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ABSTRACT
The linear growth rate is commonly defined through a simple deterministic relation
between the velocity divergence and the matter overdensity in the linear regime. We
introduce a formalism that extends this to a nonlinear, stochastic relation between θ =
∇ · v(x, t)/aH and δ. This provides a new phenomenological approach that examines
the conditional mean 〈θ|δ〉, together with the fluctuations of θ around this mean.
We measure these stochastic components using N-body simulations and find they are
non-negative and increase with decreasing scale from ∼10% at k < 0.2hMpc−1 to
25% at k ∼ 0.45hMpc−1 at z = 0. Both the stochastic relation and nonlinearity are
more pronounced for halos, M 6 5 × 1012M�h

−1, compared to the dark matter at
z = 0 and 1. Nonlinear growth effects manifest themselves as a rotation of the mean
〈θ|δ〉 away from the linear theory prediction −fLTδ, where fLT is the linear growth
rate. This rotation increases with wavenumber, k, and we show that it can be well-
described by second order Lagrangian perturbation theory (2LPT) for k < 0.1hMpc−1.
The stochasticity in the θ – δ relation is not so simply described by 2LPT, and we
discuss its impact on measurements of fLT from two point statistics in redshift space.
Given that the relationship between δ and θ is stochastic and nonlinear, this will have
implications for the interpretation and precision of fLT extracted using models which
assume a linear, deterministic expression.

Key words: Methods: N-body simulations - Cosmology: theory - large-scale structure
of the Universe

1 INTRODUCTION

The clustering of galaxies on Mpc scales in the Universe is
a fundamental cosmological observable which allows us to
constrain key parameters of the ΛCDM model and to look
for deviations from this standard model. Understanding the
relationship between peculiar velocity flows and the large
scale mass distribution is crucial to interpreting the cluster-
ing signal measured in redshift space, where these velocities
distort the clustering amplitude along the line of sight (see
e.g. Peacock et al. 2001; Guzzo et al. 2008; Blake et al. 2011;
Reid et al. 2012; Beutler et al. 2014). In this paper we in-
vestigate the assumptions of a linear and deterministic rela-
tion between the peculiar velocity and overdensity fields at
a range of scales and redshifts. We present a general formal-
ism where deviations from linearity and determinism can be
viewed separately in the two point clustering statistics of
the velocity divergence auto and cross power spectra. This
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approach represents a new phenomenological tool based on
a stochastic description of nonlinear effects.

One of the key aims of future galaxy redshift surveys
(Cimatti et al. 2009; Spergel et al. 2013; Eisenstein & DESI
Collaboration 2015) is to measure this linear perturbation
theory relation between the density and velocity fields, re-
ferred to as the linear growth rate, to less than 1% preci-
sion using the redshift space clustering statistics of different
galaxy tracers. This level of accuracy has motivated a lot of
work in developing a precise model for the two point cluster-
ing statistics either as the correlation function in configura-
tion space (e.g. Reid & White 2011; Bianchi et al. 2015) or
the power spectrum in Fourier space (e.g Peacock & Dodds
1994; Scoccimarro 2004; Jennings et al. 2011; Seljak & Mc-
Donald 2011; Taruya et al. 2013). Note that many of these
studies are based on a mix of assumptions of either a linear
and/or deterministic density velocity relation.

Current models for the two point clustering statistics in
redshift space that include perturbation theory expansions
have been shown to be an improvement over linear theory in
modelling these redshift space clustering statistics. Although
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2 E. Jennings & D. Jennings

all are limited to very large scales k < 0.15hMpc−1 at low
redshifts (see e.g Scoccimarro 2004; Jennings et al. 2011;
Kwan et al. 2012) and moreover may only apply to highly
biased tracers (Reid & White 2011); none of the models can
recover the linear growth rate to a percent level accuracy on
the scales which will be probed by future galaxy surveys. If
we are to limit our analysis of redshift space distortions to
large scales, where quasi-linear theory models apply, then
it is worthwhile investigating both where the assumptions
of a linear and deterministic relation between the density
and velocity fields breaks down and how well perturbation
theory expansions can recover these components.

This formalism involving the decomposition of the two
point statistics into nonlinear and stochastic components is
both well defined and consistent with a full perturbation
theory expansion of all the nonlinear effects. The approach
provides an alternative, more phenomenological description
of such nonlinear effects. In considering either the galaxy -
dark matter overdensity relation or the velocity- overden-
sity relation, there is a general notion of stochasticity which
is often not well defined and or vaguely explained as due
to a nonlinear coupling of modes. In this paper, our use of
the term stochasticity refers to the break-down of a deter-
ministic relation that exists in the linear regime between
the growing overdensity field and the velocity divergence.
We also discuss the connection between such a notion of
stochasticity and mode coupling in standard perturbation
theory.

It is well known that the halo or galaxy overdensity field
does not trace the dark matter field faithfully and that the
relation between the two is generally described by a linear
bias term which is scale independent and is different for dif-
ferent galaxy tracers (see e.g Dekel & Lahav 1999; Kravtsov
& Klypin 1999). Recently there is renewed interest in consid-
ering the stochasticity in this relation on large scales (Seljak
& Warren 2004; Bonoli & Pen 2009; Sato & Matsubara 2013)
where previously we would have assumed a linear, determin-
istic relationship to hold. Also, as noted in Seljak & Warren
(2004), dominant perturbative corrections come from mode
coupling at wavelengths close to the wavelength of the mode
itself. Long wavelength modes sampled from a finite volume
can have significant fluctuations which would give rise to
significant fluctuations in second order corrections.

There have been many studies that have compared
the two point statistics of the matter and velocity diver-
gence fields and found them to be nonlinear on large scales
(k ∼ 0.1h/Mpc) which are traditionally considered the lin-
ear regime (Scoccimarro 2004; Percival & White 2009; Jen-
nings et al. 2011; Jennings 2012; Crocce et al. 2012; Jen-
nings et al. 2012). Jennings (2012) measured this nonlinear-
ity as the deviation of the velocity divergence power spectra
Pθθ := 〈θ(k)θ∗(k′)〉 and Pθδ := 〈θ(k)δ∗(k′)〉 from linear per-
turbation theory predictions and found it to be at the level
of 20% and 10% respectively at k ∼ 0.1hMpc−1. Note that
these nonlinear features are at the level of the ensemble av-
eraged two point statistics. In contrast, in this work we will
examine the velocity divergence – overdensity relation, θ−δ,
in Fourier space at each wavenumber where we can separate
the notion of nonlinear and stochastic effects.

Bernardeau et al. (1999) investigated the statistical re-
lation between the density and velocity fields in the mildly
nonlinear regime, focusing on the conditional probability

distribution P (θ|δ) of the smoothed fields in configuration
space. This study of the stochastic relationship between the
two fields used simulations of a small volume, (200Mpc/h)3,
and low resolution,1283 particles, by today’s standards.
Given the high resolution and large volume simulations we
have available today and our knowledge of how sensitive
velocity statistics are to resolution effects (Pueblas & Scoc-
cimarro 2009; Jennings et al. 2011, 2015; Zheng et al. 2014;
Biagetti et al. 2014) it is important to revisit this study. In
this paper we explore a formalism that defines both a nonlin-
ear and a stochastic relation between the velocity divergence
and the conditional mean value of this function at a given
overdensity. We also investigate the variance of the velocity
divergence around this relation as a function of scale, which
defines a stochastic description of nonlinear effects.

