
Breaking the Silos: The art Documentation Suite

Robert K. Kutschke

Fermi National Accelerator Laboratory, P.O. Box 500 Batavia, IL, 60542, USA

E-mail: kutschke@fnal.gov

Abstract. The art event-processing framework is used by almost all new experiments at
Fermilab, and by several outside of Fermilab. All use art as an external product in the same
sense that the compiler, ROOT, Geant4, CLHEP and boost are external products. The art team
has embarked on a campaign to document art and develop training materials for new users.
Many new users of art have little or no knowledge of C++, software engineering, build systems
or the many external packages used by art or their experiments, such as ROOT, CLHEP,
HEPPDT, and boost. To effectively teach art requires that the training materials include
appropriate introductions to these topics as they are encountered. Experience has shown that
simply referring readers to the existing native documentation does not work; too often a simple
idea that they need to understand is described in a context that presumes prerequisites that
are unimportant for a beginning user of art . There is the additional complication that the
training materials must be presented in a way that does not presume knowledge of any of the
experiments using art . Finally, new users of art arrive at random times throughout the year and
the training materials must allow them to start to learn art at any time. This presentation will
explain the strategies adopted by the art team to develop a documentation suite that complies
with these boundary conditions. It will also show the present status of the documentation suite,
including feedback the art team has received from pilot users.

1. Introduction
1.1. What is art?
art is an event-processing framework [1] designed for use by particle physics experiments
and by other experiments with similar event-processing needs. Experiments use art to build
programs that process data in a variety of contexts including software filters used as high-level
triggers, online data monitoring, calibration, reconstruction, simulation, and analysis. In most
previous particle physics experiments, infrastructure software, including the framework, was
written in-house by each experiment, and each implementation has been tightly coupled to that
experiment’s code. This tight coupling has made it difficult to share infrastructure software
among experiments, resulting in great duplication of effort.

art was created as a way to share a single framework across many experiments; each
experiment uses art as an external product in the same sense that ROOT, Geant4 and CLHEP
are external products. An experiment that uses art provides its experiment specific code to
art via plug-ins. The art framework, and its annciliary tools, are developed and maintained
by software engineers who are specialists in the field of particle physics infrastructure software.
This provides a robust, professionally maintained foundation upon which physicists can develop
the code for their experiments. Furthermore, the larger, more diverse user base of a common
framework spurs innovation that benefits all of the experiments using art .

FERMILAB-CONF-15-639-CD

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy



Since 2009, almost all new experiments at Fermilab have adopted art as a central component
of their software suite. The list of experiments currently includes the Mu2e experiment, the
Muon g-2 experiment at Fermilab, NOνA, ArgoNeut, MicroBoone, the DUNE 35T Prototype,
LAr1-ND, LArIAT, and DarkSide 50. It is also being used for initial work on the DUNE
experiment. An overview of Fermilab computing support for the Intensity Frontier experiments
is available in these proceedings [2].

There are two other software toolkits that use art and that are designed for use by multiple
experiments. LArSoft [3] is a toolkit containing algorithms for the simulation and reconstruction
of events in Liquid Argon (LAr) Time Projection Chambers (TPC); it is being developed
collaboratively by members of the many LAR TPC experiments. artdaq [4] [5] is a toolkit upon
which an experiment can build a streaming data acquisition system. Many Fermilab Intensity
Frontier experiments that are now in the planning or construction stage will use artdaq . These
packages are mentioned for completeness and will not be discussed further in this paper.

1.2. The Audience for art Documentation
There is a broad spectrum of audiences for art documentation. At one end of the spectrum
are the intermediate and expert users of art ; often these physicists are intermediate or expert
users of, or are developers of, their experiment’s software. These physicists need concise,
complete explanations of art ’s features, organized so that they can quickly find answers to
specific questions as they arise.

At the other end of the spectrum are physicists who are beginners in the software of particle
physics: these physicists have little or no experience with art ; they often have little knowledge
of programming in general and of C++ in particular; many have not yet been introduced to the
notion of an event, the event loop and other elementary concepts of particle physics computing.
Moreover they may not yet have much familiarity with the experiment they are joining.

Between these extremes are experienced physicists who have not had the opportunity to keep
their computing skills up to date. They are a valuable resource that it is important to better
integrate into particle physics experiments.

