
Fermilab-PUB-15-043-T

A Multi-Threaded Version of MCFM

John M. Campbella,1, R. Keith Ellisb,1, Walter T. Gielec,1

1Fermilab, PO Box 500, Batavia, IL 60510, USA

March 20, 2015

Abstract We report on our findings modifying MCFM
using OpenMP to implement multi-threading. By using
OpenMP, the modified MCFM will execute on any pro-
cessor, automatically adjusting to the number of avail-
able threads.

We modified the integration routine VEGAS to dis-
tribute the event evaluation over the threads, while

combining all events at the end of every iteration to
optimize the numerical integration.

Special care has been taken that the results of the
Monte Carlo integration are independent of the num-
ber of threads used, to facilitate the validation of the
OpenMP version of MCFM.

1 Overview

An important aspect of Monte Carlo programs is evalu-
ation speed and ease of use. A faster overall evaluation
speed not only means that more complicated processes
can be evaluated, but it also allows for more experi-
mentation as results are returned in a shorter time.

Computer processors are increasing their computa-
tional power by including more and more computing
cores. It is therefore essential for Monte Carlo event
generators to explore the possibility of a parallel imple-
mentation of the code by taking advantage of the mul-
tiple threads to reduce the evaluation time for a given
number of events. By properly implementing the use of
multi-threading, the Monte Carlo evaluation speed will

scale with the number of cores; this process will con-
tinue as more and more cores become available in the
future. Monte Carlo event generators are well suited to

ae-mail: johnmc@fnal.gov
be-mail: ellis@fnal.gov
ce-mail: giele@fnal.gov

take advantage of multi-core processors. Parallelization
is straightforward as each generated event is evaluated
independently, while the results of these evaluations are
all combined to optimize the numerical integration.

The reason processors increase the number of cores
instead of the processor frequency is the limitation de-
riving from the growth of the power consumption of the
chip. The power consumption in a chip is given by the

equation

P = CV 2f (1)

where P is power, C is the capacitance being switched
per clock cycle, V is voltage, and f is the processor fre-

quency (cycles per second). As the clock speed increases
the power (and hence heat) grows linearly. By having
two circuits in parallel, we can double the capacitance
and halve the clock speed. The voltage determines the

rate at which the capacitance charges and discharges,
so that a slower clock speed can run with lower volt-
ages. At half the clock speed, we can approximately
halve the voltage, leading to a saving in power without
a compromise in performance. The use of many cores in
this fashion may allow the growth of computing power
to continue following Moore’s law in the future. It is
therefore imperative that software evolve to take ad-
vantage of these developments.

Currently the Intel Xeon-Phi coprocessor with 240
processor threads and General Purpose Graphics Pro-
cessing Units (GPGPU’s) with up to 2,880 gpu cores
are the most extreme implementation of this approach
to increasing the computational power. The Xeon Phi is
the first generation of the Intel MIC (Many Integrated
Cores) hardware. With an improved version of this co-
processor planned for release in the summer of 2015,
further speed-ups can be expected.

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



2

We will explore using this co-processor and more

conventional processors using OpenMP. Specifically, we

will test our OpenMP version of MCFM1 on an In-

tel Core I7-4770 (4 hardware threads), a dual Intel

Xeon X5650 (2x6 hardware threads), a quadruple AMD

6128 HE Opteron (4x8 hardware threads) and the In-

tel Xeon-Phi 5110P (240 hardware threads). Note that

the Intel Core i7 comes with 8 hyperthreads, 2 soft-

ware threads per core. The core can execute only one

of the threads and quickly switch to the other thread if

the current thread is waiting. As we will see this is of

limited benefit for our application.

The OpenMP standard2 [1] is a good choice for im-

plementing parallel programming. It is native to both

the Intel and GNU compilers and can be invoked by in-

cluding the ‘openmp’-flag during compilation. No spe-

cial libraries or other software need to be installed. The

OpenMP compiler directives are simply implemented as

comment statements in either FORTRAN or C/C++

code. This has the advantage that the code can be

compiled without the ‘openmp’-flag. In this case the

OpenMP directives are interpreted as comments by the

compiler. Furthermore, we can implement the paral-

lelism with only minor alterations to the original code

by just adding these compiler directives.

The further layout of our paper is as follows. In

section 2 we discuss some details and considerations

for implementing OpenMP into the FORTRAN code

of MCFM [2,3] (similar considerations will hold for

C/C++ code). The numerical performance of the par-

allel code is explored in section 3 using several different

processors. Finally, in section 4 we sum up our conclu-

sions and review further possible developments for the

OpenMP MCFM program.