The paper is laid out as follows: In Section 2 we de-
scribe the N-body simulations and tessellation techniques
used to measure both the density and velocity divergence
fields of dark matter and halos in this paper. In Section 3.1
we present the linear perturbation theory relation between
the density and velocity fields. In Sections 3.2 we outline the
main formalism in this paper which defines the nonlinearity
and the stochastic relation between the velocity divergence
and overdensity fields and give expressions for the two point
statistics. In Section 4 we present our results. The measure-
ment of the conditional mean relation and scatter about this
mean are presented in Sections 4.1 and 4.2 for dark matter
and in Section 4.3 for halos. In Section 4.4 we relate the two
point functions in this paper to both one loop standard per-
turbation and second order Lagangian perturbation theory
predictions. In Section 5 we discuss the impact of a nonlin-
ear and stochastic relation between the velocity and density
fields on models for the power spectrum in redshift space.
In Section 6 we summarize our results.

2 DENSITY AND VELOCITY TWO POINT
STATISTICS FROM N-BODY SIMULATIONS

In section 2.1 we present the details of the dark matter N-
body simulations and the MultiDark halo catalogue used in
this work. In Section 2.2 we outline the methods used to
measure both the velocity divergence power spectrum and
the matter power spectrum as a function of scale.

2.1 N-body simulations

We use the N-body simulations carried out by Li et al. (2012,
2013). These simulations were performed using a modified
version of the mesh-based N -body code RAMSES (Teyssier
2002). Assuming a ΛCDM cosmology, the following cosmo-
logical parameters were used in the simulations: Ωm = 0.24,
ΩDE = 0.76, h = 0.73 and a spectral tilt of ns = 0.961 (in
agreement with e.g. Sánchez et al. 2009). The linear theory
rms fluctuation in spheres of radius 8 h−1 Mpc is set to be
σ8 = 0.769. The simulations use N = 10243 dark matter
particles to represent the matter distribution in a compu-
tational box of comoving length 1500h−1Mpc. The initial
conditions were generated at z = 49 using the MPgrafic1

1 http://www2.iap.fr/users/pichon/mpgrafic.html
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Nonlinear stochastic growth rates and redshift space distortions 3

code. The errors on the power spectra in this work are cal-
culated from the variance in the two point statistics from six
simulations of the same cosmology initialized with different
realizations of the dark matter density field.

We use the publicly available halo catalogues from the
MultiDark simulation (Riebe et al. 2011; Prada et al. 2012)
which has a computational box size of L = 1000h−1Mpc on
a side. These halos have been identified using the Bound-
Density-Maxima algorithm (Klypin & Holtzman 1997). The
halo sample we use in this work consists of all haloes with
M 6 5 × 1012h−1M� at z = 0 and z = 1. The error on
the halo power spectrum in a spherical shell of width δk is
estimated using the following formula derived by Feldman
et al. (1994):

σ

P
=

√
(2π)2

V k2δk

(
1 +

1

Pn̄

)
, (1)

where n̄ is the number density and V is the volume. We
measure the linear bias, b, for this sample of halos by fit-
ting to the ratio b =

√
〈δHδ∗H〉/〈δLTδ∗LT〉 on large scales

k < 0.1hMpc−1, where δH is the nonlinear halo overden-
sity in Fourier space. Here 〈δLTδ

∗
LT〉 is the z = 0 linear the-

ory power spectrum generated using CAMB with the same
cosmological parameters used in the MultiDark simulations.

2.2 Measuring the density and velocity fields

The nonlinear matter and halo power spectra are measured
from the simulations by assigning the particles to a mesh
using the cloud in cell (CIC) assignment scheme (Hockney
& Eastwood 1988) onto a 5123 grid and performing a fast
Fourier transform (FFT) of the density field. To compensate
for the mass assignment scheme we perform an approximate
de-convolution following Baumgart & Fry (1991).

Measuring the velocity divergence field accurately from
numerical simulations on small scales can be difficult if a
mass weighted approach is used as in Scoccimarro (2004);
Pueblas & Scoccimarro (2009); Jennings et al. (2011). Some
volume weighted measures of the velocity field have also
been developed (see e.g. Bernardeau & van de Weygaert
1996; Colombi et al. 2007) including the Delaunay tessella-
tion field estimator (DTFE) method (Schaap 2007; Cautun
& van de Weygaert 2011).

In the mass weighted approach, simply interpolating
the velocities to a grid, as suggested by Scoccimarro (2004),
gives the momentum field which is then Fourier transformed
and divided by the Fourier transform of the density field,
which results in a mass weighted velocity field on the grid.
One of the main problems with this approach is that the
velocity field is artificially set to zero in regions where there
are no particles, as the density is zero in these empty cells.
Pueblas & Scoccimarro (2009) also found that this method
does not accurately recover the input velocity divergence
power spectrum on scales k > 0.2hMpc−1 interpolating the
velocities of 6403 particles to a 2003 grid. Using simulations
of 10243 particles in a 1.5h−1Gpc box, Jennings et al. (2011)
found that the maximum grid size that could be used was
3503 without reaching the limit of empty cells.

In this paper the velocity divergence fields are mea-
sured from the N-body simulations using the DTFE method
(Schaap 2007; Cautun & van de Weygaert 2011). This code
constructs the Delaunay tessellation from a discrete set of

points and interpolates the field values onto a user defined
grid. For the Lbox = 1500h−1 Mpc simulation we generate
all two point statistics on a 5123 grid. We have verified that
our results do not change when we increase the grid size to
10243, demonstrating that our two point clustering statis-
tics have converged on the relevant scales in this paper. The
velocity divergence field is interpolated onto the grid by ran-
domly sampling the field values at a given number of sample
points within the Delaunay cells and than taking the aver-
age of those values. The resolution of the mesh used in this
study means that mass assignment effects are negligible on
the scales of interest here. Throughout this paper the ve-
locity divergence is normalized to a dimensionless quantity
θ = −∇ · v/(aH), where v is the peculiar velocity, H is the
Hubble parameter and a is the scale factor.

It has recently been shown that there exists a non-
negligible velocity bias on large scales between the halo
and dark matter velocity fields. This is a statistical man-
ifestation of sampling effect which increases with decreas-
ing number density (see e.g. Biagetti et al. 2014; Zheng
et al. 2014; Jennings et al. 2015). We use haloes of mass
M 6 5× 1012h−1M� from the MultiDark simulation which
have a number density of n̄ = 1.23×10−2(Mpc/h)−3 at z = 0
so that the velocity bias is negligible on the relevant scales
discussed in this paper. Note that certain methods of mea-
suring either the velocity or velocity divergence field, e.g. the
nearest grid point method, can induce extra sampling effects
in addition to the statistical bias mentioned above (see e.g.
Zhang et al. 2014), the DTFE method does not suffer from
the same sampling effects (Schaap 2007) and will not impact
our analysis which is restricted to scales k < 0.45hMpc−1.

3 THE DENSITY – VELOCITY FIELD
RELATION

3.1 Linear theory

At large scales the Universe is homogeneous and the fluctu-
ation fields δ(x, t) = ρ(x, t)/ρ̄ − 1,v(x, t),Φ(x, t) are small
compared to the smooth background contributions. An Eu-
lerian approach to density fluctuations relies on a truncation
of the full Vlasov equation and the imposition of an equa-
tion of state. Under the assumption of zero shear, the linear
regime is then described by the continuity and Euler equa-
tions,

∂δ(x, τ)

∂τ
+∇ · v(x, τ) = 0 (2)

∂v(x, τ)

∂τ
+ aHv(x, τ) = −∇Φ(x, τ) , (3)

where dt = adτ . The linear theory growth rate, fLT is de-
fined as the logarithmic derivative of the overdensity field,
and is dependent on the cosmological parameters,

fLT(Ωm,ΩΛ) :=
dlnδ

dlna
. (4)

The growing mode solution for δ(x, t) admits a product form
in which it separates as δ(x, t) = D(t)δ(x, 0), where D is the
linear growth factor. For this product form the linear growth
rate becomes the logarithmic derivative of the growth factor,
fLT(t) = dlnD(t)/dlna.

