FSR Zγ events. About 23 thou-
sand photon candidates close to one of the leptons, with 0.3 < ∆R(`, γ) < 0.8, are selected. The
minimum separation is chosen to reduce the influence of the lepton on the template variables.
The invariant dilepton mass is selected to be between 40 and 80 GeV. One lepton is required to
have a pT > 30 GeV while for the other lepton only pT > 10 GeV is required. All photon quality
requirements are applied except for σηη , which cannot be used in the photon selection for the
σηη template method. For the Iγ,nfp template method the selection on Iγ is not applied since the
two variables are strongly correlated.

Different templates are chosen for the EB and EE regions, as well as for the lower pγ
T bins of the

cross section measurement. Due to the limited number of photons a common template is used
for pγ

T > 35 GeV. The uncertainties in the signal templates are discussed in Section 5.2.

For the background templates it is almost impossible to find a sample of nonprompt or misiden-
tified photons that is free of signal-like prompt photons. Therefore, we choose a jet data sam-
ple where such background objects are enhanced. From this sample events with two leading
hadronic jets with pT > 30 GeV and no isolated muon or electron are selected. Additionally,
we require a photon candidate with a minimum separation from the jets of ∆R(γ, jet) > 0.7.



6 5 Background estimation

ηησ
0.005 0.01 0.015 0.02 0.025 0.03

E
ve

nt
s 

/ 0
.0

00
5

0

200

400

600

800

1000

1200

1400

1600
 < 25 GeV

γ

T
Bin: EB, 20 < p

Data
Fit: p-value: 50.0%

 80±Signal: 3775 
 39±Background:  943 

 (8 TeV)-1 channel, 19.5 fbγµµCMS

 (GeV),nfpγI
0 5 10 15 20 25

E
ve

nt
s 

/ 0
.5

 G
eV

0

100

200

300

400

500

600

700

800
 < 25 GeV

γ

T
Bin: EB, 20 < p

Data
Fit: p-value: 46.0%

 92±Signal: 4327 
 75±Background:  1485 

 (8 TeV)-1 channel, 19.5 fbγµµCMS

Figure 3: Fits of the σηη templates (left) and the Iγ,nfp templates (right) to the data for 20 < pγ
T <

25 GeV in the EB region. The extracted signal contributions are indicated by the green curves
and the background contributions by the red ones.

Kinematic distributions of the jets and the photon candidates as well as the distributions of the
photon selection variables in the jet data sample are well described by the QCD simulation.
This agreement allows us to establish a selection of photon candidates for the background tem-
plate using the QCD simulation and to apply the same selection on the jet data sample. This se-
lection is required to be dominated by nonprompt and misidentified photon candidates whose
template shape is in agreement with the background template prediction from the DY+jets sim-
ulation. When defining the selection for the σηη background template, the photon candidates
in the QCD simulation have to pass the full selection except for the requirements on σηη and Ic.
Starting from this preselection, the lower and upper boundaries on Ic are varied until a selec-
tion is found for which the template shape agrees with that in the DY+jets simulation. Once the
selection is defined, it is applied to the jet data sample to obtain the σηη background template
that is used for the signal extraction.

The same method is used to find an Iγ,nfp background template. In this case, the photon prese-
lection in the QCD simulation does not include the requirements on σηη and Iγ. Here the lower
and upper boundaries on σηη are varied to find an appropriate selection for a Iγ,nfp background
template.

We use these methods to obtain background templates from the data for the various pγ
T bins

in the EB and EE regions. The two different, almost uncorrelated, template variables are used
for the cross section measurement and their results are compared. The methods rely on the
DY+jets simulation, which is used to find the optimal background template selections. Hence,
the agreement of the two methods provides an important consistency check. The uncertainties
in these methods are discussed in Section 5.2.

5.2 Signal extraction

Using the templates obtained from the procedure described above the number of signal events
is extracted in twelve pγ

T bins, separately for the EB and EE. Examples of these binned maximum-
likelihood fits are shown in Fig. 3. For the σηη template method the σηη requirement of the pho-
ton selection is applied after the fit. For the Iγ,nfp template method the selection on Iγ cannot
be applied on the binned data after the fit. Consequently, the photon selection efficiencies are
different for the two methods. Therefore, we should not expect the same number of signal and
background events before corrections for the efficiencies are applied.
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The following sources of uncertainties are considered for the signal extraction:

• The statistical uncertainty in the signal templates due to the limited number of FSR
photons available in data results in an uncertainty of 0.5–2% (EB) and 0.5–9% (EE)
in the extracted signal yield that increases from low to high pγ

T.

