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We measure exclusive π+π− production in proton-antiproton collisions at center-of-mass energies√
s = 0.9 and 1.96 TeV in the Collider Detector at Fermilab. We select events with two oppositely

charged particles, assumed to be pions, with pseudorapidity |η| < 1.3 and with no other particles
detected in |η| < 5.9. We require the π+π−system to have rapidity |y| < 1.0. The production mech-
anism of these events is expected to be dominated by double pomeron exchange, which constrains
the quantum numbers of the central state. The data are potentially valuable for isoscalar meson
spectroscopy and for understanding the pomeron in a region of transition between nonperturbative
and perturbative quantum chromodynamics. The data extend up to dipion mass M(π+π−) = 5000
MeV/c2 and show resonance structures attributed to f0 and f2(1270) mesons. From the π+π− and
K+K− spectra, we place upper limits on exclusive χc0(3415) production.

In quantum chromodynamics, the theory of strong in-
teractions between quarks and gluons, calculations of
hadronic interactions are most reliable in the perturba-
tive regime of high four-momentum transfer squared, i.e.,
for distance scales much less than the size of hadrons,
typically 1 fm. Diffractive processes with low transverse-
momentum (pT ) [1] hadrons involve nonperturbative
physics where Regge theory describes scattering pro-
cesses [2, 3]. The data presented in this paper, from
proton-antiproton (pp̄) collisions at

√
s = 0.9 and 1.96

TeV, extend the experimental study of central exclusive
production to above the charmonium threshold, where
the calculation of exclusive χc production by gluon fu-
sion involves perturbative QCD processes [4, 5]. Elastic
scattering and other diffractive interactions are charac-
terized by a large region of rapidity [1], ∆y (or ∆η as
an approximation), devoid of hadrons, called a rapidity
gap. Such processes are described in Regge theory by the
exchange of a pomeron, IP , which at leading order is a
pair of gluons in a color-singlet state [2].

Central exclusive production is here defined to be
pp̄ → p(∗) ⊕ X ⊕ p̄(∗), where X is a specific central
(|yX | < 1) state and ⊕ represents a large region of ra-
pidity, 1.3 < |η| < 5.9, where no particles are detected.
The incident particles remain intact or dissociate diffrac-
tively (p → p∗) into undetected hadrons. In this study
we do not detect outgoing (anti)protons, and we include
events where they dissociate into hadrons with |η| > 5.9.
With two large rapidity gaps and central hadrons, the
process is expected to be dominated by double pomeron
exchange, DIPE [2, 3]. Only at hadron colliders with
center-of-mass energy

√
s & 50 GeV [6, 7] are rapid-

ity gaps larger than ∆y = 3 possible with central state
masses M(X) up to about 2500 MeV/c2. Calculations of
the hadron mass spectrum in this domain have large un-
certainties and do not yet include resonances. The CDF
Collaboration reported the first observations of exclusive
IP + IP→ γγ [8], and IP + IP→ χc using the J/ψ+γ de-
cay mode [9], which can be calculated semiperturbatively
through quark-loop diagrams [4, 5, 10–12].

In DIPE the central state X must have isotopic spin
I = 0 (isoscalar) with positive parity, C-parity and G-
parity, and dominantly even spin J, so exclusive produc-
tion of f0, f2, χc0(2), and χb0(2) mesons is allowed. Thus,
DIPE is a quantum number filter, favoring states hav-
ing valence gluons, such as glueballs, i.e., hadrons with
no valence quarks. Such states are expected in QCD,
but 40 years after being proposed [13], their existence
is not established [14]. More measurements in different
production modes and decay channels should provide in-
sight on the issue. In addition to its role in meson spec-
troscopy, DIPE studies shed light on the nature of the
pomeron. Data at different collision energies provide ad-
ditional tests of the theory; in Regge theory the cross
section for p+(π+π−)+ p̄, with the π+π− in a fixed cen-
tral region, decreases approximately like 1/ln(s) [15, 16].