Together with the linear continuity equation, we find
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Figure 1. The upper and lower left panels show the ratio of Re(θ(k)/δ(k)) (Im(θ(k)/δ(k))) as a function of wavenumber, k, measured

from the simulations at z = 0. The joint pdf P(log|θ|2, log|δ|2) is plotted in the top right panel. The ratio of the magnitudes |θ|2/|δ|2
for each mode is plotted in the lower right panel as a function of scale. In all panels the linear theory prediction for the θ − δ relation is

shown as a red dashed line.

that the velocity divergence and overdensity fields are simply
related as

θ(x, t) :=
∇ · v(x, t)

aH
= −fLT(Ωm,ΩΛ)δ(x, t) (5)

where we define θ as the velocity divergence in units of (aH)
and v(x, t) is the comoving peculiar velocity. Since we are
within the linear regime, this relation carries over trivially to
Fourier space, where θ(k, t) = −fLTδ(k, t). Put another way,
the linear regime is special in that it admits the introduction
of a linear growth rate fLT (Ωm,ΩΛ) that is independent of
the scale at which we measure the perturbations.

However, we do not expect this relation to hold once
the density fluctuations in the fields become large, and non-
linear growth starts to generate mode-coupling. In what fol-
lows we shall analyse to what extent it is possible to sensibly
extend the central relation Eq. (5) beyond the linear regime,
and to provide meaningful insights into bulk characteristics
that arise from non-linearities. We find that the relation is
modified in essentially two ways: firstly one finds a growth
factor that is scale dependent due to non-linearities, and
secondly we find that the deterministic one-to-one relation
between θ and δ is weakened to a stochastic relation. In sec-
tion 4.4 we describe how these results are understood from
the perspective of perturbation theory, and in section 5 dis-
cuss implications for redshift space distortions.

3.2 A nonlinear stochastic relation between the
density and velocity fields

Random fields in cosmology are used to represent a single
realization of the dark matter distribution within a given
cosmology. As these fields evolve under gravity, nonlineari-
ties give rise to a growth in structure which induce correla-
tions between different scales. The full nonlinear equations
of motion in Fourier space are given by

1

aH
∂τδ(k, τ) + θ(k, τ) = −

∫
d3k1A(k1,k− k1)θ(k1)δ(k− k1)

(6)

∂τθ(k, τ) + aHθ(k, τ)

+
3

2
ΩmaHδ(k, τ) = −

∫
d3k1B(k1,k− k1)θ(k1)θ(k− k1) ,

(7)

where we have the mode-coupling functions

A(k1,k2) =
(k1 + k2) · k1

k2
1

B(k1,k2) =
|k1 + k2|2(k1 · k2)

2k2
1k

2
2

. (8)

The terms on the right hand side of both Eq. (6) and
(7) encode the nonlinear evolution of the fields (see e.g.
Bernardeau et al. 2002, for a review). Computing the per-
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turbative components for these nonlinear contributions is
an on-going challenge, and the complexity increases rapidly
with higher order terms (see e.g. Crocce & Scoccimarro 2006,
2008). In what follows we construct a phenomenological ap-
proach to describe the breakdown of the linear theory rela-
tionship in simple terms.

As mentioned, the departure point from linear theory
that provides our focus is the relationship between the over-
density field and the velocity divergence. To illustrate this
breakdown the upper (lower) left panel of Figure 1 shows the
scatter in the ratio of Re[θ(k)/δ(k)] and Im[θ(k)/δ(k)] as a
function of wavenumber, k, measured from the simulations
at redshift z = 0.

Significant scatter exists in the Fourier modes about the
linear theory relation (red dashed line), and which increases
as a function of scale. In the lower right panel of this figure
we also plot the ratio of the magnitudes |θ(k)|/|δ(k)| as a
function of scale, which demonstrates that this scatter is not
due to an arbitrary phase differences between the modes,
and which could have cancelled when computing the two
point statistics of the fields. The scatter in the θ−δ relation
is also shown in the upper right panel of Fig 1, where we
plot the PDF of the logarithm of |θ2| and |δ2|.

Firstly, we introduce a conditioned velocity divergence
quantity 〈θ|δ〉 that is derived from the conditional dis-
tribution P (θ|δ). More explicitly, we define 〈θ(k, t)|δ〉 :=∫
Dθ P (θ|δ)θ(k, t) for the conditional expectation value of θ.

The resultant term has a dependence on the particular over-
density that is realised. In the linear regime a direct relation
exists between θ and δ, and corresponds to a delta function
distribution in P (θ, δ) for which P (θ|δ) is perfectly sharp,
or “deterministic”, and encodes the relation θ = −fLT δ.
However we can extend this to a more general scenario that
drops this sharp relation in favor of a stochastic one. We
define a growth rate fδ(Ωm,ΩΛ,k), in momentum space, as

fδ(Ωm,ΩΛ,k) := − 1

δ(k, t)
〈θ(k, t)|δ〉θ|δ. (9)

Here the generalized growth rate now has an explicit de-
pendence on the overdensity field that is being conditioned
on, in addition to a potential scale dependence. Importantly,
in the linear regime this function coincides with the linear
growth rate fLT , but more generally becomes a stochastic
quantity for which moments can be computed.

To estimate the non-linear distortions to the effective
growth rate, it is instructive to compute the following mo-
ments

f̂ :=
〈〈θ|δ〉δ〉
〈δ2〉 =

−〈fδδ2〉δ
〈δ2〉 (10)

f̃2 :=
〈〈θ|δ〉〈θ|δ〉〉
〈δ2〉 =

〈f2
δ δ

2〉δ
〈δ2〉 , (11)

where by definition, 〈δ〉 = 0. Here 〈·〉δ denotes an ensemble
average with respect to the probability distribution function
P (δ), however from now on we will omit the subscript from
any ensemble average notation, for simplicity. In the linear
regime we automatically have that |f̂ | = |f̃ | = fLT(Ωm,ΩΛ),
as expected.

In addition to these non-linear distortions to f , we re-
call that the essential connection between θ and δ gradually
becomes diluted to a stochastic one. This can be quantified
through the fluctuations of θ(k) about the conditional ex-

pectation. In particular, we consider the following random
field

α(k, t) := θ(k, t)− 〈θ(k, t)|δ〉 (12)

whose variance provides a suitable measure, and is given by

σ2
α =

〈α2〉
〈δ2〉 =

〈θ2〉 − 〈〈θ|δ〉2〉
〈δ2〉 . (13)

Again if the linear continuity equation, Eq. (5), holds then
σα = 0 and stochastic relation vanishes. Section 4 contains
a closer examination of the nonlinear moments in Eqs. (10)
and (11), and the magnitude of α measured from the N-body
simulations as a function of both scale and redshift.

