
Accelerating Twisted Mass LQCD with QPhiX

Mario Schröck∗
INFN - Sezione Roma Tre, Rome (Italy)
E-mail: mario.schroeck@roma3.infn.it

Silvano Simula
INFN - Sezione Roma Tre, Rome (Italy)
E-mail: silvano.simula@roma3.infn.it

Alexei Strelchenko
Fermi National Accelerator Laboratory
E-mail: astrel@fnal.gov

We present the implementation of twisted mass fermion operators for the QPhiX library†. We
analyze the performance on the Intel Xeon Phi (Knights Corner) coprocessor as well as on Intel
Xeon Haswell CPUs. In particular, we demonstrate that on the Xeon Phi 7120P the Dslash kernel
is able to reach 80% of the theoretical peak bandwidth, while on a Xeon Haswell E5-2630 CPU
our generated code for the Dslash operator with AVX2 instructions outperforms the corresponding
implementation in the tmLQCD library by a factor of ∼ 5× in single precision. We strong scale
the code up to 6.8 (14.1) Tflops in single (half) precision on 64 Xeon Haswell CPUs.

The 33rd International Symposium on Lattice Field Theory
14–18 July 2015
Kobe International Conference Center, Kobe, Japan

∗Speaker.
†https://github.com/JeffersonLab/qphix

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

ar
X

iv
:1

51
0.

08
87

9v
1

 [
he

p-
la

t]
 2

9
O

ct
 2

01
5

FERMILAB-CONF-15-528-CD

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

mailto:mario.schroeck@roma3.infn.it
mailto:silvano.simula@roma3.infn.it
mailto:astrel@fnal.gov

Accelerating Twisted Mass LQCD with QPhiX Mario Schröck

1. Introduction

The QPhiX library [1] offers a collection of highly optimized kernels and inverters to perform
Lattice QCD computations on recent Intel x86 systems. QPhiX is a C++ library and consists
of two components: the lower level component of the library provides with the code generator
which abstracts away vector intrinsics (supporting IMCI, AVX, AVX2, AVX512, SSE and QPX
instructions). The high level part is concerned with parallelizing over threads via OpenMP and
multi-processing via MPI; it is also performing the loop structure for the cache-blocking strategy.
Currently, the library supports Wilson (Clover) fermions and (mixed precicion) CG, BiCGstab
inverters. There is also an implementation of the staggered Dslash operator [2]. For details we refer
to the original work [1]. In the present study we extend QPhiX for initial support of degenerate
twisted mass fermions [3, 4].

2. QPhiX and twisted mass fermions

The degenerate twisted mass Dslash operator 6DTM is defined as

6DTM =6DW1 f + iµγ5τ3 , (2.1)

where 6DW is the standard Wilson Dslash operator which is diagonal in flavour space. The second
term is the twisted mass term which is nontrivial in flavour space (τ3 being the third Pauli matrix in
flavour space), µ is the twisted mass.

QPhiX relies on even-odd preconditioning and therefore the operator (2.1) requires two kernels
(plus the corresponding daggered versions) which act on the even (odd) sites separately, in QPhiX
parlance, Dslash and AChiMBDPsi:

1. Dslash:
χ = R−1 6DWψ (2.2)

2. AChiMBDPsi:
φ = Rχ−b 6DWψ (2.3)

with R = 1+ i2κµγ5 being the twist operator.

The successive application of these kernels corresponds to the Schur decomposed fermion matrix

M̃oo = Roo−
1
2

κ(6DW)oe R−1
ee (6DW)eo (2.4)

which then enters, e.g., the Conjugate Gradient algorithm. We implement these kernels on the level
of the code-generator. The high-level part has to be modified to include the twisted mass parameter
µ and to call the corresponding twisted mass low-level kernels, apart from that it is equivalent to
the pure Wilson case.

The QPhiX routine dslash_plain_body() generates the (Wilson) Dslash kernel rou-
tines, within that, after the call of dslash_body(), we call the (inverse) twisted term. This
generates files with vector intrinsics of the form, e.g.,

tmf_dslash_plus_body_float_float_v8_s4_12

2

Accelerating Twisted Mass LQCD with QPhiX Mario Schröck

for the different floating point precisions, SIMD vector lengths, structure of arrays lengths and
gauge field compression types (12 or 18). Next, the generated files are wrapped up as template
specializations of the form

template<>

inline void

dslash_plus_vec<FPTYPE,VEC,SOA,COMPRESS12>(...)