1MCFM-7.0 which runs under the OpenMP protocol as
described in this paper can be downloaded from the
mcfm.fnal.gov website.
2‘OpenMP (Open Multi-Processing) is an API that supports
multi-platform shared memory multiprocessing programming
in C, C++, and Fortran, on most processor architectures and
operating systems, including Solaris, AIX, HP-UX, Linux,
Mac OS X, and Windows platforms. It consists of a set of
compiler directives, library routines, and environment vari-
ables that influence run-time behavior. OpenMP is managed
by the nonprofit technology consortium OpenMP Architec-
ture Review Board (or OpenMP ARB), jointly defined by a
group of major computer hardware and software vendors, in-
cluding AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC,
Red Hat, Texas Instruments, Oracle Corporation, and more.’,
from Wikipedia.

2 Implementing OpenMP in MCFM

2.1 MCFM

MCFM is a parton level integrator, developed over many

years at Fermilab, that calculates cross sections and

distributions of kinematic variables for hard scatter-

ing processes in hadron-hadron collisions [2]. More than

300 processes are included, the majority of them calcu-

lated at next-to-leading order in the strong coupling.

The event generator consists of an adaptive integration

routine which generates the events. The returned event

probabilities are used to further optimize the integra-

tion using importance sampling. The program spends

the bulk of its time in the event evaluation routines.

For MCFM the multi-dimensional integration is im-

plemented using VEGAS [4,5]. It produces several it-

erations of sets of events. After each iteration the grid

is optimized to reduce the weight fluctuations in the

integration so that faster convergence is obtained. This

offers an obvious and straightforward way to parallelize

the program. While the grid optimization is not par-

allelized, so that all the results can be combined, the

individual generation of phase space points and subse-

quent matrix element evaluation can be done in parallel

as no data sharing is required between different events.

This allows the parallel program to access all evaluated

events to obtain maximum convergence, while the event

evaluation is sped up considerably by using each thread

for a different event generation and evaluation.

This should be contrasted with simultaneous run-

ning of an individual program on each thread. In this

case the grids in each program are only updated with

the events from that particular thread, leading to a

worse convergence. The parallel version offers the ad-

vantage of combining the events from all threads for the

grid optimization.

2.2 OpenMP-MCFM

Here we detail the work needed to produce an OpenMP

implementation of MCFM. The MCFM code is large

and complicated. To convert MCFM to an OpenMP

supported MCFM requires some thought and work. We

used as goals (a) to minimize the changes in the origi-

nal code and (b) to implement the parallelism through

comment compiler directives as much as possible. This

makes the code compilable with or without the OpenMP

flag. Another goal (c) was to make sure the program

generates the same events independent of the number

of threads used. We verified that the results obtained

are independent of the number of threads used to eval-



3

uate the cross sections. This greatly helps to validate

that the implementation of the parallel code is correct.

Almost all the work to be done is to make sure vari-

ables are correctly assigned. In a parallel program we

have to decide whether a variable is global (i.e. poten-

tially shared by threads) or local to the thread (i.e. each

thread has its own version of the variable).

The most labor-intensive part is the treatment of

data structures. The following rules will lead to a suc-

cessful parallelization. For all the code running in par-

allel one has to implement the following steps:

– All variables in DATA statements in the parallel re-

gion have to be included in SAVE statements ensur-

ing they are declared for each thread. If not done,

the variables are not necessarily initialized.

– All variables in SAVE statements in the parallel re-

gion must be made ‘thread private’ in the respective

functions and subroutines.

– All common blocks whose variables are defined or

changed in the parallel region have to be declared

‘thread private’ each time the common block is de-

clared.

– All common blocks whose variables are defined or

changed outside the parallel region in addition to

being changed in the parallel region need to be de-

clared ‘thread private’. To ensure the values are

copied to each thread at the start of the parallel

region a COPYIN directive including the common

block has to be issued.

Note that, where necessary, variables and common blocks

are made ‘thread private’ by adding the THREADPRI-

VATE directive to the function or subroutine [1].

The MCFM code was originally written in FOR-

TRAN 77, but parts of the code now require a FOR-

TRAN 90 compiler. In view of the special treatment

required for data statements, indicated above, it is ben-

eficial to eliminate data statements wherever they are

not needed. FORTRAN 90 allows parameter arrays, so

it is useful to replace the FORTRAN 77 legacy data

arrays by parameter arrays wherever possible.

