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C. Morello52, M. Mostafá86, C.A. Moura21, G. Müller39, M.A. Muller17,20, S. Müller36, S. Navas74,
P. Necesal26, L. Nellen58, A. Nelles59,61, J. Neuser34, P.H. Nguyen12, M. Niculescu-Oglinzanu66,
M. Niechciol41, L. Niemietz34, T. Niggemann39, D. Nitz82, D. Nosek25, V. Novotny25, L. Nožka27,
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J. Pȩkala63, R. Pelayo55, I.M. Pepe19, L. Perrone47, E. Petermann89, C. Peters39, S. Petrera48,49,
Y. Petrov78, J. Phuntsok86, R. Piegaia3, T. Pierog36, P. Pieroni3, M. Pimenta65, V. Pirronello45,
M. Platino8, M. Plum39, A. Porcelli36, C. Porowski63, R.R. Prado15, P. Privitera87, M. Prouza26,
E.J. Quel2, S. Querchfeld34, S. Quinn76, J. Rautenberg34, O. Ravel33, D. Ravignani8, D. Reinert39,
B. Revenu33, J. Ridky26, M. Risse41, P. Ristori2, V. Rizi48, W. Rodrigues de Carvalho75, J. Rodriguez

4



Rojo9, M.D. Rodrı́guez-Frı́as73, D. Rogozin36, J. Rosado72, M. Roth36, E. Roulet1, A.C. Rovero5,
S.J. Saffi12, A. Saftoiu66, F. Salamida28,c, H. Salazar53, A. Saleh71, F. Salesa Greus86, G. Salina44,
J.D. Sanabria Gomez24, F. Sánchez8, P. Sanchez-Lucas74, E.M. Santos16, E. Santos17, F. Sarazin77,
B. Sarkar34, R. Sarmento65, C. Sarmiento-Cano24, R. Sato9, C. Scarso9, M. Schauer34, V. Scherini47,
H. Schieler36, D. Schmidt36, O. Scholten60,b, H. Schoorlemmer88, P. Schovánek26, F.G. Schröder36,
A. Schulz36, J. Schulz59, J. Schumacher39, S.J. Sciutto4, A. Segreto50, M. Settimo30, A. Shadkam81,
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1. Introduction

A multi-messenger approach can help to identify the sources of ultra-high energy cosmic rays
(UHECRs). It is difficult to do so from their arrival directions since CRs are charged particles
so are deflected en-route to Earth. This deflection cannot be computed precisely since the CR
composition at ultra-high energies as well as the intervening magnetic field strength are poorly
known. If the CR composition is light i.e. mainly protons, the magnetic deflection may be only a
few degrees above a few tens of EeV. Secondary particles including neutrinos (νs) are produced in
the sources by the interactions between the CRs and ambient photon and matter fields. Neutrinos
have no charge and interact only through the weak force, so their arrival directions do point back to
where they originated from, although they are also hard to detect for the same reason. In this work
we describe a joint analysis by the IceCube, Pierre Auger and Telescope Array Collaborations to
search for angular correlations between the arrival directions of high-energy νs and UHECRs that
would provide insight into the long-standing open question of cosmic ray origin.

2. The observatories and data sets

2.1 The IceCube Neutrino Telescope

IceCube is a cubic-kilometer neutrino detector installed in the ice at the geographic South Pole
[1] between depths of 1450 m and 2450 m. Neutrino reconstruction relies on the optical detection of
Cherenkov radiation emitted by secondary particles produced in ν interactions in the surrounding
ice or the nearby bedrock.

Depending on the flavor of the interacting neutrino and the type of interaction, different sig-
natures are expected in the detector. The one with the best angular resolution (∼ 1◦) is the charged
current νµ interaction where a track is produced as the outgoing muon traverses the detector. Cas-
cades are produced in the detector as a result of charged current νe,τ interactions or all neutral
current neutrino interactions. In this case the angular resolution is poorer (around 15◦ above 100
TeV). The resolution of the deposited energy for tracks and cascades is around 15% [2] but cas-
cades have a better resolution for the reconstructed neutrino energy since most of the energy is
deposited in the detector, which is not the case for tracks.

Different data sets are considered in this work. A set of cascades that have been detected in
a search for high-energy events where the interaction occurs within the detector is used [3]. This
set of 39 cascades, which is part of the HESE (‘High-Energy Starting Events’) set, consists of
data taken between May 2010 and May 2014 and is called ‘high-energy cascades’ in the following
(deposited energy range: ∼ 30− 2000TeV). A second set of events referred to as ‘high-energy
tracks’ (energy above ∼ 70TeV) is formed by two parts. The first part is the 7 tracks in the HESE
sample [3] that have energies and directions which make them more likely to be of extraterrestrial
origin than the other track events in that sample. The second part is 9 muon tracks found in a search
of a diffuse up-going νµ flux [4]. These 9 muon tracks, found in two years of data (May 2010-May
2012), belong to a high energy-proxy excess with respect to atmospheric predictions. This excess
is compatible with an astrophysical E−2 flux at the level indicated by the HESE analysis [4].

