
mdtmFTP: a High-performance Data Transfer Tool
in Big Data Era

L. Zhang, W. Wu, P. DeMar
Fermilab

{liangz, wenji, demar}@fnal.gov

D. Katramatos, D. Yu
BNL

{dkat, dtyu}@bnl.gov

ABSTRACT
To address the high-performance challenges of data transfer in big
data era, we research, develop, and implement mdtmFTP: a High-
performance Data Transfer Tool in Bigdata Era. DOE’s
Advanced Scientific Computing Research (ASCR) office has
funded Fermilab and Brookhaven National Laboratory to
collaboratively work on the Multicore-Aware Data Transfer
Middleware (MDTM) project. MDTM aims to accelerate data
movement toolkits on multicore systems. mdtmFTP is the latest
outcome of this continued research effort. mdtmFTP is a high-
performance data transfer tool that builds upon the MDTM
middleware. Initial tests show that mdtmFTP performs better than
existing data transfer tools.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications;
C.2.4 [Distributed Systems]: Client/server

General Terms
Algorithms, Performance, Design

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Big data has emerged as a driving force for scientific discoveries
[1]. Large scientific instruments (e.g., colliders, light sources, and
telescopes) generate exponentially increasing volumes of data.
Currently, Large Hadron Collider (LHC) experiments generate
hundreds of petabytes of data per years. The aggregated amount of
climate science data is expected to exceed 100 exabytes by 2020.
To enable scientific discovery, science data must be collected,
indexed, archived, shared, and analyzed, typically in a widely
distributed, highly collaborative manner [2-7]. At present,
computing facilities for large-scale science, such as ALCF, OLCF,
and NERSC, offer the types of computing and storage resources
needed to process and analyze science data. The efficient
movement of science data from their sources into processing and
storage facilities and ultimately on to user analysis is critical to
the success of any such endeavor. Data transfer is now an
essential function for science discoveries, particularly within big
data environments.
In DOE research communities, the emergence of distributed,
extreme-scale science applications is generating significant
performance challenges regarding data transfer [2-7]. First, it is
becoming critical to transfer data at the highest possible
throughputs because the volumes of science data are growing
exponentially. Second, the DOE is working toward deploying
extreme-scale supercomputer facilities in support of extreme-scale
science applications. To fully utilize these expensive computing

facilities, ultra-high-throughput data transfer capabilities will be
required to move data in or out of them.
To date, several data transfer tools (e.g., GridFTP [8-9] and
BBCP [10]) have been developed to support bulk data movement.
Advanced data transfer features, such as transfer resumption,
partial transfer, third-party transfer, and security, have been
implemented in these tools and services. There have also been
numerous enhancements to speed up data transfer performance.
For example, parallelism at all levels (e.g., multi-stream
parallelism [8], multicore parallelism [11], and multi-path
parallelism [12-15]) is widely implemented in bulk data
movement and offers significant improvement in aggregate data
transfer throughput.
Although significant improvements have been made in the area of
bulk data transfer, the currently available data transfer tools will
not be able to successfully address the high-performance
challenges of data transfer in big data era for the following
reasons:
• Existing data transfer tools are unable to fully and efficiently

exploit multicore hardware under the default OS support,
especially on NUMA systems.

• Existing data transfer tools are unable to effectively address
the lots of small files (LOSF) problem [16]. The state-of-the-
art solutions to the LOSF problem—pipelining, concurrency,
and tar-based solution—are either inefficient, or do not scale
well.

To address the high-performance challenges of data transfer in big
data era, we research, develop, and implement mdtmFTP: a High-
performance Data Transfer Tool in Big Data Era.

2. mdtmFTP
DOE’s Advanced Scientific Computing Research (ASCR) office
has funded Fermilab and Brookhaven National Laboratory to
collaboratively work on the Multicore-Aware Data Transfer
Middleware (MDTM) project [11]. MDTM aims to accelerate
data movement toolkits on multicore systems. mdtmFTP is the
latest outcome of this continued research effort.

mdtmFTP is a high-performance data transfer tool that builds
upon the MDTM middleware (Figure 1). It has several salient
features:
• It adopts an I/O-centric architecture to execute data transfer

tasks. Dedicated I/O threads are spawned to perform network
and disk I/O operations.

• Various optimization mechanisms—zero copy, asynchronous
I/O, pipelining, batch processing, and buffer pools—are
applied to improve performance.

• It makes use of MDTM middleware services to fully utilize
the underlying multicore system.

• It implements a Large Virtual File mechanism to address the
LOSF problem.