The most difficult aspect of the documentation task is to address the needs of the physicists
at the low end of the computing skill spectrum. This paper will present an overview of the plans
for the art documentation suite and will then describe the work that has been done to develop
materials targeted at beginners.

2. The Experience of Mu2e
Mu2e began to use art soon after the start of the experiment. At that time there was little
art documentation available, just a few working examples, the art source code and friendly art
developers. As the Mu2e software team learned art , they wrote documentation for themselves
and that documentation remains available to new physicists joining Mu2e.

The experience of Mu2e is that newcomers to Mu2e who have both strong C++ skills and
previous experience with modern particle physics software learn both art and the Mu2e software
rapidly; for the most part they only need to learn a new syntax for familiar ideas. On the other
hand, almost everyone without this experience was rapidly overwhelmed. There were relatively
few people between these two extremes, although this may be an artifact of Mu2e being many
years from first data. Other experiments that are closer to their first data have reported that
they have more physicists between the extremes but that they too see a large number of people
who have great difficulty learning art and their experiment’s software.

The Mu2e software team worked with physicists who had difficulty learning the Mu2e
software. After only a few such cases, a pattern was observed and this pattern has become
clearer with time: the people who had difficulty simply did not have the necessary prerequisites.



Moreover the list of prerequisites is surprisingly long. Other experiments report precisely the
same observation.

3. The art Documentation Suite
The art documentation suite is available online [6].

3.1. Prerequisites
In an ideal world the art documentation suite would begin by defining prerequisites and
suggesting references that will allow users to acquire those prerequisites. The documentation
could then be tightly focused on art . The obvious prerequisites are that new users of art
should have C++ skills at the boundary between a beginner and an intermediate, including an
understanding of the Standary Library; they should understand how to use ROOT and CLHEP;
they should have some knowledge of unix, including scripting and the relationship between a
shell and its subshells.

Experience with the Mu2e experiment showed that these obvious prerequisites imply a lower
level of prerequisites: new users of art need to know how to operate in a terminal window
based environment; they need to know how to use one of the standard unix editors; they need
to know the difference between an interpreted and a compiled program; they need a basic
knowledge of the steps needed to build a compiled program; they need to be able to visualize
how a code fragment uses computer memory; they need to understand the general unix notion
of an environment variable that describes a path. These are but a few examples of elementary
computing skills that many new users of art have never learned. The absence of these skills
must be acknowledged in the design of the on-boarding materials.

This list is long enough that it is simply not practical to give newcomers a set of references to
read before they begin to study art ; it would take far to long to work through them. Moreover,
the Mu2e and art teams have been unable to locate appropriate, concise and stable references for
many of the prerequisites. One idea was to recommend selected chapters or sections from various
books and online resources. However this needs to be done very carefully: if the instructions
tell users to read chapters 1, 5, and 15 of some reference, it is often not possible to understand
the material in chapter 15 without having first read many of the prior chapters. So the short
cut of giving selected readings is often illusory. In additional the art team is reluctant to make
references to web sites unless there is a reasonable expectation that the links to that web site
will still work in a few years. For example, http://www.cplusplus.com has proved both stable
and valuable.

Another weakness of simply defining prerequisites is that the existing documentation for
prerequisites is siloed, that is the ROOT documentation describes ROOT in isolation, and son
on. On the other hand, particle physics code frequently makes use of many prerequisites on a
single line. When a user is presented with this their first task is to parse that line to determine
which parts of the line refer to art ideas and which parts of the line refer to ideas from the
prerequisites. This is automatic for experienced users but it is one of the great difficulties for
new users. One of the key functions of documentation for beginners is to teach them how to
recognize which elements of the code come from which of the prerequisites. This is the sense in
which the documentation must be integrated.

In short, there is a wealth of documentation about the prerequisites but it is not organized
to suit the needs of a newcomer to an experiment that uses art . The art documentation must
supply this organization.

3.2. Co-requisites
The previous section argued that carefully defining prerequisites will not, by itself, solve the
problem of on-boarding beginners in particle physics computing to art and their experiments’s



software. The solution is to recast many of the prerequisites as co-requisites. This is in analogy
to a quantum mechanics professor and a mathematical physics professor cooperating to ensure
that users are taught Associated Laguerre polynomials just before they learn about the hydrogen
atom.