The third data set used is called ‘4-year point-source sample’ [5] and consists of events with
sub-degree median angular resolution detected between May 2008 and May 2012. The set includes
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about 400,000 events, mostly up-going atmospheric νs from the Northern hemisphere and high-
energy atmospheric muons from the Southern hemisphere.

2.2 The Pierre Auger Observatory

The Pierre Auger Observatory is located in Malargüe, Argentina (35.2◦ S, 69.5◦ W, 1400 m
a.s.l.) [6]. It consists of a surface array of 1660 water-Cherenkov detectors covering an area of
approximately 3000 km2. The array is overlooked by 27 telescopes at four sites which constitute
the fluorescence detector. The surface and air fluorescence detectors are designed to perform com-
plementary measurements of air showers created by UHECRs.

The data set used for the present analysis includes 231 events with E > 52 EeV and zenith
angles smaller than 80◦ recorded by the surface detector array from January 2004 to March 2014
[7]. The exposure determined by geometrical considerations for the period analyzed amounts to
66,452 km2 sr yr. The angular resolution, defined as the 68th percentile of the distribution of open-
ing angles between the true and reconstructed directions of simulated events, is better than 0.9◦ [8].
The absolute energy scale, given by the fluorescence calibration, has a systematic uncertainty of
14% and the energy resolution is about 12% [9].

2.3 Telescope Array

The Telescope Array (TA) is located in Utah, USA (39.3◦N, 112.9◦W, 1400 m a.s.l.) [10] and
detects extensive air showers generated by UHECRs. It comprises a 700 km2 surface array of 507
plastic scintillation detectors, 3 m2 each, distributed in a square grid with 1.2 km spacing. The array
is overlooked by 3 fluorescence detector stations with 38 telescopes.

The UHECR sample considered in the present analysis consists of 87 events with E > 57 EeV
and zenith angles smaller than 55◦ collected between May 2008 and May 2014 by the surface de-
tector. A subset of events has been published in [11]. The total exposure is around 9,500 km2 sr yr.
The angular resolution is better than 1.5◦. The energy scale of the surface detector is also cali-
brated with the fluorescence detector. The energy resolution is better than 20% with a systematic
uncertainty on the absolute energy scale of 21% [12].

3. Data analyses

There are three different analyses which are presented in detail in this Section. A cross-
correlation and a stacking likelihood analysis are done on the sample of high-energy cascades
and high-energy tracks and the UHECRs detected by Auger and TA. Cascade and track-like events
are considered separately since, due to their different angular resolutions, the angular distance at
which a signal (if any) can be detected would be different. A third analysis is performed on stacked
UHECRs and the IceCube 4-year point-source sample.

The magnetic deflections of CRs have to be accounted for in the likelihood tests. For sim-
plicity, we model individual deflections as a random variable 2-dimensional Gaussian distribution
with the energy-dependent standard deviation σMD(ECR) = D× 100EeV/ECR, and we consider
the representative values D = 3◦, 6◦ and 9◦ (the latter is just used for the likelihood test with the
high-energy cascades and high-energy tracks). These values are reasonable test values as shown
by a backtracking simulation of the detected UHECRs in the galactic magnetic field models of
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Figure 1: Distribution of UHECR deflections in two models for the regular component of the galactic
magnetic field, PT2011 [13] and JF2012 [14], for a rigidity E/Z = 100 EeV.

Pshirkov et al. [13] and Jansson and Farrar [14] and assuming these are protons with E = 100 EeV.
The distributions of the obtained deflections are different for each model (Fig. 1), but the median
values for both are 2.7◦. We have then chosen an average value of 3◦. The values of 6◦ and 9◦ are
also considered to account for larger deflections that could arise from other light CR components
(Z = 2,3) or a stronger than predicted strength of the intervening magnetic fields.

3.1 UHECR correlation analyses with high-energy cascades and high-energy tracks

Figure 2: Aitoff-Hammer projection of the sky in galactic coordinates showing the arrival directions of the
IceCube high-energy cascades (plus signs) and high-energy tracks (crosses), and the UHECRs detected by
Auger (circles) and TA (triangles). The dashed line indicates the Super-galactic plane.

The arrival directions of the high-energy tracks and high-energy cascades in IceCube, and of
the UHECRs measured by Auger and TA are shown in Fig. 2 in galactic coordinates. Two different
analyses are performed with this data set: a cross-correlation and a stacking likelihood analysis.