To ensure that the same events are generated, inde-

pendent of the number of threads used, we have to en-

sure VEGAS generates the same sequence of groups of

pseudo-random numbers used to generate the momenta

in an event. To do this we use the CRITICAL directive

forcing the pseudo-random number generator to run

serially, when assigning the groups of pseudo-random

numbers to a thread. When looking at all threads com-

bined, the same groups of random numbers will be gen-

erated, and consequently the same set of events. The

order in which the groups of random numbers are ac-

cessed by the threads is not identical and varies from

run to run (i.e. which thread reaches the critical region

first) but in the end the same events are always gener-

ated. A named CRITICAL directive provides a way of

distinguishing CRITICAL regions in different parts of

the program. When a thread arrives at a CRITICAL

directive, it waits until no other thread is executing a

critical region with the same name.

The ATOMIC construct, which applies only to the

specific assignment statement that follows it, can be an

efficient alternative to a CRITICAL region. The state-

ment following an ATOMIC directive is executed by all

threads, but only one thread at a time can execute the

statement.

This is still not sufficient to reach identical results

for the cross section. The reason for this is numerical

rounding differences due to the fact that the resulting

weights are added in different orders. Using Kahan sum-

mation [6] will ameliorate rounding error, leading not

only to identical cross section results but also to more

accurate results.

We checked that all processes in MCFM produce

identical results independent of the number of threads

and in agreement with the non-parallel version of MCFM

(version 6.8).

3 Performance of OpenMP-MCFM

3.1 Runtime considerations

We used version 3.0 of OpenMP to prepare our code,

which includes all of the compiler directives discussed

above. To compile the program the ‘openmp’-flag has to

be included. The resulting executable will use by default
all available threads during execution. Note that if the

program is compiled without the OpenMP flag it will

not use multi-threading. To lower the number of threads

used, two options are available. The first option uses the

environmental variable OMP NUM THREADS. This

variable can be set to the number of threads the OpenMP

executable will use. Another possibility is to include

the omp lib.h library in the program which gives access

to in-program OpenMP commands. The function call

omp set num threads(int) sets the number of threads

used to the value of the integer ‘int’. This allows for

a dynamical change of the number of threads during

execution. The library also gives access to many more

OpenMP function calls, that are currently of no impor-

tance in running MCFM.

Another consideration is the memory stack size to

be used by each thread. The default size of the stack is

not specified by the OpenMP standard. If the stacksize

is too small the program will crash with a segmenta-

tion fault or other unexpected behaviour. To be able



4

to execute all processes in MCFM the stack size should

be set to 16,000 or higher using the environmental vari-

able OMP STACKSIZE (though for most processes in

MCFM a much smaller stacksize suffices).

3.2 Results

threads used
1 10 210

ru
n

 t
im

e
 (

se
co

n
d

s)

1

10

PP-> H(->bb)+ 2 jets @ LO

Processor:

Intel Psi 5110P

AMD 6128 HE

Intel Xeon X5650

Intel Core i7-4770

PP-> H(->bb)+ 2 jets @ LO

threads used
1 10 210

ru
n

 t
im

e
 (

se
co

n
d

s)

210

310

PP-> H(->bb)+ 2 jets @ NLO

Processor:

Intel Psi 5110P

AMD 6128 HE

Intel Xeon X5650

Intel Core i7-4770

PP-> H(->bb)+ 2 jets @ NLO

Fig. 1 The evaluation time of PP → H(→ bb̄) + 2 jets us-
ing 4x1,000+10x10,000 Vegas events (in seconds) versus the
number of threads. The top graphs is at LO and the bottom
graph at NLO.

To benchmark the performance of the parallel ver-

sion of MCFM we use four different types of computer

hardware. This will test the code on a variety of hard-

ware configurations with differing clock frequency, num-

ber of threads, cache size etc.