More generally it is seen that the quantity f̂ is related
to the expected velocity divergence at a particular scale
through the relation

〈θ〉 = −
∫

d3k1A(k1,k− k1)× (14)[
f̂〈δ(k1)δ(k− k1)〉+ 〈α(k1)δ(k− k1)〉

]
which follows from the full non-linear continuity equation.
A parallel relation for f̃ can be obtained, and from the Euler
equation we find

〈θ̇〉 = −
∫

d3k1 (15)[
B(k1,k− k1)(f̃2〈δ(k1)δ(k− k1)〉+ 〈α(k1)α(k− k1)〉)

−A(k1,k− k1)(f̂〈δ(k1)δ(k− k1)〉+ 〈α(k1)δ(k− k1)〉)
]
,

where α quantifies the deviation from a deterministic re-
lation between θ and δ and we have used the fact that
〈θ(k2)θ(k1)〉 = 〈〈θ(k1)|δ〉〈θ(k2)|δ〉〉 − 〈α(k1)α(k2)〉.

The quantities f̂ and f̃ are readily extracted from sim-
ulations, for which we restrict the analysis of velocity and
overdensity fields to large scales to avoid issues associated
with the measurement of the velocity field in an unbiased
way (Pueblas & Scoccimarro 2009; Jennings et al. 2011).

As a side note, it is common to address the de-
gree of stochasticity between two random functions X
and Y by measuring the cross correlation coefficient r =
〈XY 〉/

√
〈|X|2〉〈|Y |2〉 as a function of scale. This is a dif-

ferent notion of stochasticity to the one discussed in this
paper, and relates to either a bias between the two fields
at the level of the two point functions, 〈|Y |2〉 = b2pt〈|X|2〉
or a more specific local bias Y = blocalX. As pointed out
by Dekel & Lahav (1999), the bias between the two point
statistics follows from a local deterministic bias, and is the
square of the local bias but the converse does not necessar-
ily follow. In this case the cross correlation coefficient is a
measure of r = b2pt/blocal and is not necessarily unity. Here
the bias blocal could represent the familiar bias between the
mass and halo/galaxy overdensity or we could view it as the
linear growth rate in the overdensity – velocity divergence
relation in linear theory. As pointed out by Seljak & Warren
(2004) the cross correlation coefficient can be close to unity
despite fluctuations about a local bias being large.

3.3 Decomposition of two-point functions

It is also instructive to decompose the two-point func-
tions 〈θ(k1)δ(k2)〉 and 〈θ(k1)θ(k2)〉 into contributions com-
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6 E. Jennings & D. Jennings

Figure 2. The first moments of f̂ and f̃ , given in Eqs. (10) and
(11), measured from the simulations at z = 0 are shown as a

blue dot dashed and black dashed line respectively. The linear
theory growth rate is shown as a red solid line in this figure.

The variance in f̃ measured from six realizations of the same

cosmology is shown as the grey shaded region.

ing from the nonlinear corrections and stochasticity in the
θ–δ relation. The two-point function for α(k, t) in Eq. (12),
decomposes as

〈α(k, t)α∗(k′, t)〉 = 〈〈θ(k, t)|δ〉〈θ∗(k′, t)|δ〉〉−〈θ(k, t)θ∗(k′, t)〉 .

From this the two-point functions of interest – the auto and
cross power spectra between the conditional mean of 〈θ|δ〉
and δ – can be expressed as

〈θ1δ
∗
2〉 = f̂12〈δ1δ∗2〉+ 〈α1δ

∗
2〉 (16)

= 〈〈θ1|δ〉δ∗2〉+ 〈α1δ
∗
2〉

〈θ1θ
∗
2〉 = f̃2

12〈δ1δ∗2〉+ 〈α1α
∗
2〉 (17)

= 〈〈θ1|δ〉〈θ2|δ〉〉+ 〈α1α
∗
2〉.

Here we employ the short-hand notation Xi for one-point
quantities X(ki) and Yij for two-point quantities Y (ki,kj).
Note that f̂ and f̃ are now evaluated as two-points functions.
This separates out the nonlinear and stochastic components,
as defined in Section 3.2 in a natural way, and empha-
sizes the different dependence on stochasticity for the auto-
correlation and cross-correlation spectra. Also note that this
approach is in contrast to previous studies (Scoccimarro
2004; Percival & White 2009; Jennings et al. 2011; Jen-
nings 2012; Crocce et al. 2012; Jennings et al. 2012) which
compare the ensemble averaged statistics Pθδ = 〈θ1δ

∗
2〉 and

Pθθ = 〈θ1θ
∗
2〉 with Pδδ = 〈δ1δ∗2〉 as a function of scale. In Sec-

tion 4 we present the measurements of these two point func-
tions and test the decomposition into nonlinear and stochas-
tic components given in Eqs. (16) and (17).

4 RESULTS

We now provide a more detailed account of how the quan-
tities introduced in the previous section behave in practice.

The values of f̂ and f̃ are computed in Section 4.1 at differ-
ent scales, and compared with linear theory. The deviation
of θ from the conditional mean 〈θ|δ〉 is addressed in Section
4.2, both as a function of scale and redshift. We verify that
the decomposition of the two point statistics into nonlinear
and stochastic parts as defined in Section 3.2 is reproduced
within the simulation and we present the measured two point
statistics in each case.

It turns out that halos display these features more dra-
matically than dark matter, and this is discussed in Section
4.3, where we measure 〈θ|δ〉 and the associated two point
functions for halos with masses M 6 5 × 1012M�h

−1 from
the MultiDark simulations. An obvious question is: to what
degree are these features reproduced by existing perturba-
tive results, and do the decompositions presented simply cor-
respond with a particular perturbative order? To this end,
in Section 4.4 we compare our results with standard pertur-
bation theory to third order and second order Lagrangian
Perturbation Theory (2LPT) predictions for the two point
functions 〈θθ〉 and 〈θδ〉.

4.1 Nonlinear growth functions f̂ and f̃

The degree to which the moments given in Eqs. (10) and
(11) in Section 3.2 differ from fLT are a measure of the
deviations from linearity, and provide effective non-linear
growth rates. In Fig. 2 we plot these two moments, f̂ and f̃ ,
as a red solid (for fLT ), blue dot dashed and black dashed
lines respectively, measured from the non-linear dark matter
density field in the simulations at z = 0.

Note that the two moments f̂ and f̃ that are plotted are
the average of six N -body simulations initialized with dif-
ferent realizations of the matter density field at early times.
The variance of f̃ from these six simulations is shown as a
grey shaded region.

We find a notable difference between the three growth
rates, and even on large scales, such as k < 0.1hMpc−1, nei-
ther f̂ nor f̃ correspond to the linear theory growth rate fLT.
We find that the ratio of the two-point functions

√
〈θθ〉/〈δδ〉

and 〈δθ〉/〈δδ〉 do converge to the linear theory result fLT on
much larger scales k < 0.02hMpc−1 in agreement with pre-
vious work (Scoccimarro 2004; Percival & White 2009; Jen-
nings et al. 2011; Jennings 2012; Crocce et al. 2012; Jennings
et al. 2012). Taking the decomposition of each of these two
point functions given in Eqs. (16) and (17) into account this
implies that on large scales the ratio of the stochastic two
point functions 〈αδ〉 and 〈αα〉 to 〈δδ〉 is at a minimum 10-
15% of fLT at k < 0.1hMpc−1. We demonstrate that both
of these decompositions are valid in Section 4.2.