The analysis reported here uses data from the CDF
II detector, a general purpose detector to study pp̄ colli-
sions at the Fermilab Tevatron, and is described in detail
elsewhere [17]. Here we give a brief summary of the de-
tector components used in this analysis. Surrounding the
beam pipe is a tracking system consisting of silicon mi-
crostrip detectors and a cylindrical drift chamber in a
1.4 Tesla solenoidal magnetic field. The tracking system
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is close to 100% efficient at reconstructing the trajecto-
ries of isolated charged particles with pT > 0.4 GeV/c
and |η| < 1.3. A barrel of time-of-flight (ToF) counters
surrounds the drift chamber for |η| . 0.9. The magnet
coil is surrounded by the central, end-wall (|η| < 1.32)
and plug (1.32 < |η| < 3.64) calorimeters. These scin-
tillator/photomultiplier sampling calorimeters have sep-
arate electromagnetic (EM) and hadronic (HAD) com-
partments with pointing tower geometry. Gas Cherenkov
detectors (CLC) [18] covering 3.7 < |η| < 4.7 monitor
the luminosity and are used in veto to reject events with
charged particles in that rapidity interval. Beam shower
counters (BSC) consisting of 1.7 radiation lengths of lead
followed by scintillation counters are located at 5.4 <
|η| < 5.9. The uninstrumented regions 4.7 < |η| < 5.4
contribute to the nonexclusive background.

The data collected at
√
s = 1.96 and 0.9 TeV corre-

spond to integrated luminosities of 7.23 and 0.075 pb−1,
respectively, with a 6% uncertainty. Only data-taking
periods with . 4 inelastic collisions per bunch-crossing
could be used. The 0.9 TeV data are from a special 40
hour period in 2011, with only three bunches of protons
and antiprotons, and with low luminosity per bunch. The
first stage online event selection (level-1 trigger) requires
two calorimeter towers (EM + HAD) in |η| < 1.3 to have
ET & 0.5 GeV, with a veto on any signals in the BSC
and CLC counters. A higher-level trigger rejects events
with any significant energy deposit in the plug calorime-
ter. These requirements retain events with activity ex-
clusively in the central region of the detector and reject
most events with additional inelastic interactions in the
same bunch crossing.

We select events with two charged particles, each with
|η| < 1.3 and pT > 0.4 GeV/c, and no other activity sig-
nificantly above noise levels in the full detector, to |η| =
5.9. The noise levels are determined for each subdetec-
tor using bunch-crossing (zero-bias) triggers in which no
tracks or CLC hits are detected. We apply a requirement
(cut) both on the sum of all signals in each subdetec-
tor and on the photomultiplier with the highest signal
in each calorimeter. As we do not detect the final-state
(anti)protons, the data include diffractive dissociation if
all the produced hadrons have |η| > 5.9, with higher p∗

masses allowed at
√
s = 1.96 TeV than at 0.9 TeV.

As we only use bunch-crossings with no other visible
interaction, we define an effective integrated luminosity
Leff . This is determined from the probability that the
full detector is empty, in zero-bias events, using the above
noise criteria, as a function of the individual bunch lumi-
nosity Lbunch. The distribution is exponential with the
intercept consistent with 1.0 and slope consistent with
the expected visible (|η| < 5.9) fraction [19] of the inelas-
tic cross section [20]. We find Leff = 1.16 (0.059) pb−1

at
√
s = 1.96 (0.9) TeV, with a 6.7% uncertainty.

We assume the particles to be pions and discuss non-
ππ backgrounds later. We require |y(ππ)| < 1.0 and

study differential cross sections dσ/dM(ππ) up to 5000
MeV/c2. The charged particle tracks are required to have
a good fit with ≥ 25 hits in both the stereo and axial lay-
ers of the drift chamber, with a χ2/DoF < 2.5, to both
pass within 0.5 mm of the beam line in the transverse
plane, and to be within 1 cm of each other in z at their
closest approach. This rejects cosmic ray background,
nonprompt pairs (e.g. K0

S → π+π−) and events with
poorly measured tracks. Each track is projected to the
calorimeter, where it is required to deposit an energy
that meets the trigger requirements. We suppress events
with neutral particles, or unreconstructed charged par-
ticles, by requiring no other energy deposits in the cen-
tral calorimeters outside the cones

√
∆η2 + ∆φ2 = 0.3

around the extrapolated track positions.

The events with same-sign hadrons are approximately
6.5% of the total, and are rejected. These are nonexclu-
sive events with at least two undetected charged particles,
either due to an inefficiency or having very low pT with
no reconstructed track and no calorimetric energy above
the noise level.

There is also a background from opposite-sign hadron
pairs that are not π+π−. This is determined using the
timing information from the ToF counters, available only
when both particles have |η| . 0.9. Only 67% of all pairs
have both particles identified as π,K, or p, and for these
(89±1)% are π+π−. As a check we restrict both tracks
to have |η| < 0.7, and then 90% of the pairs are iden-
tified; there is no significant change in the composition.
All the spectra presented are for hadron pairs with as-
signed pion masses and include non-π+π− backgrounds.
The final sample contains 127 340 (6240) events at

√
s =

1.96 (0.9) TeV with two opposite-charge particles in the
chosen kinematic region, pT > 0.4 GeV/c and |η| < 1.3,
and with |y(ππ)| < 1.0.