The first configuration is a standard desktop with

an Intel Core i7-4770. This processor has 4 cores, each

Intel Core I7-4770

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 1.67 1.69 1.70 1.00 100.00
2 0.83 0.83 0.83 2.02 101.21
3 0.57 0.57 0.58 2.94 97.88
4 0.44 0.44 0.44 3.80 95.12
5 0.40 0.40 0.40 4.18 83.50
6 0.37 0.37 0.37 4.55 75.78
7 0.34 0.34 0.34 4.92 70.26
8 0.32 0.32 0.32 5.25 65.65

Table 1

Dual Intel Xeon X5650

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 2.88 2.89 2.89 1.00 100.00
2 1.49 1.49 1.50 1.94 96.76
3 0.99 1.00 1.00 2.90 96.60
4 0.75 0.75 0.75 3.85 96.13
6 0.50 0.50 0.51 5.72 95.30
8 0.38 0.38 0.38 7.57 94.59
10 0.31 0.31 0.31 9.37 93.66
12 0.26 0.26 0.26 11.16 92.96

Table 2

Quadruple AMD 6128 HE Opteron

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 3.79 3.80 3.80 1.00 100.00
2 2.00 2.02 2.05 1.88 94.06
3 1.36 1.37 1.38 2.77 92.42
4 1.03 1.04 1.05 3.66 91.52
8 0.54 0.54 0.54 7.00 87.44
12 0.38 0.38 0.38 9.98 83.13
16 0.33 0.33 0.33 11.44 71.52
32 0.83 0.84 0.86 4.50 14.06

Table 3

Intel Xeon Phi 5110P

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 23.09 23.12 23.15 1.00 100.00
2 12.10 12.12 12.14 1.91 95.39
3 8.14 8.22 8.53 2.81 93.78
4 6.16 6.21 6.38 3.72 93.11
16 1.66 1.67 1.68 13.86 86.61
32 1.39 1.39 1.40 16.61 51.89
64 1.41 1.41 1.41 16.39 25.61
128 1.44 1.44 1.45 16.02 12.52
240 1.52 1.52 1.53 15.19 6.33

Table 4

The LO evaluation of PP → H(→ bb̄) + 2 jets using
4x1,000+10x10,000 Vegas events for the 4 different hardware
configurations.



5

Intel Core I7-4770

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 238.83 238.95 239.07 1.00 100.00
2 120.16 120.45 120.73 1.98 99.19
3 81.99 82.03 82.07 2.91 97.10
4 63.01 63.02 63.02 3.79 94.80
5 58.67 58.69 58.71 4.07 81.43
6 54.84 54.85 54.86 4.36 72.61
7 51.52 51.53 51.54 4.64 66.24
8 48.62 48.63 48.64 4.91 61.42

Table 5

Dual Intel Xeon X5650

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 496.43 496.43 496.44 1.00 100.00
2 249.73 249.83 249.94 1.99 99.35
3 166.20 166.41 166.62 2.98 99.44
4 124.58 124.58 124.59 3.98 99.62
6 83.01 83.04 83.06 5.98 99.64
8 62.24 62.26 62.29 7.97 99.66
10 49.79 49.80 49.80 9.97 99.69
12 41.46 41.46 41.46 11.97 99.78

Table 6

Quadruple AMD 6128 HE Opteron

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 806.86 806.98 807.10 1.00 100.00
2 404.00 404.08 404.17 2.00 99.85
3 269.26 269.37 269.48 3.00 99.86
4 201.96 201.99 202.02 4.00 99.88
8 101.03 101.05 101.07 7.99 99.83
12 67.41 67.41 67.41 11.97 99.76
16 50.56 50.56 50.56 15.96 99.75
32 25.34 25.36 25.37 31.82 99.45

Table 7

Intel Xeon Phi 5110P

Thr. Time (sec) Acc. Eff.
min avg max avg (%)

1 3784.45 3784.45 3784.45 1.00 100.00
2 1906.73 1906.73 1906.73 1.98 99.24
3 1282.26 1282.26 1282.26 2.95 98.38
4 958.59 958.59 958.59 3.95 98.70
16 242.66 242.66 242.66 15.60 97.47
32 121.25 121.25 121.25 31.21 97.54
64 62.29 62.29 62.29 60.76 94.93
128 41.22 41.22 41.22 91.81 71.73
240 31.82 31.82 31.82 118.94 49.56

Table 8

The NLO evaluation of PP → H(→ bb̄) + 2 jets using
4x1,000+10x10,000 Vegas events for the 4 different hardware
configurations.

with 2 hyperthreads. The second configuration contains

two Intel Xeon X5650 processors, each with 6 cores for

a total of 12 cores. The third configuration contains

four AMD 6128 HE Opteron processors, each with 8

cores for a total of 32 cores. The final configuration

is an Intel Phi 5110P coprocessor card connected to a

PCI slot. This coprocessor has 60 cores, each with 4

hardware threads for a total of 240 threads.

While we have validated all processes in this ver-

sion of MCFM, we pick one process in particular to

study the speedups gained by using multiple threads.