As an idea from the co-requisites is needed in the exposition of art , the art documentation
describes it briefly, with a narrow focus on the task at hand, and gives it its proper name.
The art documentation then refers the reader to the co-requisite’s own documentation for any
additional information. When appropriate, the art documentation advises the reader than the
topic at hand is quite large but that a complete understanding is not necessary at this time.

There remain some true prerequisites and the Introduction section of the art documentation
suite discusses them at some length. For example, familiarity with procedural programming C++
is a prerequisite and the Introduction reviews those features that the reader must understand.
On the other hand an understanding of inheritance and templates is not a prerequisites; these
are discussed as co-requisites because both are enormous topics from which a beginner need
only understand a few paragraphs. In the Introduction the user is advised that if they know the
reviewed material well they will be ready to learn art ; if they are not familiar with a few of the
ideas they should proceed but they will need to do some additional homework; if they are not
familiar with a lot of the material, then they should learn it before continuing to learn art .

The key to making this strategy succeed is to work with the incoming users to understand
what can be assigned as a prerequisite and what must be treated as a co-requisite.

Clearly the effort required to develop discussions of the co-requisites is large. It would not
make sense to do this for a most individual Intensity Frontier experiments viewed in isolation —
it would be less effort to mentor individuals who can mentor others in turn. But art is used by a
large, and growing, community of experiments. The authors believe that size of the community
justifies the effort: if newcomers to the experiment first learn art , along with the co-requisites,
they will be ready to learn their experiment’s software quickly.

3.3. Workbooks vs Schools
It takes a large effort to prepare and run a particle physics computing school. Therefore such
schools are run infrequently. On the other hand, new users join experiments continuously
throughout the year; even during the summer peak, the starting dates for new students extend
from May 1 to August 1. So there is no ideal time to run a school.

The preferred solution is that the material to on-board beginners be organized as a self-
paced, self-study workbook. In this way new users can being their on-boarding as soon as they
are ready, whether that be at the lab or at their home institution.

3.4. Overview of the art Documentation Suite
When complete, the art documentation suite will have six main components:

• Introduction: an outline of the documentation and a review of the prerequisites.

• Workbook: self-paced, self-study exercises for beginners; discussion of co-requisites.

• Users Guide: the “mother lode”, targeted at intermediates and experts.

• Reference Manual: LXR, Doxygen or similar.

• Technical Manual: internal details targeted at developers and maintainers of art .

• Table of Contents, Glossary and Index:

All of the above must be cross-referenced. For example, someone working through a
Workbook exercise on handles to data products will only be told what is necessary to use a
handle in typical day-to-day usage; they will be referred to the appropriate section of the Users



Guide for full details. On the other hand, that section of the Users Guide can refer to the
Workbook for a working example. This minimizes multiple points of maintenance. But it does
require coordination between the design of the Workbook and the design Users Guide.

At the present time the introduction is about 90% complete and fills about 120 pages of a
PDF file. The Workbook is about 25% complete and fills about 260 pages of a PDF file; the
authors estimate that it will fill about 800 pages at completion. The Users Guide is about 5%
complete; the existing content was vacuumed up from assorted experiments that use art ; it is
not yet edited or vetted. The Users Guide is designed as a reference work, not something that
one would read from beginning to end; the authors estimate that it will fill about 1000 PDF
pages at completion. LXR and git browsers are already available for the art code and for the
code of many of it ancillary tools. The Technical Manual has not yet been started. The Table of
contents is present; the existing material has been indexed and scanned for appropriate glossary
entries.

3.5. The Workbook
The primary purpose of the Workbook is to onboard new users, from beginners in particle
physics computing to experts coming from other experiments.

The Workbook is organized as a sequence of self-study, self-paced exercises accompanied by
explanatory text; each exercise must “just work”. Most of the early exercises are designed to
be done sequentially, while many of the later exercises are standalone and may be done in any
order. About 30 exercises are planned and 8 are available now.