{

#include INCLUDE_FILE_VAR(qphix/avx2/generated/dslash_plus_body_,

FPTYPE,VEC,SOA,COMPRESS_SUFFIX)

}

The procedure for the AChiMBDPsi kernels is done in a close analogy with the plain Dslash ones.
Lastly, we have to consider the unpacking routines for the MPI communication. The spinors

are projected to halfspinors before being exchanged at the boundaries of each domain. These
packing routines are identical to the Wilson case. However, when unpacking, while accumulating
the different directions and before streaming to memory, we still have to apply the twisted mass
term and therefore we need twisted mass specific unpacking routines.

3. Performance

3.1 Single node

In Fig. 1 we summarize the performance results of our twisted mass Dslash kernels as well
as of the full Conjugate Gradient (CG) inversion algorithm on a single Intel Xeon-Phi 7120P. The
results are distinguished by double (DP), single (SP) and half precision (HP) and moreover whether
12 compression1 has been used or not (otherwise 18 “compression”). Note that the DP and SP 12
compression Dslash kernels reach around 80% of the theoretical peak bandwidth of the Xeon-Phi.

In Fig. 2 we present an equivalent performance plot but on a Dual Socket Xeon Haswell CPU
(E5-2630 at 2.4GHz) with kernels that we produced with the QPhiX code generator for AVX2
instructions. The performance gives around 60% of the corresponding Xeon-Phi performance.
With the tmLQCD package [5, 6], we reach 28 Gflops in double and 38 Gflops in single preci-
sion, respectively, for the twisted mass Dslash operation. (Note that tmLQCD supports neither 12
compression nor half precision arithmetics). Therefore our QPhiX kernels account for speedup
factors of 3× in DP, 4.9× in SP and 6.7× in HP (the latter in relation to the tmLQCD SP result),
respectively.

3.2 Weak scaling

Fig. 3 and Fig. 4 show the weak scaling behaviour of the Dslash kernel on up to 64 Xeon-Phi
7120P devices and up to 64 Dual socket Haswell E5-2630 CPUs, respectively. These tests have
been performed on the “Galileo” cluster2 at Cineca, Italy. On both architectures we compare the

1To overcome the bandwidth bottleneck to some extent, one may transfer only two of the three SU(3) matrix rows
(thus 12 parameters instead of 18) and recalculate the third one on-the-fly.

2http://www.hpc.cineca.it/hardware/galileo

3

Accelerating Twisted Mass LQCD with QPhiX Mario Schröck

DP 12

 DP 18

SP 12

SP 18

HP 12

HP 18

Gflops

0 125 250 375 500

346.3

362.2

193.6

218.3

93.55

107.8

446.4

477.4

243.9

292.3

119.8

145.8 Dslash
CG

Figure 1: Twisted Mass 323×64 Xeon-Phi 7120P.

DP 12

 DP 18

SP 12

SP 18

HP 12

HP 18

Gflops

0 125 250 375 500

216.7

197.2

126.9

149.4

57.8

67.7

254.9

218.8

150.5

189.2

69.9

84.2 Dslash
CG

Figure 2: Twisted Mass 323×64 Dual Socket Xeon Haswell E5-2630 2.4GHz AVX2.

performance to a run with a proxy [1] that has been made available to us by Parallel Computing
Lab, Intel Corporation. When running the code with the proxy, the latter will fully occupy one of
the compute cores. Loosing one of the 16 cores of the Dual Socket Xeon Haswell is too costly to
profit from optimized MPI communication (Fig. 4). On the Xeon-Phi (Fig. 3), on the other hand,
dedicating one of the 61 cores for communication pays off and weak scaling is better than without
proxy. The kernel reaches 18.2 Tflops on 64 devices.

4

Accelerating Twisted Mass LQCD with QPhiX Mario Schröck

Figure 3: Weak Scaling Twisted Mass Dslash SP 483×96 per device Xeon-Phi 7120P.