The process we choose is PP → H(→ bb̄)+2 jets which

describes the production of a Higgs boson in associ-

ation with two jets through an effective gluon-gluon-

Higgs vertex. The Higgs boson subsequently undergoes

a two-body decay to two b-quarks. Thus the process can

have as many as 4 (5) jets in LO (NLO), two of which

can come from the Higgs decay. In lowest order a pro-

cess with n particles in the final state requires 3n − 4

phase space integrations and two integrals over parton

density longitudinal fractions. Thus for this leading or-

der (LO) process, a 10-dimensional integration is re-

quired. The next-to-leading (NLO) process requires a

13-dimensional integration. The results are contained

in Tables 1 through 4 for the LO runs and in Table 5

through 8 for the NLO runs. The tables contain, for

each configuration and as a function of the number of

threads used, the minimum, average and maximum run-

time (in seconds), averaged over 10 runs for the first 3

configurations and 2 runs for the coprocessor. The ac-

celeration compares the runtime to the single thread

run time by taking the ratio of the two. Finally we

give the efficiency in percentages. The efficiency is sim-

ply the acceleration divided by the number of threads.

For a perfect parallelization, doubling the number of

threads should double the acceleration, leaving the ef-

ficiency at 100%. All the average runtime results of the

tables are represented graphically in figure 1 where we

plot on a log-log scale the runtime as a function of the

number of threads used. Note that we do not generate

histograms during these benchmarking runs.

We will first look at the results for the Intel Core

i7 in Tables 1 and 5 (and Figure 1). As we can see the

speed-up as far as 4 threads is good, with an accelera-

tion for LO up to 3.80 and for NLO up to 3.79. As the

processor has 4 cores, each thread runs on a different

core. If we use more than 4 threads some or all of the

threads will share a single core with another thread.

If one of the threads has to wait for a memory fetch,

the core will switch to the other thread and start ex-

ecuting. As can be seen, this results in a much slower

speed-up though some speedup is still achieved (from

3.80 for 4 threads to 5.25 for 8 threads at LO and from



6

3.79 to 4.91 at NLO). Yet, by using multi-threading

on this basic configuration one can generate around 6.3

million Vegas events at NLO order per hour. Note that

this depends on the cuts applied, as this will affect the

number of rejected events. However, the comparison to

other configurations is illuminating.

The next configuration to consider is the dual sock-

eted X5650 processors giving a total of 12 cores. The

results of Table 2 and 6 show good scaling for LO with

a maximum acceleration of 11.16. At NLO the accel-

eration is nearly perfect with a maximum acceleration

of 11.97 using 12 threads. The difference in speed-up

between LO and NLO can be understood by the fact

that the NLO process is computationally bound (i.e. the

runtime is predominantly determined by floating point

operations), while at LO the computational component

is much smaller and the memory fetch time will become

more dominant, i.e. LO is more bandwidth bound. In

other words at LO we do not give the cores enough

floating point operations to keep them fully occupied.

While this processor runs a factor of 0.56 slower than

the Core i7, in the end it wins out due to the use of

12 cores. By using multi-threading on this configura-

tion one can generate 8.7 million Vegas events at NLO

order per hour.

In Tables 3 and 7 we move on to the quad-socketed

AMD 6128 HE Opteron processors giving a total of 32

cores. We very clearly see the effect of the bandwidth

bound LO and the computational bound NLO. The

NLO gives nearly perfect acceleration of 31.82, while

LO reaches its maximum acceleration of 11.44 using 16

of the 32 cores. Using more than 16 cores actually makes

the evaluation time slower as the bandwidth limitation

becomes more important than the computational one.

Despite being slower by a factor 0.35 compared to the

Core I7 processor one can generate 14.2 million Vegas

events at NLO per hour.

The final configuration is the Xeon-Phi coprocessor

with 240 hardware cores. To achieve good acceleration

it is crucial to have a computational bound calculation.

This is dramatically demonstrated in Tables 6 and 8. At

LO it achieves its fastest evaluation time using around

32 threads with an acceleration around 16.61. However

at NLO the coprocessor keeps accelerating up to 240

threads for the evaluation time of 31.82 seconds, giv-

ing a maximum acceleration of around 119. One can

generate 10.7 million Vegas events at NLO per hour.

While this co-processor has an impressive acceleration

of over a factor of 100, the processing speed of a single

core is slow. (It is a factor of 0.07 slower than the Core

i7). The next iteration of the co-processor is expected

to be significantly faster, making this MIC architecture

very attractive in the near future. It is worth noting

this co-processor is a PCI-bus card which, given the

right configuration, can be added to a desktop turning

it into a very powerful stand-alone event generator.