• The systematic uncertainty in the signal templates due to contamination of the FSR
sample and the usage of a common template for all bins with pγ

T > 35 GeV is esti-
mated using the simulation. The uncertainties are 0.5–3% (EB) and 0.5–12% (EE) in
the signal yield increasing from low to high pγ

T.

• The number of events available in the DY+jets simulation that are used to find the
appropriate selection for the background templates is low, especially in bins at high
pγ

T. The uncertainty in the extracted signal yield due to this limited sample size is
0.6–3% (EB) and 1.6–5% (EE) increasing from low to high pγ

T.

• The agreement of the QCD simulation and jet data sample is essential for the back-
ground template determination. We evaluate the uncertainty due to this imperfect
modeling by calculating the standard deviation of the difference between the sig-
nal fraction obtained with template fits in data and simulation for a large number
of different background template selections each defined by certain lower and up-
per boundaries on the template selection variable, Ic for the σηη templates and σηη

for the Iγ,nfp templates. For data the background templates are taken from the jet
data sample and for simulation from the QCD simulation sample. The uncertainty
is estimated to be 0.3–6% (EB) and 3–6% (EE) increasing from low to high pγ

T.

• The statistical uncertainty in the signal yield obtained from the template fit is very
similar for the two methods and amounts to 2–9% (EB) and 3–14% (EE) increasing
from low to high pγ

T.

Additionally, we have to consider the small fraction of irreducible background events from tt,
ZZ, ZW, and WW production. These background yields are estimated from the SM simulation
and subtracted from the pγ

T distribution of signal candidates. At low pγ
T this contribution is

negligible compared to the background from nonprompt or misidentified photons. At higher
pγ

T the fraction of irreducible background events is less than 4%, which is small compared
to the overall uncertainty of the measurement. Since these backgrounds are very small their
uncertainties have a negligible effect on the measurement.

6 Cross section measurement
We measure the cross section for a phase space region that corresponds closely to that used for
the event selection. This phase space is defined by several kinematic requirements on the final-
state particles: the leptons from the Z boson decay need to satisfy pT > 20 GeV and |η| < 2.5,
and the dilepton mass has to be greater than 50 GeV. The photon is required to have |η| < 2.5
and needs to be separated from both leptons by ∆R(`, γ) > 0.7. Finally, a requirement is
put on the photon isolation at the generator level Igen < 5 GeV to exclude photons from jet
fragmentation. The isolation variable uses a cone size of ∆R < 0.3 and sums the transverse
momentum of partons in the case of MCFM and of final-state particles in the case of SHERPA. It
has been verified with SHERPA that photons that do not pass the Igen selection also fail to pass
the photon selection at the detector level. The definition of the phase space for the cross section
measurements is summarized in Table 1.

The procedure for extracting the differential cross section from the number of observed sig-
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nal events involves two steps. First, we extract the number of events produced in each pγ
T bin

within a phase space defined by the requirements in Table 1 and the additional experimental
requirements on η and ηSC as described in Section 4. The number of observed signal events
needs to be corrected for detector effects. These include efficiencies as well as bin migrations
due to resolution and energy calibration. Both effects are treated using unfolding techniques.
For the unfolding the method of D’Agostini [32], as implemented in the ROOUNFOLD [33]
software package, is used. The response matrices are obtained from the signal simulation. A
different response matrix is required for the two template methods because of the different
photon selections. After the unfolding, compatible signal yields are obtained with the two
template methods. Bias and variance of the unfolding procedure are estimated using pseudo-
experiments. The uncertainties in the unfolding are 1% at low pγ

T increasing up to 6% for the
high-pγ

T bins. To estimate the effect of the uncertainties in the photon energy scale and resolu-
tion, the unfolding of the data is repeated varying the photon energy scale and resolution in
the response matrix within one standard deviation. The observed effect on the unfolded event
yield is about 2.4% and is almost independent of pγ

T.