4.2 The stochastic relation between θ and δ.

In Fig 3 we plot the conditional expectation 〈θ|δ〉 as a or-
ange dashed line. This is the average over six realizations,
measured from the simulations by simply binning in Re δ(k)
and finding the mean Re θ(k) at z = 0 at the two scales
k = 0.1hMpc−1 (left panel) and k = 0.2hMpc−1 (right
panel), while the linear theory relation between δ and θ is
plotted as a red line. The real component of the Fourier
modes measured from one simulation at each wavenumber
are shown as black dots. At each scale k there is signifi-
cant scatter between the Fourier modes measured from the
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Nonlinear stochastic growth rates and redshift space distortions 7

Figure 3. The conditional expectation 〈θ(k)|δ〉 (orange dashed line) at k = 0.1hMpc−1 (left) and k = 0.2hMpc−1 (right) at z = 0,

together with the linear theory relation between δ and θ (red line) and the real Fourier modes (black dots) measured from a ΛCDM
simulation (Lbox = 1500Mpc/h) at z = 0. In the right panel we show the conditional expectation 〈θ|δ〉LPT from second order Lagrangian

perturbation theory as a cyan dot dashed line. The inset panel shows the ratio of the two point function 〈〈θ|δ〉〈θ|δ〉〉/〈θθ〉LPT measured

from the simulations at z = 0 as a function of scale as a blue solid line.

Figure 4. The conditional expectation 〈θ(k)|δ〉 (orange dashed line) at k = 0.1hMpc−1 (left) and k = 0.2hMpc−1 (right) at z = 0.4,

together with the linear theory relation between δ and θ (red line) and the real Fourier modes (black dots) measured from a ΛCDM
simulation.

simulations, and 〈θ|δ〉 differs from linear perturbation the-
ory predictions of θ = −fLTδ. It is also clear from these two
panels that the difference between 〈θ|δ〉 and −fLTδ increases
with increasing k into the nonlinear regime.

There are two notable effects which are evident from Fig
3. Firstly, the nonlinearity we are describing with the con-
ditional mean 〈θ|δ〉 manifests as an approximate rotation
about the linear theory prediction (orange dashed line in
Fig. 3 compared to the solid red line) which is linear in δ but
with a scale dependent coefficient i.e. 〈θ|δ〉 ∼ −fLTδ+c(k)δ,

where c is an increasing function of scale. In Section 4.4 we
show that this functional dependence can be explained on
large scales by second order Lagrangian perturbation the-
ory. The second thing to note from these plots is that the
stochastic scatter around 〈θ|δ〉 is nonzero and increases with
increasing wavenumber k. At both scales we find that for
δ > 0(< 0) the mean relation 〈θ|δ〉 is larger (smaller) then
the linear theory prediction, corresponding to an effective
growth factor that is larger than linear theory.

The corresponding plot at z = 0.4 is shown in Fig. 4
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8 E. Jennings & D. Jennings

Figure 5. The ratio of the two point functions in Eqs. (16)
and (17) to 〈θ1δ2〉 and 〈θ1θ2〉 measured from the simulations at

z = 0 are shown as red dashed and green dot dashed lines respec-

tively. The ratios of the two point functions 〈〈θ1|δ〉δ2〉/〈θ1δ2〉 and
〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 are shown as a blue dot and black dashed

line respectively. The shaded cyan and grey regions show the vari-
ance of these ratios measured from six simulations.

for the same two scales. At higher redshifts we see the same
trend with 〈θ|δ〉 behaving as a rotation away from −fLTδ
for linear theory. This difference increases with increasing
wavenumber although this difference is smaller then at z =
0 due to increased nonlinear growth at later redshifts as
expected. We also note a reduction is the range of δ values
at z = 0.4 compared to z = 0. An identical number of modes
have been used at each scale and redshift.

The decomposition of the two point functions 〈θδ〉 and
〈θθ〉 into nonlinear and stochastic parts, as in Eqs. (16) and
(17), is readily verified numerically. In Fig. 5 we plot the
ratios of the RHS of Eqs. (16) and (17) to 〈θ1δ2〉 and 〈θ1δ2〉
as red dashed and green dot dashed lines respectively. We
find these ratios are unity which verifies the decompositions
in Eqs. (16) and (17) from the simulations. This result is
non-trivial as all of the two point statistics have been mea-
sured independently from the simulations i.e. 〈〈θ|δ〉δ〉 is an
ensemble average over the mean θ given δ (orange dashed
line in Fig. 3) times δ. This is in contrast to 〈θδ〉 which is
the ensemble average over each θ and δ (black dots in Fig.
3).

In Fig 5 we also plot the ratios 〈〈θ|δ〉〈θ|δ〉〉/〈θθ〉 and
〈〈θ|δ〉δ〉/〈θδ〉 measured from the simulations at z = 0 as
black dashed and blue dot dashed lines respectively. The
shaded regions in this plot represent the variance amongst
six realizations of the same cosmology. We find that the
stochastic components contribute ∼ 10% to the two point
function 〈θ1θ2〉 while it contributes about a 1% to 〈θ1δ2〉 at
k < 0.2hMpc−1. The stochastic component of the velocity
divergence auto power increases to approximately 25% by
k = 0.45hMpc−1. In the upper and lower panels of Fig. 6
we show similar power spectra ratios to those in Fig. 5 at
z = 0.4 and z = 1 respectively. We find that the stochas-

Figure 6. The ratio of the two point functions in Eqs. (16) and

(17) to 〈θ1δ2〉 and 〈θ1δ2〉 measured at at z = 0.4 (top panel)
and at z = 1 (lower panel) are shown as red dashed and green

dot dashed lines respectively. The ratios of the two point func-

tions 〈〈θ1|δ〉δ2〉/〈θ1δ2〉 and 〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 are shown as a

blue dot and black dashed line respectively. The shaded cyan and
grey regions show the variance of these ratios measured from six

simulations.

tic component of the velocity divergence power spectrum is
slightly reduced at higher redshifts as there is less nonlinear
growth present at earlier times which would induce a larger
variation in θ from 〈θ|δ〉.

4.3 Behaviour of 〈θ|δ〉 and α for dark matter halos

In Fig. 7 we show the conditional expectation 〈θ(k)|δ〉 as
a purple dashed line, measured at k = 0.1hMpc−1 (left
panel) and k = 0.2hMpc−1 (right panel) from the MultiDark
simulations using halos with masses M < 5 × 1012M�h

−1.
The real Fourier modes ReθH(k) and ReδH(k) are shown
as grey dots in both panels. We plot the linear theory pre-
diction θH = −fLT/bδH , where b is the linear bias on large
scales as a red solid line. The red dotted lines either side
of the linear theory prediction represent a ±10% error in
the linear bias. For this halo sample we find that the linear
bias is b ∼ 0.81 ± 0.09 and is reasonably linear on scales
k 6 0.2hMpc−1 (see also e.g. Jennings et al. 2015).

It is clear that there is significant scatter about the
mean 〈θ(k)|δ〉 and that this conditional expectation differs
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Nonlinear stochastic growth rates and redshift space distortions 9

Figure 7. The conditional expectation 〈θ(k)|δ〉 (purple dashed line) measured using halos with M < 5× 1012M�h−1 in the MultiDark

simulation at k = 0.1hMpc−1 (left) and k = 0.2hMpc−1 (right) at z = 0. The linear theory relation θH = −fLT/bδH , where b is the

linear bias on large scales is shown as a red solid line. The red dotted lines either side of the linear theory prediction represent a ±10%
error in the linear bias. The real Fourier modes measured using this halo catalogue at each wavenumber are shown as grey dots.

Figure 8. The ratio of the two point function
〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 measured at z = 0 and z = 1 using

halos with M < 5× 1012M�h−1 from the MultiDark simulation
are shown as black dashed and blue dot dashed lines respectively.