The cross-correlation method consists of computing the number of UHECR-ν pairs as a func-
tion of their angular separation α , np(α), and comparing it to the expectation from an isotropic
distribution of arrival directions of CRs. The angular scan performed in this case is between 1◦ and
30◦ with a step of 1◦ and, due to this scan, the method does not rely on any assumption about the
exact value of the strength of the magnetic deflections, unlike the likelihood method.

In Fig. 3 we show the results obtained applying the cross-correlation method to the data. For
the case of the sample of high-energy tracks, the maximum departure from the isotropic expectation
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of CRs (fixing the positions of the νs) obtained is at an angular distance of 2◦, where 1.5 pairs were
expected on average and 4 pairs were detected. The post-trial p-value is 34%. For the analysis done
using the high-energy cascade events, the smallest pre-trial p-value occurs at an angular distance of
22◦, for which 575 pairs are observed while 490.3 were expected on average. The post-trial p-value
is 5×10−4 with respect to expectations of an isotropic flux of CRs. As an a posteriori study, we also
evaluated the significance under the hypothesis of an isotropic distribution of neutrinos, fixing the
UHECR arrival directions (note that this alternative hypothesis preserves the degree of anisotropy
in the arrival directions of CRs that is suggested by the TA ‘hot spot’ [11] or the excess around
Cen A reported by Auger [7]). The post-trial p-value is 8.5× 10−3. Thus the cross-correlation
of UHECRs with the high-energy cascades provides a potentially interesting result, which we will
continue to monitor in the future.
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Figure 3: Relative excess of pairs, [np(α)/〈niso
p (α)〉]−1, as a function of the maximum angular separation

between the neutrino and UHECR pairs, for the analysis done with the high-energy tracks (a) and with the
high-energy cascades (b). The 1σ , 2σ and 3σ fluctuations expected from an isotropic distribution of arrival
directions of CRs are shown in red, blue and grey, respectively.

Stacking a set of sources is a well known way of accumulating multiple weaker signals to
enhance the discovery potential. Since νs are not deflected on their way to Earth, the stacking over
sources is replaced by stacking over the set of ν arrival directions. An unbinned likelihood method
is used [15], with the log of the likelihood function defined as:

lnL (ns) =
NAuger

∑
i=1

ln
(

ns

NCR
Si

Auger +
NCR−ns

NCR
Bi

Auger

)
+

NTA

∑
i=1

ln
(

ns

NCR
Si

TA +
NCR−ns

NCR
Bi

TA

)
,

where ns, the number of signal events, is the only free parameter, NCR = NAuger +NTA, Si
Auger and

Si
TA are the signal PDFs (Probability Distribution Functions) for Auger and for TA, respectively, and

Bi
Auger and Bi

TA are the corresponding background PDFs. The signal PDFs, in which the different
neutrino positions are stacked, take into account the exposure and angular resolution of the CR
observatories, the assumed CR magnetic deflections and the likelihood maps for the reconstruction
of the νs arrival directions (Fig. 4). The background PDFs are the normalized exposures of the
CR observatories. The test statistic T S is defined as: T S =−2ln L (ns)

L (ns=0) and follows a distribution
close to χ2 with one degree of freedom.

The results for the stacking method are shown in Table 1. The most significant deviation from
an isotropic flux of CRs occurs for the magnetic deflection parameter D = 6◦ with the high-energy
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(a) (b)

(c) (d)

Figure 4: The signal PDFs before the Gaussian smearing in equatorial coordinates. The upper plots are for
the high-energy cascades, while the lower ones are for the high-energy tracks. The declination-dependent
exposure is applied for Auger in the left-hand plots and for TA in the right-hand plots.

D High-energy tracks High-energy cascades
ns pre-trial p-value ns pre-trial p-value

3◦ 4.3 0.22 53.7 2.1×10−3

6◦ 0.5 0.48 85.7 2.7×10−4

9◦ - underfluctuation 106.1 3.8×10−4

Table 1: Results for the stacking analyses with the sample of high-energy tracks and high-energy cascades.

cascades. The observed pre-trial p-value of 2.7×10−4 corresponds to 8×10−4 post-trial, i.e. after
accounting for the 3 values of D considered. Therefore, we obtain a potentially interesting result
with the cascades as in the case of the cross-correlation analysis, which will be further studied with
a larger number of events.

The angular distance at which an excess would occur in the case of the cross-correlation in-
cludes not only the magnetic deflections at the corresponding CR energies but also the experi-
mental angular uncertainties. In the case of cascades, the angular uncertainty is ∼ 15◦ and it is
∼ 1◦ for CRs. Since most CRs in the data set have ECR ∼ 60 EeV, the assumed magnetic deflec-
tion where the smallest p-value is found in the case of the likelihood analysis with the cascades
(σMD(ECR) = 6× 100EeV/ECR) is ∼ 10◦ in most cases. To translate this into an angular scale
where one would find an excess in the cross-correlation analysis (if there were a signal), we add
in quadrature and we obtain

√
(15◦)2 +(1◦)2 +(10◦)2 ∼ 18◦. This scale is comparable to the 22◦

where the smallest p-value is found for the cross-correlation performed with the cascades. Hence,
the magnetic deflection of the CRs one would infer from the cross-correlation analysis with the
cascades is comparable to the one assumed for the smallest p-value in the likelihood analysis, even
if none of the results are at a level where no strong claims can be made.