The second step is to extrapolate the unfolded event yield in each pγ
T bin to the desired phase

space taking into account the detector acceptance, which is calculated using MCFM (NLO) and
verified with SHERPA. About 92% of the muon channel events and 87% of the electron channel
events are within the detector acceptance. These values are only slightly pγ

T dependent.

Table 1: Phase space definition of the Zγ cross section measurements.

Cross section phase space
M`` > 50 GeV
∆R(`, γ) > 0.7
photon: |η| < 2.5, Igen < 5 GeV
leptons: |η| < 2.5, pT > 20 GeV

6.1 The inclusive cross section

The cross sections are calculated from the unfolded number of signal events Ni and the detector
acceptance Ai in each pγ

T bin using the relation σi = Ni/(AiL) with an integrated luminosity
of L = 19.5± 0.5 fb−1 for the muon channel and L = 19.4± 0.5 fb−1 for the electron channel.
The cross section values obtained with the two template methods are compatible within their
uncertainties as shown in Fig. 4 (left). The correlation between the template variables σηη and
Iγ,nfp is less than 30%. The compatibility of the two results is a good indication that the back-
ground estimation is correct. The correlation of 30% is also assumed for the uncertainties in
the background subtractions with the two template methods. All other uncertainties, i.e., in
the dilepton (2%) and photon (2%) efficiencies, the photon energy scale and resolution (2.4%),
unfolding (1–6%), luminosity (2.6%), and statistical uncertainties are assumed to be 100% cor-
related between the two template methods. Since the two template methods show good agree-
ment, the results are combined using the best linear unbiased estimator (BLUE) method [34],
which takes into account the correlation of all uncertainties.

The combined results of the two template methods for the muon and the electron channels
are, as expected from lepton universality, fully compatible as presented in Fig. 4 (right). For
pγ

T > 15 GeV inclusive cross sections of 2066 ± 23 (stat) ± 97 (syst) ± 54 (lumi) fb and 2087 ±
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Figure 4: Left: ratio of the inclusive cross sections as obtained with the two template methods.
Right: measured differential cross sections for the muon and electron channels using a com-
bination of the two template methods compared to the NNLO [21], the MCFM (NLO) and the
SHERPA SM predictions. The last bin is computed for the interval 120–500 GeV.

30 (stat)± 104 (syst)± 54 (lumi) fb are measured for the muon and electron channels, respec-
tively. The cross sections are combined using the BLUE method [34], assuming that the sys-
tematic uncertainties between the two lepton channels are highly correlated, since the signal
yields are extracted using the same template shapes. The combined cross sections for the two
channels are given in Table 2 and shown as the differential cross section in Fig. 5. It is compared
to the MCFM (NLO), the NNLO, and the SHERPA predictions. For pγ

T > 15 GeV the inclusive
cross section is measured to be

σincl = 2063± 19 (stat)± 98 (syst)± 54 (lumi) fb.

This is in good agreement with the MCFM prediction of σMCFM
incl = 2100± 120 fb and the NNLO

calculation [21] of σNNLO
incl = 2241± 22 (scale only) fb. However, the ratio plot in Fig. 5 shows

that at high pγ
T the measurement is better described by the NNLO calculation and by SHERPA

than by MCFM. The SHERPA calculation includes up to two partons in the matrix element which
leads to a significant enhancement at high pγ

T.

6.2 The exclusive cross section

To understand the effect of additional jets a measurement of the exclusive cross section is per-
formed for Zγ production without any accompanying jet with pT > 30 GeV and |η| < 2.4.