We present acceptance-corrected and normalized dif-
ferential cross sections dσ/dM(ππ) in two kinematic re-
gions: integrated over all pT (ππ) for M(ππ) > 1000
MeV/c2 and integrated over pT (ππ) > 1 GeV/c for
M(ππ) > 300 MeV/c2. The region with smaller
pT (ππ) and M(ππ) has limited acceptance and trig-
ger efficiency. We calculate the acceptance and recon-
struction efficiency by generating single pions, simulat-
ing the CDF detector response with a geant-3 Monte
Carlo program [21], and applying the selection crite-
ria. This gives the four-dimensional product of geometri-
cal acceptance, detection and reconstruction efficiencies,
A[pT (π+), pT (π−), η(π+), η(π−)], that we fit with an em-
pirical smooth function. The trigger efficiency is obtained
from minimum-bias data, selecting isolated tracks and
determining the probability that the towers hit by the
particle fire the trigger.

To compute the event acceptance we generate states
X = π+π−, uniform in rapidity over |y(ππ)| < 1.0, in
[M(ππ), pT (ππ)] bins, using a mass range M(ππ) from
2mπ to 5000 MeV/c2 with pT (ππ) from 0 to 2.5 GeV/c
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FIG. 1. (a) Differential cross section dσ/dM(ππ) for two
charged particles, assumed to be π+π−, with pT > 0.4
GeV/c, |η| < 1.3 and |y(ππ)| < 1.0 between two rapidity
gaps 1.3 < |η| < 5.9. Red open circles for

√
s = 0.9 TeV and

black points for
√
s = 1.96 TeV. (b) Ratio of cross sections at√

s = 0.9 and 1.96 TeV.
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FIG. 2. Differential cross section dσ/dM(ππ) at
√
s = 1.96

TeV for two charged particles, assumed to be π+π−, with
pT > 0.4 GeV/c, |η| < 1.3 and |y(ππ)| < 1.0 between two ra-
pidity gaps 1.3 < |η| < 5.9. Only statistical errors are shown;
systematic uncertainties contribute approximately 10% at all
masses. The lines show predictions of Ref. [23] with two
different pion form factors.

and with an isotropic π+π− distribution in the X-frame.
The data, binned in M(ππ) and pT (ππ), are divided by
the acceptance and Leff to obtain the differential cross
sections. The systematic uncertainty on the cross sec-
tions is dominated by the luminosity (6%) and the choice
of exclusivity cuts, which affect both the candidate event
selection and Leff . These cuts are varied in the data over
a reasonable range, and the resulting systematic uncer-
tainty is shown in the plots as shading.

We first discuss differential cross sections for M(ππ) >
1000 MeV/c2 integrated over pT (ππ); unless otherwise
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FIG. 3. (a) Differential cross section at 1.96 TeV in the stated
region, with a fit to a fourth-order polynomial. (b) Relative
difference between data and fit as a function of M(ππ).

stated we show only
√
s = 1.96 TeV data, which are

more abundant. Figures 1 and 2 show the differen-
tial cross section as a function of M(ππ) and the ratio
of the cross sections at

√
s = 0.9 and 1.96 TeV. The

data show a peak centered at 1270 MeV/c2 with a full
width at half maximum of approximately 200 MeV/c2,
consistent with the f2(1270) meson. The f0(1370) may
be the cause of the shoulder on the high-mass side of
the f2(1270). An abrupt change of slope is observed
at 1500 MeV/c2, as noted at lower

√
s [6, 7] where

it is a dip, possibly due to interference between res-
onances. Structures in the mass distribution are ob-
served up to approximately 2400 MeV/c2, suggesting
production of higher-mass resonances. Figure 3 shows
the mass region from 1600 MeV/c2 to 3600 MeV/c2,
with a fit to a fourth-order polynomial. There is some
structure up to 2400 MeV/c2. Reference [22] lists
five established resonances above M = 1400 MeV/c2

with seen ππ decays and quantum numbers allowed in
DIPE reactions: f0(1500), f ′0(1525), f0(1710), f2(1950),
and f4(2050). The f0(1500) and the f0(1710) are both
considered to be glueball candidates [14], but mixing
with quarkonium states complicates the issue. From
2400 to 5000 MeV/c2, the data fall monotonically with
M(ππ), apart from the small excess at 3100 MeV/c2,
which is consistent with the photoproduction reaction
γ+ IP→ J/ψ → e+e− [9].