The shaded tan region represents the error on the measured

power spectra given in Eq. (1) in Section 2.1.

from the linear theory prediction by an approximate rota-
tion. If we compare these results with Fig. 3 in Section 4.2
for the dark matter we see that at the same redshift, the
deviation of 〈θ(k)|δ〉 from the linear theory prediction and
the scatter about the conditional mean given by α, is much
larger for the halo sample then for the dark matter at both
k scales. Note these two simulations have slightly different
cosmologies, for example Ωm = 0.24 (0.27) in the dark mat-

ter (Multidark) simulations, which may account for some of
these differences.

In Fig. 8 we plot the ratio of the two point function
〈〈θ1|δ〉〈θ2|δ〉〉/〈θ1θ2〉 measured at z = 0 and z = 1 for the
same halo sample as black dashed and purple dot dashed
lines respectively. The shaded tan region represents the er-
ror on the measured power spectra given in Eq. (1) in Section
2.1. We have also verified that the decomposition of the two
point functions into nonlinear and stochastic parts, as given
in Eqs. (16) and (17), holds for the halo two point functions.
We have omitted this from Fig. 8 for clarity. Therefore any
deviation from unity in this figure indicates the magnitude of
the stochastic component. We find that the stochastic com-
ponent of the two point function 〈θ1θ2〉 is significant and ap-
proximately a constant fraction (∼15%) at k < 0.25hMpc−1

at both z = 0 and z = 1. The differences between the halo
sample and the dark matter distribution, in how the condi-
tional mean deviates from the linear theory predictions and
the scatter around that mean as a function of wavenumber,
cannot be only due to a difference in cosmological parame-
ters. As shown in Fig. 8 we find that the velocity divergence
auto power spectrum has a larger stochastic component in
the halo sample compared to the dark matter at both red-
shifts.

4.4 The relation to standard and Lagrangian
Perturbation Theory

In this section we connect the formalism presented in Sec-
tion 3.2 to perturbation theory methods. First we consider
standard perturbation theory predictions for both the veloc-
ity divergence auto and cross power spectra, 〈θθ〉 and 〈θδ〉,
computed up to third order (see e.g. Bernardeau et al. 2002,
for a review). The nonlinear velocity divergence auto P (k)
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10 E. Jennings & D. Jennings

Figure 9. The ratio of the one loop perturbation theory pre-
diction for the velocity divergence cross and auto power spectra

(Eq. (18)) to 〈θδ〉 and 〈θθ〉 measured from the dark matter only

simulations are shown a grey dot dashed and black dashed line
respectively. The pink and cyan error bars show the variance in

these ratios from six simulations with different realisations of the

initial density field. Similar ratios of P11 + P22 calculated from
one loop perturbation theory for the both cross and auto power

spectrum are shown as blue solid and orange dot dashed lines as

given in the legend.

computed from third order perturbation theory is given by

〈θθ〉PT(k) = P (k) + P22(k) + 2P13(k) (18)

where P (k) denotes the linear power spectrum and the scale
dependent functions P22 and P13 are given by

P22(k) = 6P (k)

∫
d3qG3(k,q)P (q) (19)

P13(k) =

∫
d3q[G2(k− q,q)]2P (k− q)P (q) , (20)

where the kernel G2 is given by

G2(k,q) =
µ2

2
+

1

2
k̂ · q̂

(
k

q
+
q

k

)
+

4

7

(
k̂ik̂j −

1

3
δij

)(
q̂iq̂j −

1

3
δij

)
, (21)

where µ2 = 26/21 and the angle averaged G3 kernel is given
in e.g. Eq. (69) in (Scoccimarro 2004). A similar expression
for the velocity divergence cross power spectrum to third
order can also be found in (Scoccimarro 2004).

In order to compare the formalism in this paper, which
decomposes the velocity divergence two point statistics into
nonlinear and stochastic elements as given in Section 3.2,
with perturbation theory methods we simply calculate the
individual power spectra in Eq. (18) and compare them with
the measure two point velocity divergence statistics. In Fig
9 we show the ratio of the one loop perturbation theory
predictions for the velocity divergence cross and auto power
spectra to 〈θδ〉 and 〈θθ〉, measured from the dark matter
only simulations at z = 0, as a grey dot dashed and black
dashed line respectively. The pink and cyan error bars show

the variance in these ratios from six simulations with dif-
ferent realizations of the initial density field. The ratios of
P11 +P22 calculated from 1 loop perturbation theory for the
both cross and auto power spectrum to 〈θδ〉 and 〈θθ〉 are
shown as blue solid and orange dot dashed line respectively.

By comparing Figs. 5 and 9 we can see that at the level
of 3rd order perturbation theory that the standard pertur-
bation theory prediction and the formalism in this paper
deviate substantially and no simple identification can be
made. Even on large scales, k < 0.05hMpc−1, where the
perturbation theory predictions match the measured power
spectra from the simulations to ∼ 5% we cannot simply re-
late the mode coupling terms P13, which are negative, to the
stochastic power spectra 〈αα〉 and 〈αδ〉.

Next we consider second order Lagrangian perturbation
theory (2LPT) predictions for the θ − δ relation (Gramann
1993; Bouchet et al. 1995; Bouchet 1996; Melott et al. 1995;
Kitaura et al. 2012). Lagrangian perturbation theory rep-
resents a alternative framework to the Eulerian approach,
and the non-linear analysis is based around the trajectories
of individual fluid elements. Of central importance is the
displacement field Ψ(q), which provides a mapping from
initial Lagrangian coordinates q to final Eulerian coordi-
nates x given by x(τ) = q + Ψ(q, τ) (see e.g. Bouchet 1996;
Bernardeau et al. 2002, for a review). The linear solution
for the equations of motion coincide with the Zel’dovich ap-
proximation,

∇q ·Ψ(1) = −D(τ)δ(1)(q) , (22)

where δ(1)(q) is the linear density field and D is the linear
growth factor normalized to unity at z = 0. In contrast, the
second order correction to the displacement field (see e.g.
Melott et al. 1995) takes into account tidal gravitational
effects as

∇q ·Ψ(2) =
1

2
D2

∑
i6=j

(
Ψ

(1)
i,i Ψ

(1)
j,j − [Ψ

(1)
i,j ]2

)
, (23)

where Ψ
(1)
i,j = ∂Ψi/∂qj and D2 is the second order growth

factor given by D2 ≈ −3/7D2Ω
1/143
m . The Lagrangian poten-

tials φ(1) and φ(2) are defined such that ∇2φ(1)(q) = δ(1)(q)
and ∇2φ(2)(q) = δ(2)(q). The 2LPT expressions for the po-
sition become

x(q) = q−D∇qφ(1) +D2∇qφ(2) , (24)

while the dimensionless velocity divergence is given by

θ = −DfLT∇2
qφ

(1) +D2f2∇2
qφ

(2) , (25)

where fLT is the linear theory growth rate and f2 =
dlnD2/dlna is the logarithmic derivative of the second-order

growth factor, f2 ≈ 2Ω
6/11
m . The gradient terms are given by

∇2
qφ

(1) = δ(1)(q) (26)

∇2
qφ

(2) =
∑
i>j

(
φ

(1)
,ii φ

(1)
,jj − [φ

(1)
,ij ]2

)
, (27)

where φ
(1)
,ii = ∂2φ/∂qi∂qj . These equations imply that given

a robust estimate of the linear overdensity δ(1) then we can
obtain a corresponding non-linear velocity divergence θ from
2LPT.

To compare the conditional mean 〈θ|δ〉 measured from
the simulations in Fourier space with 〈θ|δ〉LPT, where θ is
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the Fourier transform of the 2LPT prediction in Eq. (25), we
estimate the linear density field δ(1) from the nonlinear mat-
ter field δm in real space as given by Neyrinck et al. (2009),
δ(1) = log(1 + δm) − 〈log(1 + δm)〉. The quantity φ(2)(k)
can be obtained by Fourier transforming φ(1)(k),ij into real
space, computing the sum and then transforming back. Al-
ternatively one can Fourier transform Eq. (27) directly, and
then obtain the total 2LPT prediction for θ(k).