The high instantaneous luminosity in the 2012 run requires that special care must be taken
to reduce the contribution from jets produced in pileup interactions. About 50% of these jets
can be rejected by requiring a maximal pT fraction of charged particles in a jet originating
from a pileup vertex. Further corrections are needed to account for the remaining contribution
from pileup jets and jet reconstruction inefficiencies. The jet reconstruction efficiencies and jet
misidentification rates for each pγ

T bin are taken from the simulation where the jet misidentifica-
tion rate considers all jets that cannot be matched to a jet from the main interaction at generator
level. These are used to calculate the number of exclusive events from the measured number
of inclusive events and the measured number of events with zero reconstructed jets. The latter
are determined with the same methods used for the extraction of the inclusive signal yield. The
uncertainties in the cross section due to pileup and jet energy scale are evaluated to be 1% and
2.5% respectively.
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Figure 5: Top: combined inclusive differential cross section for the two lepton channels com-
pared to the NNLO [21], the MCFM (NLO) and the SHERPA SM predictions. The latter is nor-
malized to the NNLO cross section. The last bin is computed for the interval 120–500 GeV.
Bottom: the ratios of the data and the other predictions to the NNLO calculation showing the
effect of the additional partons on the inclusive cross section.
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Table 2: The combined inclusive cross sections for the muon and electron channels with statisti-
cal, systematic, and integrated luminosity uncertainties, respectively. Scale and PDF uncertain-
ties are included in the systematics for the MCFM (NLO) cross section calculation. Only scale
uncertainties are considered for the NNLO calculation.

pγ
T (GeV) σincl (fb) σMCFM

incl (fb) σNNLO
incl (fb)

15–20 908± 12± 39± 24 972± 57 1005.6± 2.6
20–25 489± 9± 21± 13 510± 27 540.1± 3.7
25–30 234± 7± 11± 6 245± 17 269.2± 3.6
30–35 132.8± 4.8± 7.0± 3.5 113.4± 6.8 131.6± 3.5
35–45 120.7± 4.0± 6.2± 3.1 103.2± 6.4 123.2± 3.6
45–55 71.8± 3.0± 4.6± 1.9 51.3± 2.5 60.6± 1.6
55–65 32.2± 2.3± 2.5± 0.8 29.6± 1.4 35.2± 1.0
65–75 19.1± 1.8± 1.7± 0.5 18.5± 1.0 21.89± 0.56
75–85 13.2± 1.5± 1.2± 0.3 12.10± 0.70 14.38± 0.38
85–95 9.6± 1.2± 1.2± 0.3 8.19± 0.41 9.98± 0.31
95–120 16.3± 1.3± 1.4± 0.4 11.47± 0.57 14.10± 0.44
>120 15.8± 1.0± 1.0± 0.4 12.59± 0.68 15.29± 0.51

The pγ
T distribution of exclusive events is unfolded and the cross sections are calculated. The

acceptance is taken from MCFM (NLO). As shown in Fig. 6 (left) the results of the two tem-
plate methods agree well and are combined using the BLUE method. With the requirement
of pγ

T > 15 GeV for the muon and the electron channels exclusive cross sections of 1774 ±
23 (stat)± 115 (syst)± 46 (lumi) fb and 1791± 29 (stat)± 122 (syst)± 47 (lumi) fb are measured,
respectively. These and the differential cross sections presented in Fig. 6 (right) are compatible.
The combined cross sections for the two channels are shown in Fig. 7.

The difference at high pγ
T between the MCFM (NLO) calculation and SHERPA with up to two

partons is smaller for the exclusive calculation. Currently there is no exclusive NNLO calcu-
lation available to be compared with the measurement. The measured cross section values are
in agreement with the two available predictions. The combination of the two lepton channels
compared to MCFM (NLO) is presented in Table 3 and the differential cross section is shown
in Fig. 7. The ratio of the exclusive and inclusive cross sections is shown in Fig. 8. The frac-
tion of exclusive events decreases with increasing pγ

T and the fraction of events with additional
jets changes from 10% to 40%. Adding the exclusive cross sections in all bins we obtain for
pγ

T > 15 GeV

σexcl = 1770± 18 (stat)± 115 (syst)± 46 (lumi) fb.

This is compatible with the MCFM (NLO) prediction of σMCFM
excl = 1800± 120 fb.

7 Limits on aTGCs
The ZZγ or Zγγ aTGCs are formulated in the framework of an effective field theory consider-
ing dimension six and eight operators, that fulfill the requirements of Lorentz invariance and
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Figure 6: Left: ratio of the exclusive cross sections as obtained with the two template methods.
Right: measured cross sections for the muon and electron channels using a combination of the
two template methods compared to the MCFM (NLO) and the SHERPA SM predictions. The last
bin is computed for the interval 120–500 GeV.