• It takes advantage of GridFTP E-Mode to transfer data.

FERMILAB-CONF-15-345-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

3. Initial Evaluation
We evaluated mdtmFTP in ESNET 100G test bed [17]. We run
data transfer from DTN “nersc-tbn-2” to “nersc-tbn-1”. There is
95ms RTT loop between nersc-tbn-1 and nersc-tbn-2. In our
evaluation, mdtmFTP is compared with GridFTP and BBCP. For
fair comparisons, all the tools are configured with the same
parameters—I/O block size and the number of parallel streams.
We use Time-to-Completion as the performance metric.
The first comparison is to transfer a 100GB large file from nersc-
tbn-2 to nersc-tbn-1. The results are listed in Table 1. It can be
seen that mdtmFTP is approximately 14% faster than BBCP, and
~20% faster than GridFTP.

 mdtmFTP GridFTP BBCP

Time to Completion 81s 101s 95s

Table 1 Large file data transfer

The second comparison is to transfer a Linux folder from nersc-
tbn-2 to nersc-tbn-1. For GridFTP, the pipelining and concurrency
options are enabled. The results are listed in Table 2. It is
surprising that mdtmFTP is 200x faster than BBCP. It also
surprises us that GridFTP crashed in the test. It seems like that
GridFTP has bugs in handling folder data transfer.

 mdtmFTP GridFTP BBCP

Time to Completion 30s Crashed 6274s

Table 2 Folder data transfer

4. REFERENCES
[1] “Synergistic Challenges in Data-Intensive Science and

Exascale Computing”, DOE ASCR Data Subcommittee
Report 2013.

[2] Eli Dart, Mary Hester, Jason Zurawski, “Basic Energy

Sciences Network Requirements Review - Final Report
2014”, ESnet Network Requirements Review, September
2014, LBNL 6998E

[3] Eli Dart, Mary Hester, Jason Zurawski, “Fusion Energy
Sciences Network Requirements Review - Final Report
2014”, ESnet Network Requirements Review, August
2014, LBNL 6975E

[4] Eli Dart, Mary Hester, Jason Zurawski, Editors, “High
Energy Physics and Nuclear Physics Network
Requirements - Final Report”, ESnet Network
Requirements Workshop, August 2013, LBNL 6642E

[5] Eli Dart, Brian Tierney, Editors, “Biological and
Environmental Research Network Requirements
Workshop, November 2012 - Final Report””, November
29, 2012, LBNL LBNL-6395E

[6] David Asner, Eli Dart, and Takanori Hara, “Belle-II
Experiment Network Requirements”, October
2012, LBNL LBNL-6268E

[7] Eli Dart, Brian Tierney, editors, “Advanced Scientific
Computing Research Network Requirements Review,
October 2012 - Final Report”, ESnet Network
Requirements Review, October 4, 2012, LBNL LBNL-
6109E

[8] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L.
Liming, and S. Tuecke, “GridFTP: Protocol Extension to
FTP for the Grid,” Grid Forum Internet-Draft, Mar. 2001.

[9] B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu and I. Foster, “The Globus Striped
GridFTP Framework and Server,” SC'2005, 2005.

[10] BBCP, http://www.slac.stanford.edu/~abh/bbcp/
[11] http://mdtm.fnal.gov
[12] Han, Huaizhong, et al. “Multi-path tcp: a joint congestion

control and routing scheme to exploit path diversity in the
internet.” IEEE/ACM Transactions on Networking
(TON) 14.6 (2006): 1260-1271.

[13] Wang, Bing, et al. “Application-layer multipath data
transfer via TCP: schemes and performance
tradeoffs.” Performance Evaluation 64.9 (2007): 965-977.

[14] Iyengar, Janardhan R., Paul D. Amer, and Randall Stewart.
“Concurrent multipath transfer using SCTP multihoming
over independent end-to-end paths.” Networking,
IEEE/ACM Transactions on 14.5 (2006): 951-964.

[15] Gunter, Dan, et al. “Exploiting network parallelism for
improving data transfer performance.” High Performance
Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:. IEEE, 2012.

[16] Bresnahan, John, et al. "Gridftp pipelining." Proceedings
of the 2007 TeraGrid Conference. 2007.

[17] https://www.es.net/network-r-and-d/experimental-
network-testbeds/100g-sd

Figure 1 The MDTM architecture

http://www.slac.stanford.edu/%7Eabh/bbcp/
http://mdtm.fnal.gov/

	1. INTRODUCTION
	2. mdtmFTP
	3. Initial Evaluation
	4. REFERENCES