The differential cross sections at the two energies are
similar in shape. The ratio R(0.9 : 1.96) of the differ-
ential cross sections at 0.9 and 1.96 TeV is shown in
Fig. 1(b), and for 1000 < M(ππ) < 2000 MeV it is
R(0.9 : 1.96) = 1.284 ± 0.039, consistent with the ratio
of approximately 1.3 expected by Regge phenomenology
(when both protons are intact), which falls as 1/ln(s)
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FIG. 4. As Fig. 1 at
√
s = 1.96 TeV, but with pT (ππ) > 1.0

GeV/c for which the acceptance extends to low M(ππ).

[3, 16]. However, our data include dissociation, with
higher masses M(p∗) allowed at

√
s = 1.96 TeV, since

we require gaps to η = ± 5.9 at both energies. For 2000
< M(ππ) < 3000 MeV R(0.9 : 1.96) = 1.560± 0.056.

For pT (ππ) > 1 GeV/c the acceptance extends down to
M(ππ) = 300 MeV/c2; we show the acceptance-corrected
differential cross section in Fig. 4. This is approximately
uniform up to a sharp drop at M(ππ) = 1000 MeV/c2

seen in previous experiments [3], where the f0(980) and
the K+K− threshold occur. The absence of a ρ0 signal
is expected, as it is forbidden in DIPE, and the cross
section for photoproduced ρ0-mesons is small, especially
for pT > 1 GeV/c. Above M(ππ) = 1000 MeV/c2 the
same features are observed as in the full sample.

We previously observed exclusive χ0
c production in the

J/ψ + γ decay channel [9], but the mass resolution was
not sufficient to resolve the three χc states, and the χc1
and χc2 mesons have much higher branching fractions
to the J/ψ + γ final state than the χc0(3415). If all
the J/ψ + γ events were attributed to the χc0(3415),
dσ/dy|y=0 = 76±10(stat)±10(syst) nb. The χc0(3415)
decays to π+π− (0.56%) and K+K− (0.61%), and the
χc1(3510) and χc2(3556) mesons have smaller branch-
ing fractions to these channels. In addition, the CDF II
mass resolution is approximately 25 MeV/c2, less than
the mass difference between these states. We do not see
significant excesses of events atM(ππ) = 3415 MeV/c2 or
at M(ππ) approximately 3280 MeV/c2 where the K+K−

final state would appear in this distribution. Using the
known branching fractions [22], efficiency, and Leff , we
find dσ/dy|y=0(χc0) < 35.5 (23.4) nb at 90% C.L. in the
π+π− (K+K−) decay channels, repectively. These limits
imply that . 50% of our previous J/ψ + γ events were
from the χc0(3415) [9].

Cross section values restricted to the kinematic range
of this measurement with M(ππ) > 2600 MeV/c2 have
been calculated in the DIME Monte Carlo [23]. There are
large uncertainties arising from the unknown ππ IP form
factor in this regime, but while this MC with an exponen-

tial form factor agrees with the data at 3000 MeV/c2, it
predicts a steeper M(ππ) dependence and is lower than
the data by a factor of 3 at 5000 MeV/c2. The Orear-like
form factor is strongly disfavored, as illustrated in Fig. 2.
We are not aware of any predictions of the cross sections
for exclusive f0(980), f2(1270) mesons, other low-mass
resonances, or cross sections below 2500 MeV/c2.

In summary, we have measured exclusive π+π− pro-
duction with |y(ππ)| < 1.0 and rapidity gaps over 1.3 <
|η| < 5.9 in pp̄ collisions at

√
s = 0.9 and 1.96 TeV.

The cross section at
√
s = 1.96 TeV shows a sharp de-

crease at 1000 MeV/c2 (for pT (ππ) > 1 GeV/c), a strong
f2(1270) resonance, and indications of other features of
uncertain origin at higher mass. The cross section at 0.9
TeV is similar in shape, but higher by a factor 1.2 – 1.6.
As the production is expected to be dominated by dou-
ble pomeron exchange, selecting isospin I = 0 and spin
J = 0 or 2 states, the data can be used to further our
knowledge of the isoscalar mesons. We have placed upper
limits on exclusive χc0 production using the π+π− and
K+K− decay modes. Measurements of DIPE mass spec-
tra in other channels should advance our understanding
of scalar and tensor glueballs.
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