Table 3: The combined exclusive cross sections for muon and electron channels with statistical,
systematic, and luminosity uncertainties respectively. Scale and PDF uncertainties are included
in the systematics for the MCFM (NLO) cross section calculation.

pγ
T (GeV) σexcl (fb) σMCFM

excl (fb)
15–20 832± 12± 49± 22 873± 51
20–25 432± 9± 25± 11 450± 23
25–30 196± 6± 12± 5 211± 10
30–35 100.5± 5.3± 7.4± 2.6 89.5± 7.9
35–45 89.2± 3.7± 6.2± 2.3 77.2± 5.6
45–55 49.5± 2.8± 4.9± 1.3 39.0± 2.4
55–65 25.4± 2.0± 3.1± 0.7 22.4± 1.6
65–75 11.4± 1.5± 1.7± 0.3 13.83± 0.98
75–85 9.3± 1.3± 1.6± 0.2 8.85± 0.48
85–95 6.3± 1.2± 1.4± 0.2 5.83± 0.70
95–120 9.9± 1.0± 1.3± 0.3 7.83± 0.48
>120 8.6± 0.8± 1.1± 0.2 7.81± 0.58
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Figure 7: Top: combined exclusive differential cross section for the two lepton channels com-
pared to the MCFM (NLO) and SHERPA SM predictions. The whole SHERPA sample (inclusive)
is normalized to the NNLO cross section. The last bin is computed for the interval 120–500 GeV.
Bottom: for the exclusive measurement the ratios to the MCFM (NLO) prediction are shown.
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Figure 8: Ratio of the exclusive to inclusive cross sections for Zγ production.

local U(1) gauge symmetry. The resulting Lagrangian [35] has the form

LaTGC = LSM +
e

m2
Z

[
−[hγ

1 (∂
σFσµ) + hZ

1 (∂
σZσµ)]ZβFµβ

− [hγ
3 (∂σFσρ) + hZ

3 (∂σZσρ)]Zα F̃ρα

− [
hγ

2

m2
Z
[∂α∂β∂ρFρµ] +

hZ
2

m2
Z
[∂α∂β(∂ν∂ν + m2

Z)Zµ]]ZαFµβ

+[
hγ

4

2m2
Z
[∂ν∂ν∂σFρα] +

hZ
4

2m2
Z
[(∂ν∂ν + m2

Z)∂
σZρα]]Zσ F̃ρα

]
(1)

with the electromagnetic tensor Fµν = ∂µFν − ∂νFµ and F̃µν = 1/2 εµνρσFρσ and similar defini-
tions for the Z boson field. There are eight coupling constants hV

i , i = 1 . . . 4 and V = Z, γ for
ZZγ (Zγγ) couplings. The parameters hV

1 and hV
2 are CP-violating while hV

3 and hV
4 are not. It

was shown in Ref. [36, 37] that there is no dimension six operator respecting U(1)Y × SU(2)L
invariance, but two dimension eight operators, including the Higgs field, that could lead to an
enhancement proportional to hV

1 and hV
3 . In this measurement we follow the CMS convention

of not using form factors [5].

For the Zγ process the existence of aTGCs would typically lead to an enhancement of photons
with high transverse momentum [1–3]. The observed pγ

T distribution is therefore used to extract
limits on ZZγ and Zγγ aTGCs.

The difference in the pγ
T distributions between the SM and aTGCs models is parameterized

using the MCFM (NLO) prediction. The NNLO SM calculation is added to describe a com-
plete pγ

T distributions of an aTGC model. To obtain a pγ
T distribution that can be compared to

the data, each simulated event is weighted by the lepton and photon efficiencies and the pho-
ton momentum is smeared according to the detector resolution. The irreducible background
from the simulation and the background of nonprompt and misidentified photons, as obtained
from the σηη template method, are added. In order to obtain a smooth background descrip-
tion, the background is parameterized as a sum of two exponential functions with parameters
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Figure 9: Top: the pγ
T distribution compared to predictions using various values for the aTGCs

and the SM. The observed p-values show that data are fully compatible with the SM expectation
(red). Bottom: corresponding cumulated distributions.

obtained from a fit to the observed background distribution. Figure 9 shows a direct compar-
ison between the pγ

T distribution in data and the expectations for various aTGC strengths. A
theoretical uncertainty of 6–12% is determined from PDF and scale variations. Experimental
systematic uncertainties are 2% in the dilepton efficiency, 2% in the photon efficiency, 2.6% in
the luminosity measurement, and depending on pγ

T up to 8% uncertainty in the background of
nonprompt and misidentified photons obtained from the σηη template method.