In the right panel of Fig. 3 we plot the conditional ex-
pectation 〈θ|δ〉LPT, which has been evaluated by the same
method as described in Section 4.2 using the 2LPT predic-
tion for θ(k), as a cyan dot dashed line. From this figure it
seems that the rotation of the conditional mean away from
the linear theory prediction is captured well by 2LPT at
k = 0.2hMpc−1. In the inset panel of Fig. 3 we also show
the ratio of the two-point function 〈〈θ|δ〉〈θ|δ〉〉/〈θθ〉LPT mea-
sured from the simulations at z = 0 as a function of scale as
a blue solid line. On scales k < 0.1hMpc−1 we can see that
the ratio is very close to unity indicating that the nonlin-
ear effects in the formalism of this paper can be described
by 2LPT which incorporate the effects of tidal gravitational
fields on large scales. Recall that the full two point func-
tion 〈θθ〉 can be written as sum of nonlinear and stochastic
components. Our results indicate that the stochastic com-
ponent, which is approximately 15% of the velocity diver-
gence auto power spectrum at z = 0 and k = 0.1hMpc−1 is
not described by the predictions of 2LPT. At smaller scales
k > 0.1hMpc−1 we find that the θ – δ relation is still well-
described by the combined action of a non-linear rotation
together with stochastic spread, however the predictions of
2LPT no longer adequately describe the regime.

5 REDSHIFT SPACE DISTORTIONS

We begin in Section 5.1 by briefly reviewing the theory of
redshift space distortions and models that depend on the
linear growth rate fLT and which are currently in use. In
Section 5.2 we highlight the problems associated with having
a well defined notion of the linear growth rate in a redshift
space distortion model in the presence of a nonlinear and
stochastic θ − δ relation.

5.1 Redshift space distortion models

Inhomogeneous structure in the Universe induces peculiar
motions which distort the clustering pattern measured in
redshift space on all scales. This effect must be taken into
account when analyzing three dimensional datasets that use
redshift to estimate the radial coordinate. Redshift space ef-
fects alter the appearance of the clustering of matter, and
together with nonlinear evolution and bias, lead the mea-
sured power spectrum to depart from the simple predictions
of linear perturbation theory. The comoving distance to a
galaxy, ~s, differs from its true distance, ~x, due to its pecu-
liar velocity, ~v(~x) (i.e. an additional velocity to the Hubble
flow). The mapping from redshift space to real space is given
by

~s = ~x+ uz ẑ, (28)

where uz = ~v · ẑ/(aH) and H(a) is the Hubble parameter.
This assumes that the distortions take place along the line

of sight, denoted by ẑ, and is commonly referred to as the
plane parallel approximation.

On small scales, randomised velocities associated with
the motion of galaxies inside virialised structures reduce the
power. The dense central regions of galaxy clusters appear
elongated along the line of sight in redshift space, which
produces the ‘fingers of God’ effect in redshift survey plots.
For growing perturbations on large scales, the overall ef-
fect of redshift space distortions is to enhance the clustering
amplitude. Any difference in the velocity field due to mass
flowing from underdense regions to high density regions will
alter the volume element, causing an enhancement of the
apparent density contrast in redshift space, δs(~k), compared

to that in real space, δr(~k) (see Hamilton 1998, for a review
of redshift space distortions).

Assuming the line of sight component of the peculiar
velocity is along the z-axis, the power spectrum in redshift
space is given by (Scoccimarro 2004)

δD(~k) + Ps(~k) =

∫
d3r

(2π)3
e−i

~k·~r〈eikzV [1 + δg(~x)][1 + δg(~x
′)]〉

(29)

where δg = bδ is the galaxy overdensity which we shall as-
sume is related by a linear bias, b to the matter overdensity,
V = uz(~x) − uz(~x′) and ~r = ~x − ~x′. We are also assuming
that there is no velocity bias between the dark matter and
galaxies for simplicity.

Decomposing the vector field into curl and divergence
free parts, and assuming an irrotational velocity field, we
can re-write kzuz = −(k2

z/k
2)θ(k) = −µ2θ(k) where θ(k) is

the Fourier transform of the velocity divergence defined in
Eq. (5). Expanding the exponential term and only keeping
terms up to second order in the variables δ and θ, the power
spectrum in redshift space Ps becomes

δD(~k − ~k′)Ps(~k) = b2〈δ(~k)δ∗(~k′)〉 − 2µ2b〈θ(~k)δ∗(~k′)〉

+ µ4〈θ(~k)θ∗(~k′)〉. (30)

If we assume the linear continuity equation holds we can
re-write this as

δD(~k − ~k′)Ps(~k) = 〈δ(~k)δ∗(~k′)〉[b2 − 2bfLTµ
2 + f2

LTµ
4]

= δD(~k − ~k′)P (k)[b2 − 2bfLTµ
2 + f2

LTµ
4]

(31)

which is the Kaiser (1987) formula for the power spectrum
in redshift space in terms of the linear growth rate fLT, the
linear bias b and the power spectrum P (k).

Commonly used models for the redshift space power
spectrum extend the Kaiser formula by assuming that the
velocity and density fields are uncorrelated and that the joint
probability distribution factorizes as P(δ, θ) = P(θ)P(δ).
Examples include multiplying Eq. (31) by a factor which
attempts to take into account small scale effects, invoking
either a Gaussian or exponential distribution of peculiar ve-
locities. A popular phenomenological example of this which
incorporates the damping effect of velocity dispersion on
small scales is the so-called ‘dispersion model’ (Peacock &
Dodds 1994),

P s(k, µ) = Pg(k)(1 + βµ2)2 1

(1 + k2µ2σ2
p/2)

, (32)

where Pg is the galaxy power spectrum, σp is the pairwise
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velocity dispersion along the line of sight, which is treated
as a parameter to be fitted to the data and β = fLT/b.

The linear model for the redshift space power spectrum
can be extended by keeping the nonlinear velocity power
spectra terms in Eq. (30). For example Scoccimarro (2004)
proposed the following model for the redshift space power
spectrum in terms of Pδδ, the nonlinear matter power spec-
trum,

P s(k, µ) =
(
Pδδ(k) + 2µ2Pδθ(k) + µ4Pθθ(k)

)
× e−(kµσv)2 ,

(33)

where Pθθ = 〈θθ〉, Pδθ = 〈δθ〉 and σv is the 1D linear velocity
dispersion given by

σ2
v =

1

3

∫
Pθθ(k)

k2
d3k. (34)

In linear theory, Pθθ and Pδθ take the same form as Pδδ and
depart from this at different scales. Using a simulation with
5123 particles in a box of length 479h−1Mpc, Scoccimarro
(2004) showed that this simple ansatz for Ps(k, µ) was an
improvement over the Kaiser formula when comparing to
the results of N -body simulations in a ΛCDM cosmology.
Clearly the inclusion of these nonlinear velocity divergence
terms gives rise to an improved model of redshift space dis-
tortions in the nonlinear regime.

In nonlinear models for the power spectrum in redshift
space there is a degeneracy between the nonlinear bias, the
difference between the clustering of dark matter and halos
or galaxies, and the scale dependent damping due to velocity
distortions on small scales. This degeneracy will complicate
any measurement of the growth rate using redshift space
clustering information on small scales. In this work we have
restricted our analysis of the θ−δ relation to large scales for
the halo sample where the approximation of a linear bias is
valid. Note also that nonlinearities in the bias between the
halos and dark matter field affect the µ2 component but not
the µ4 coefficient if there is no velocity bias present.