The exercises are built around a greatly simplified toy detector, a massless cylindrical tracker
in a uniform solenoid field. One of the reasons behind this choice is that it did not show favoritism
to any of the experiments now using art , none of which have a cylindrical tracker. There is also
a very good reason not to use actual code from any real experiment in these exercises: such
code has features needed to address the complexities of a real experiment; frequently those
complexities will obscure the point of the exercise and will confuse anyone who is not already an
expert in that experiment. Moreover such code will change with time, necessitating a rewrite,
possibly major, of the accompanying text. The decision to build the exercises around a toy
detector is firm.

The art team has received a request to replace the toy central detector with a toy LAr TPC;
this request is under discussion with the stakeholders.

Users of the Workbook will checkout code from a git repository; for each exercise, they will
build code, run code and inspect its output. The accompanying text will discuss the features of
art that are illustrated by the code along with any co-requisites that are needed to understand
the code. Each exercise concludes with some optional tasks for the user to try. Some tasks are
to extend or modify behaviour seen earlier in the exercise; in each case a solution is provided
and discussed. Other tasks are to debug a piece of code that fails to compile, gives a run-time
error or produces incorrect output; again solutions are provided.

Because of the material provided for beginners, the Workbook is long. New art users who are
experienced C++ programmers and are familiar with modern particle physics software should
just skim the Wookbook and choose where to read more deeply and where to work through the
exercises. The main goal for such users is to acquire the layout of the documentation and to
learn the names that art uses so that you can look up details when necessary. True beginners
should read everything and work through every exercise. Those in between should skim the
Workbook but presumably will find it necessary to do more of the exercises than will experts.

3.6. An Important Lesson Learned
An important lesson learned was to make each exercise small enough that most beginners could
get through it in a few hours. The first version of Exercise 1 was conceived as follows:



• Hits in the toy detector are represented by the class toy::Hit.

• Get a handle to a collection of hits from the event.

• Print the event ID and the number of hits per event.

• Limit the printout using a run-time configurable parameter.

• Fill a histogram with the ADC value of each hit.

• Change the number of events processed.

• Change the input file.

• Read both input files in one job.

• Write an output file and read it back.

When this was first deployed, the documentation did not include a discussion of co-requisites.
Intermediates and experts were able to work through this quickly. But this exercise crushed
many beginners; after several days they had not completed the exercise. There were two sorts of
stumbling blocks. First, users recognized that they were missing a prerequisite and they spent a
long time searching, inefficiently, for information about that prerequisite; often the hardest part
was to determine which prerequisite to read about. Second, at that time the documentation was
not cross-referenced; so users frequently had to search for material they had seen before but not
yet memorized.

In the current version of the Workbook, with a full discussion of co-requisites, this single
exercise was split into 8 exercises, each with a narrow focus.

4. Technology
The code used by the Workbook is versioned and is maintained in a git repository. Users have
readonly access to the repository and the Workbook does not teach users how to contribute to a
git project. This is a carefully considered decision because not all experiments use git and those
that do use git have adopt different git workflows.

To run the exercises, one needs access to a build of art and its tool chain. This too is versioned.
Complete sets of binaries, including the compiler, are available as web-visible tarballs for many
versions of Scientific Linux and Mac OSX. For those working on experiments using art , the
binaries are already installed on your experiment’s machines.

The written material is also versioned and each release of that material is matched to a
particular version of the Workbook code and a particular version of art . The written material
is maintained as LATEX source files stored in a git repository and the material is distributed as
a single PDF file. Distribution as a single PDF file allows full searching. The PDF files use
hyperlinks to provide internal cross-referencing and to refer to outside material. Most modern
PDF browsers have a back button, which amplifies the power of the cross-referencing.

The art team is interested in evaluating other output formats for the written material. One of
the boundary conditions is that the content must be strongly versioned and it must be possible
to develop a bug-fix branch off of an old version. In addition the final product must be searchable
and the cross-references must be hyperlinked. Finally the candidate technology must support
the automatic updating of cross-references when new chapters and sections are inserted.

5. Feedback from Users
The art team has asked for feedback from everyone who has used the Workbook and has received
detailed feedback from about 6 pilot users with broad range of skill in the prerequisites; the
pilot users do not include absolute beginners; they do include a student who is new to particle
physics but who has strong computing skills. The short answer is that all of these users like the
Workbook a lot and they would like to see it finished. A former CMS collaborator commented.
”I finally understand what I am doing when I use the CMS software.”