An unbinned profile likelihood ratio based on the pγ
T distribution is used to find the best fit-

ting aTGC model and its 95% confidence level (CL) region. With the precision of the current
measurement it is not possible to distinguish between the CP-even and CP-odd contributions.
Therefore, only the CP-even parameters hV

3 and hV
4 are considered. The two-dimensional limits

on hV
3 and hV

4 are shown in Fig. 10. The combination of the muon and electron channels takes
into account that most of the systematic uncertainties are correlated with the exception of those
related to the lepton reconstruction efficiencies. The one-dimensional 95% CL regions, when
only one of the aTGCs is nonzero, are

−3.8× 10−3 < hZ
3 < 3.7× 10−3

−3.1× 10−5 < hZ
4 < 3.0× 10−5

−4.6× 10−3 < hγ
3 < 4.6× 10−3

−3.6× 10−5 < hγ
4 < 3.5× 10−5.
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simulation are shown.
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8 Summary
A study of Zγ production in pp collisions at 8 TeV using data collected with the CMS experi-
ment in 2012, corresponding to an integrated luminosity of 19.5 fb−1 was presented. Decays of
the Z bosons into muons and electrons were used for the measurement of the differential Zγ
cross section as a function of pγ

T for a phase space defined by the kinematic requirements on
the final-state particles shown in Table 1. In addition, the exclusive differential Zγ cross section
for events with no accompanying central jets was presented. The inclusive and exclusive cross
sections for pγ

T > 15 GeV are measured to be:

σincl = 2063± 19 (stat)± 98 (syst)± 54 (lumi) fb,
σexcl = 1770± 18 (stat)± 115 (syst)± 46 (lumi) fb.

Both values are compatible with the SM expectations of σMCFM
incl = 2100 ± 120 fb (σNNLO

incl =
2241± 22 fb) and σMCFM

excl = 1800± 120 fb, respectively. At high pγ
T the inclusive measurement

is well described by the NNLO calculation and also by the SHERPA prediction including up to
two additional partons at matrix element level, while a clear excess is observed with respect to
the MCFM (NLO) calculation. This emphasizes the importance of NNLO QCD corrections for
this measurement. A similar excess is not observed for the exclusive measurement.

Limits on the strengths of anomalous ZZγ and Zγγ couplings have been extracted. The fol-
lowing one-dimensional limits at 95% CL have been obtained

−3.8× 10−3 < hZ
3 < 3.7× 10−3

−3.1× 10−5 < hZ
4 < 3.0× 10−5

−4.6× 10−3 < hγ
3 < 4.6× 10−3

−3.6× 10−5 < hγ
4 < 3.5× 10−5.

These limits are more stringent than previously published results on neutral aTGCs for the
charged lepton decays of the Z boson from LEP [38, 39], Tevatron [40, 41] and the LHC experi-
ments [4, 5].
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France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft,
and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat
for Research and Technology, Greece; the National Scientific Research Foundation, and Na-
tional Innovation Office, Hungary; the Department of Atomic Energy and the Department
of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathe-
matics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy;
the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF),
Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and Uni-
versity of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP,
and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the
Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the
National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR,
Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of
Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foun-
dation for Basic Research; the Ministry of Education, Science and Technological Development
of Serbia; the Secretarı́a de Estado de Investigación, Desarrollo e Innovación and Programa
Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI,
SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the
Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science
and Technology of Thailand, Special Task Force for Activating Research and the National Sci-
ence and Technology Development Agency of Thailand; the Scientific and Technical Research
Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences
of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology
Facilities Council, UK; the US Department of Energy, and the US National Science Foundation.

Individuals have received support from the Marie-Curie program and the European Research
Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Founda-
tion; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the
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