5.2 Modeling redshift space distortions with a
nonlinear stochastic θ − δ relation

Firstly, the expansion in Eq. (30) does not assume that θ
and δ are uncorrelated (P(δ, θ) = P(θ)P(δ)) but instead
only retains terms which are second order in θ and δ. We can
rewrite Eq. (30) in terms of the main formalism in this paper
which describes a nonlinear, stochastic relation between θ
and δ. Using Eqs. (16) and (17) with the adapted notation

〈θ(~k)θ(~k′)〉 = 〈θ1θ2〉 etc. we can write

δD(~k − ~k′)Ps(~k) = b2〈δ(~k)δ∗(~k′)〉 (35)

− 2bµ2[〈〈θ1|δ〉δ2〉+ 〈α1δ2〉]

+ µ4[〈α1α2〉+ 〈〈θ1|δ〉〈θ2|δ〉〉].

There are a small number of papers that have used per-
turbation theory to find an analytic formula for the condi-
tional mean 〈θ|δ〉 (see e.g. Chodorowski 1998; Bernardeau
et al. 1999). Guided by the results in Section 3.2 where 〈θ|δ〉
appears as a rotation from the linear perturbation theory
prediction which increased with increasing wavenumber k,
we consider the following simple expression for 〈θ(k)|δ〉 =
−fLTδ(k) + c(k)δ(k). Putting this into Eq. (35) we obtain

the expression

δD(~k − ~k′)Ps(~k) =〈δ1δ∗2〉
(
b2 − 2bµ2[−fLT + c(k) +

〈α1δ2〉
〈δ1δ∗2〉

]

+µ4[(fLT − c(k))2 +
〈α1α2〉
〈δ1δ∗2〉

]

)
. (36)

A key point that this highlights is that the coefficients
in front of the µ2 and µ4 terms no longer have a sim-
ple relation. The receive different contributions from non-
linearity and stochasticity, and cannot be simply written as
fNLµ

2 + f2
NLµ

4. If the relation between θ and δ is determin-
istic (〈α1δ2〉 = 0 and 〈α1α2〉 = 0) then, as shown in Section
4.4, second order Lagrangian perturbation theory provides
a good description of the nonlinear rotation of the condi-
tional mean 〈θ|δ〉 away from the linear perturbation theory
predictions at k < 0.1hMpc−1. The stochastic components
〈α1δ2〉 and 〈α1α2〉 are nonzero at z = 0, 0.4 and z = 0 on
large scales, as can be seen from Figs. 5 and 6, and comprise
approximately 10% of the velocity divergence auto power
spectrum on large scales k < 0.1hMpc−1.

It is common practice to try to extract a measurement of
the linear growth rate, fNL, using the µ2 and µ4 dependence
of the measured galaxy power spectrum in redshift space,
and either the model in Eq. (32) or models which include the
velocity divergence auto and cross power spectra. If however
there is a nonlinear and stochastic relation between θ and δ
then the correspondence between the coefficients of µ2 and
µ4, and fNL becomes more complex.

Ideally a perturbative expansion which captures all the
nonlinearities in Eqs. (6) and (7) would give an accurate
prediction for the velocity divergence two and higher point
statistics and their correlations with the matter overdensity.
This would include the stochastic terms in the formalism in
this paper which are produced by nonlinear effects. With-
out this exact expansion, it is not straightforward to make
an explicit connection between the quantity of interest, fNL,
and parameters in current phenomenological models for two
point clustering statistics in redshift space, which either as-
sume that θ and δ are related by a linear, deterministic re-
lation, or are based on perturbation theory expressions to a
given order for the θ − δ relation.

6 SUMMARY & CONCLUSIONS

Up and coming galaxy redshift surveys aim to measure the
linear growth rate to an accuracy of ∼ 1%. This growth
rate is commonly obtained from a deterministic relation be-
tween the velocity divergence and the matter overdensity
fields that follows from linear theory. Here we have explored
a formalism that defines both a nonlinear and a stochas-
tic relation between the velocity divergence and overdensity
field, θ = ∇ · v(x, t)/aH and δ, which is based on an exten-
sion of linear theory to a relation in terms of the conditional
mean 〈θ|δ〉, together with fluctuations of θ around this non-
linear relation.

Using N-body simulations of dark matter particles that
follow the gravitational collapse of structure over time, we
measure both the nonlinear and stochastic components and
verify that this decomposition of the two point clustering
statistics is reproduced within the simulation. We find that
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the net effect of the nonlinearity manifests itself as an ap-
proximate rotation of 〈θ|δ〉 away from the linear theory pre-
diction −fLTδ, and which increases as a function of scale.
The scatter about this mean value corresponds to stochas-
ticity, or variance, of θ around 〈θ|δ〉 and which is nonzero
on all scales. The stochastic contribution to the velocity
divergence auto power spectrum is approximately 10% at
k < 0.2hMpc−1 at z = 0. The stochastic component of the
velocity divergence auto power increases to approximately
25% by k = 0.45hMpc−1.

We examine two scales in detail, k = 0.1hMpc−1 and
k = 0.2hMpc−1, and find that the scatter around the
mean value 〈θ|δ〉 is nonzero and increases with increasing
wavenumber k. At both scales we find that for δ > 0(< 0) the
mean relation 〈θ|δ〉 is larger (smaller) then the linear theory
prediction. We find that both of these trends for the stochas-
tic relation and nonlinearity are visible at higher redshifts,
z = 0.4 and z = 1 but with a reduced level of stochasticity
overall due to less nonlinear growth at high redshifts. Using
a halo sample with M 6 5×1012M�h

−1 from the MultiDark
simulation we find that both the stochasticity and nonlin-
earity in the θ − δ relation are larger for halos compared to
the dark matter. We find that the stochastic component of
the two point function 〈θθ〉 is significant and approximately
a constant fraction (15%) at k < 0.25hMpc−1 at both z = 0
and z = 1.

The relation with perturbative methods was also ex-
plored, and a computation of the velocity divergence auto
〈θθ〉 and cross 〈θδ〉 power spectra using one loop stan-
dard perturbation theory reveal that at this level the stan-
dard perturbation theory prediction and the formalism in
this paper are not equivalent. Even on large scales, k <
0.05hMpc−1, where the perturbation theory predictions
match the measured power spectra from the simulations to
∼ 5% there is no simple correspondence between the mode
coupling terms P13, which are negative, to the stochastic
power spectra 〈αδ〉 and 〈αα〉.

Using an expression for θ computed from second order
Lagrangian perturbation theory we find that the rotation
of the conditional mean 〈θ|δ〉 away from the linear theory
prediction is well described by the conditional expectation
〈θ|δ〉LPT from 2LPT on scales k < 0.1hMpc−1. This indi-
cates that the nonlinear components in the formalism can
be described through the inclusion of tidal effects of the
gravitational field at second order.

The central features discussed also have an impact on
the extraction of the linear theory growth rate from models
of two point functions in redshift space given the level of non-
zero stochasticity which we have measured. It is common
practice to try to extract a measurement of the linear growth
rate using the µ2 and µ4 dependence of the measured galaxy
power spectrum in redshift space. We highlight that, in the
presence of either nonlinearity or a stochastic relation, the
correspondence between the coefficients of µ2 and µ4, and
fLT is no longer so simple and a more involved treatment is
required.
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