 (GeV)jjm
0 50 100 150 200 250 300

0

5

10

15

20

25

30

35

40

1-Thread vs Many-Threads

 1 thread 

32 threads

1-Thread vs Many-Threads

Fig. 2 The di-jet differential cross section for PP → H(→
bb̄) + 2 jets at NLO using 1 hour of running time on the
Intel Core I7-4770 using a single thread and on the quadruple
AMD 6128 HE Opteron using all 32 threads. The peak at
mjj = 125 GeV when the two jets come from the decay of
the Higgs boson is visible.

 (GeV)jjm
0 50 100 150 200 250 300

0

5

10

15

20

25

30

 LO

NLO

Fig. 3 The di-jet differential cross section for PP → H(→
bb̄) + 2 jets using 4x1,500,000+10x15,000,000 events. At LO
we use the Dual Intel Xeon X5650 with 12 threads (about
12 minutes of runtime) and at NLO we use the quadruple
AMD 6128 HE Opteron (about 22 hours of runtime ) with 32
threads. The peak when the two jets come from the decay of
the Higgs boson is clearly visible.



7

To see the impact of the faster running we show in

Figure 2 the results for the di-jet mass invariant mass

distribution. We compare the fastest single thread con-

figuration (the Core-I7) and the fastest multi-thread

configuration (quad AMD) using approximately 1 hour

of runtime for each. We see that the single thread run is

insufficient for any useful exploratory runs. In contrast

one hour of running on the multi-threaded system gives

a good result. Finally, in Figure 3 we make the di-jet

distribution using about 24 hours of runtime which is

more than sufficient to produce a stable final result.

4 Conclusions

To conclude we see that the threaded version of MCFM

accelerates well on different architectures. The com-

putationally bound NLO processes scale well with the

number of threads and the evaluation speeds are signif-

icantly improved. In particular, the performance of the

Xeon-Phi coprocessor is impressive. A new coprocessor

is to be released in the summer of 2015, promising even

faster evaluation times. Moreover, this new version will

also be available in a socketed version, removing the

PCI-bus and hopefully alleviating the bandwith-bound

issues of LO. This will make the Xeon-Phi coprocessor

a very attractive option for Monte Carlo generators in

the near future.

As we have shown, we have successfully implemented

a parallel version of MCFM. It instantly reduces the ex-

ecution time dependent on the hardware configuration

of the system (i.e. number of cores, cache configura-

tion, memory bandwidth, clock frequency etc) without

any intervention of the user of MCFM. For the comput-

ing intensive next-to-leading order processes we obtain

very good accelerations on all processors. In particular,

utilizing the Xeon-Phi coprocessor with 240 hardware

cores yields an acceleration of order 100 over running

on a single thread.

The new Xeon-Phi processor, to be released in sum-

mer 2015, will overcome most of the bandwith limita-

tion to which the compute-light leading order processes

are subject. Moreover the new processor will be sub-

stantially more powerful, giving us accelerations well

over a factor of 100. Now that we have improved the

speed of MCFM, we can implement more complicated

processes in the event generator and still get accept-

able evaluation times. Possibilities could include adding

more jets to current processes in MCFM or proceeding

to next-to-next-to leading order processes.

Acknowledgments

The numerical work on the Intel Xeon-Phi processor

was performed using the Fermilab MIC development

cluster funded by the DOE Office of Science and op-

erated by the Fermilab scientific computing HPC de-

partment. We acknowledge useful discussions with Don

Holmgren and James Simone. This research is supported

by the US DOE under contract DE-AC02-07CH11359.

References

1. B. Chapman, G. Jost, R. van der Pas, Using OpenMP
(MIT press, 2007)

2. J.M. Campbell, R.K. Ellis, Nucl.Phys.Proc.Suppl. 205-
206, 10 (2010). DOI 10.1016/j.nuclphysbps.2010.08.011

3. J.M. Campbell, R.K. Ellis, C. Williams, JHEP 1107, 018
(2011). DOI 10.1007/JHEP07(2011)018

4. G.P. Lepage, J.Comput.Phys. 27, 192 (1978). DOI
10.1016/0021-9991(78)90004-9

5. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flan-
nery, Numerical Recipes in FORTRAN: The Art of Sci-
entific Computing (Cambridge University Press, 1992)

6. W. Kahan, Communications of the ACM 8(1), 40 (1965).
DOI 10.1145/363707.363723