3.2 Stacking search for neutrino point-sources in the 4 year point-source sample

The νs data set used for this analysis is the IceCube point-source data set. A stacking analysis

17



Search for a correlation between the UHECRs measured by Auger and TA and νs from IceCube G. Golup

is done but in this case (as opposed to the previous one) the stacked sources are the measured posi-
tions of UHECRs. An unbinned likelihood method is performed where the log likelihood is defined
as: lnL (nsν ,γ) = ∑Nν

i=1 ln
(

nsν
Nν

Si(γ,Ei)+
(

1− nsν
Nν

)
Bi

)
, with nsν the total number of neutrino sig-

nal events and γ the neutrino spectral index assuming a power-law energy spectrum. The stacked

signal PDF is defined as Si =
NCR

∑
j=1

RIC(δ j,γ)S j
i /

NCR

∑
j=1

RIC(δ j,γ), with RIC(δ j,γ) the IceCube accep-

tance at the declination of a CR j. The signal PDF is S j
i =

1
2π(σ2

i +σ2
j )

e−r2
i j/2(σ2

i +σ2
j )P(Ei|γ), where

ri j is the angular distance between the νs and CRs, σi is the angular resolution of the ν and P(Ei|γ)
is the energy PDF (function of the reconstructed energy proxy Ei and γ). The CR deflection is mod-

eled as an extension of the source in the likelihood with σ j =
√

σ2
MD +σ2

exp, where σexp = 0.9◦ or
1.5◦ is the experimental angular resolution of Auger or TA, respectively. The background PDF is
Bi =B(θi)Patm(Ei) where the energy PDF Patm(Ei) represents the probability of obtaining an energy
Ei from atmospheric backgrounds. The two free parameters are nsν and γ .

If we were to consider the entire data set of UHECRs as sources in the likelihood, their to-
tal extensions would cover a considerable amount of the sky, reducing the effectiveness of the
anisotropy search. Hence we decided to introduce a threshold energy, Eth, below which the CRs
would not be considered. To obtain Eth, we have performed simulations of ν arrival directions and
we have used the real sample of UHECRs, sampling different Eth energies. The flux required for
a pre-trial p-value of 5σ as a function of Eth, is shown in Fig. 5. With the objective of keeping
the flux required per source for discovery low while keeping as many UHECR events as possible,
an energy threshold Eth =85 EeV has been adopted. After the application of this cut, 15 CRs in
the Northern sky and 12 CRs in the Southern sky remain. Due to the different energy ranges be-
tween the neutrino candidate events in the Southern hemisphere (∼ 100 TeV – 100 PeV) and in the
Northern hemisphere (∼ 1 TeV – 1 PeV), for the same number of signal events per source, the nor-
malization of flux required for Northern sources is smaller than for Southern ones. Consequently
(and thanks to the gain given from having more stacked sources), the all sky sensitivity is similar
to the Northern one (Fig. 5). We have thus not made a distinction between the neutrino sets from
each hemisphere in this analysis.

Applying the method to the actual data, all observations are found to be compatible with the
background only hypothesis. The smallest post-trial p-value is 25% for the hypothesis of D = 3◦,
with a fitted excess of ∼ 123 events and γ = −3.24. The analysis with D = 6◦ yields a p-value
larger than 50%.

4. Conclusions

Three analyses have been performed to investigate correlations between UHECRs detected by
the Pierre Auger Observatory and Telescope Array with various samples of IceCube ν candidates.
The results we obtained are all below 3.3σ . There is a potentially interesting result in the analyses
performed with the set of high-energy cascades when comparing the results to isotropic arrival
directions of CRs. If we compare the results to an isotropic flux of neutrinos (fixing the positions
of the CRs) to consider the effect of anisotropies in the arrival directions of CRs (such as the TA
hot spot), the significance is ∼ 2.4σ . These results were obtained with relatively few events and
we will update these analyses in the future with further statistics to follow their evolution.
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Figure 5: Flux normalization required per source for a discovery potential (DP) of 5σ (pre-trial) for the
stacking analysis with the neutrino point-source data set and UHECRs with energies above values of Eth,
for the Northern and Southern skies separately and together, for the assumed deflections σMD(ECR) = D×
100EeV/ECR, D = 3◦,6◦.
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