Most people took 2 to 4 days (possibly over the course of several weeks) to skim the
Introduction and work through the first 8 exercises. Those with a higher skill level in the
prerequisites completed the work faster.

Many people report that people are intimidated by the sheer size of the PDF file; the
Introduction and Workbook are currently about 400 pages. But once you start you will discover
that it reads quickly because there are many source and output listings; in addition, detailed
instructions are often repeated so that users do not need to flip through the previous chapters
to remember how to run an exercise.

The Mu2e collaboration has another plan to mitigate the intimidation factor. The plan is
to assign some number of exercises of the Workbook and to follow that up with exercises using
Mu2e code. This will be followed by some more Workbook exercises and some more Mu2e
exercises. A person following this sequence does not need to follow it until the end; they can
put it aside as soon as they have learned enough to start work on their initial project.

The current best guess is that, when the Workbook is complete, it will take 5 to 15 days to
work through it in detail. It is important to convince the particle physics community that an
investment in this scale is both necessary and appropriate. Some senior members of the particle
physics community agree with this position but others still say that the want their summer
student, who has never programmed before, to be an effective art user in less than one week.
This simply won’t happen; it is possible to find ntuple/TTree based projects for such students
but it is not possible to teach them both art and their experiments software in less than one
week.

6. Timing and Staffing
The complete art documentation suite is an ambitious project. The current estimate is that
it will take 2 to 3 FTE-years of domain expert time to execute the complete project. To date
the domain expert effort has been 100% volunteer and integrates to about 0.5 FTE-years. The
calendar time to complete is unknown; the volunteers have day jobs. Fermilab has provided a
part time technical writer who is outstanding but who is not a domain expert so she cannot
create content or certify contributions for correctness.

The authors of the documentation suite recognize that a maintenance plan is required. A
plan has not yet been developed but one will be as the project moves forward. One of the first
steps will be to automate the testing that the exercises continue to work as designed; these tests
will be incorporated into the pre-release testing for new versions of art .

7. Some Meta-Questions
The particle physics community understands that not every particle physicist needs to be a
computing expert. However the community does not have a coherent understanding of what
distribution of computing skills is necessary; this includes questions such as:

• Is doing a TTree analysis the only skill that most particle physicists should need?

• If not, what is the baseline computing skill set that most particle physicists should have?

• What fraction of the community should be able to run jobs for their experiments?

• What fraction of the community should be able write analysis modules for their experiment?

• What fraction of the community should have the computing skills to contribute to algorithm
development, including commissioning, calibration, reconstruction and simulation?

• What fraction of the community should acquire the skills needed to develop algorithms that
exploit the new features of highly parallel architectures?

Understanding the answers to these questions will inform the training materials that the
community needs to develop.



8. Summary
This paper has presented a plan for an integrated art documentation suite that will be usable
by all experiments that use art ; it will contain an integrated treatment of co-requisites; it will
be build around coherent set of code examples that can be discussed both by the Workbook and
by the Users Guide; it will be cross-referenced and have navigation aides including a Table of
Contents, an index and a glossary.

The Introduction section is almost complete and the Workbook section is about 25% complete.
This is already enough material that the Workbook can form the basis for on-boarding new users.
Users who have mastered the exercises of the art Workbook will be well prepared to learn the
experiment’s art based software.

This has been mostly a volunteer effort and new volunteers are welcome. The time to
completion is uncertain because the volunteers have day jobs.

If you are aware of good material the describes the prerequisites or the co-requisites, please
let us know. The art team would like, with permission, to link to this material.

References
[1] https://web.fnal.gov/project/ArtDoc/Pages/home.aspx
[2] Group, Craig, “Fermilab Computing at the Intensity Frontier”, in these proceedings.
[3] https://cdcvs.fnal.gov/redmine/projects/larsoft
[4] https://cdcvs.fnal.gov/redmine/projects/artdaq
[5] Biery, Kurt, et. al.; “Recent Developments in the Infrastructure and Use of artdaq ”, in these proceedings.
[6] https://web.fnal.gov/project/ArtDoc/SitePages/documentation.aspx