3.3 Strong scaling

In Figs. 5 and 6 we present the strong scaling behaviour of the Dslash kernel on Dual Socket
Xeon Haswell CPUs in single (SP) and half precision (HP), respectively, for a range of lattice
sizes (243× 48, 323× 64 and 483× 96). While the strong scaling behaviour on the Xeon CPU
is resonable, the Xeon-Phis require a too large local volume (compared to today’s state of the art
lattice sizes) to reach high performance. On the largest lattice we reach 6.8 (14.1) Tflops in single
(half) precision on 64 nodes.

4. Summary

We have implemented Dslash and AChiMBDPsi kernels of the twisted mass fermion formu-
lation for the QPhiX library. The code passes the unit tests of the kernels, the full fermion matrix
(2.4) and the Conjugate Gradient algorithm. On the Xeon-Phi 7120P the Dslash kernel reaches
80% of the theoretical peak bandwidth and on a Dual Socket Xeon Haswell CPU with AVX2
generated code our QPhiX kernel outperforms the tmLQCD library by a factor of 4.9× in single
precision (6.7× when making use of half precision arithmetics). Thanks to Intel’s MPI proxy the
weak scaling behaviour is good not only on the Xeon CPUs but also on Xeon-Phis. While strong
scaling is good on the Xeon Haswell CPUs on our test machine, the Xeon-Phis require too large
local volumes for practical purposes at this stage.

Acknowledgments

We are very greatful to Bálint Joó, Dhiraj D. Kalamkar and Karthikeyan Vaidyanathan for
sharing the QPhiX library and moreover for helpful discussions and assistance. Support by INFN
and SUMA is acknowledged.

5

Accelerating Twisted Mass LQCD with QPhiX Mario Schröck

Figure 4: Weak Scaling Twisted Mass Dslash SP 323× 64 per node Dual Socket Xeon Haswell E5-2630
2.4GHz AVX2.

References

[1] B. Joó, D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. Lee, P. Dubey, and I. Watson,
William, Lattice QCD on Intel Xeon Phi Coprocessors, in Supercomputing (J. Kunkel, T. Ludwig, and
H. Meuer, eds.), vol. 7905 of Lecture Notes in Computer Science, pp. 40–54. Springer Berlin
Heidelberg, 2013.

[2] R. Li and S. Gottlieb, Staggered Dslash Performance on Intel Xeon Phi Architecture, PoS LATTICE
2014, 034 (2015) [arXiv:1411.2087 [hep-lat]].

[3] ALPHA Collaboration, R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz, Lattice QCD with a chirally
twisted mass term, JHEP 08 (2001) 058, [hep-lat/0101001].

[4] R. Frezzotti and G. C. Rossi, Twisted-mass lattice QCD with mass non-degenerate quarks, Nucl. Phys.
Proc. Suppl. 128 (2004) 193–202, [hep-lat/0311008].

[5] K. Jansen and C. Urbach, tmLQCD: A Program suite to simulate Wilson Twisted mass Lattice QCD,
Comput. Phys. Commun. 180 (2009) 2717–2738, [arXiv:0905.3331].

[6] A. Abdel-Rehim, F. Burger, A. Deuzeman, K. Jansen, B. Kostrzewa, L. Scorzato, and C. Urbach,
Recent developments in the tmLQCD software suite, PoS LATTICE2013 (2014) 414,
[arXiv:1311.5495].

6

http://xxx.lanl.gov/abs/hep-lat/0101001
http://xxx.lanl.gov/abs/hep-lat/0311008
http://xxx.lanl.gov/abs/0905.3331
http://xxx.lanl.gov/abs/1311.5495

Accelerating Twisted Mass LQCD with QPhiX Mario Schröck

100

1,000

10,000

Number of Nodes

1 2 4 8 16 32 64

24³x48
32³x64
48³x96

G
flo

ps

Figure 5: Strong Scaling Twisted Mass Dslash SP Compression12 Dual Socket Xeon Haswell E5-2630
2.4GHz AVX2.

100

1,000

10,000

100,000

Number of Nodes

1 2 4 8 16 32 64

24³x48
32³x64
48³x96

G
flo

ps

Figure 6: Strong Scaling Twisted Mass Dslash HP Compression18 Dual Socket Xeon Haswell E5-2630
2.4GHz AVX2.

7

