
CosmoSIS: a system for MC parameter estimation

S Bridle1, S Dodelson2,3,6, E Jennings3,4, J Kowalkowski2,
A Manzotti3,6, M Paterno2, D Rudd3,5, S Sehrish2 and J Zuntz1

1 Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL, U.K.
2 Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, U.S.A.
3 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, U.S.A
4 Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, U.S.A
5 Research Computing Center, University of Chicago, Chicago, IL 60637, U.S.A
6 Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 60637, U.S.A

E-mail: paterno@fnal.gov

Abstract.
CosmoSIS is a modular system for cosmological parameter estimation, based on Markov

Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the
exploration of the parameter space, and a series of modules, which calculate the likelihood
of the observed data for a given physical model, determined by the location of a sample in
the parameter space. While CosmoSIS ships with a set of modules that calculate quantities
of interest to cosmologists, there is nothing about the framework itself, nor in the Markov
Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could be used for
parameter estimation problems in other fields, including HEP.

This paper describes the features of CosmoSIS and show an example of its use outside
of cosmology. It also discusses how collaborative development strategies differ between two
different communities: that of HEP physicists, accustomed to working in large collaborations,
and that of cosmologists, who have traditionally not worked in large groups.

1. Introduction
CosmoSIS [1] is a modular system for cosmological parameter estimation, based on Markov
Chain Monte Carlo (MCMC) [2] and related techniques. It provides several samplers, each of
which drives the exploration of the parameter space in a different fashion. It also provides a set
of modules to perform the calculation of widely-used physical parameters (e.g., the linear matter
power spectrum P (k, z)) from fundamental cosmological parameters, using several software
packages popular in the cosmology community. CosmoSIS also includes likelihood modules,
which calculate data likelihoods for a given physical model, determined by the location of a
sample in the parameter space.

While the physics modules and data likelihood modules included with CosmoSIS are
specifically of interest to the cosmology community, neither the samplers nor framework that
drives the sampling process are in any way specific to cosmology. Thus they can be used for
parameter estimation problems in other fields, including HEP.

CosmoSIS was developed in and for a community organized differently than the HEP
community. Much HEP software is written by and for large collaborations, and the C++
programming language is overwhelmingly the most popular. Because most cosmologists do

FERMILAB-CONF-15-237-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

not work in a large collaboration that enforces software guidelines, such as the choice of
a programming language, the framework must support programming in multiple languages.
Additionally, since scientists in the cosmology community are used to working independently, a
system was needed for helping ensure that proper attribution is given to authors of contributed
algorithms.

In section 2 of this paper, we describe the CosmoSIS framework; in section 3 we describe its
use in a simplified HEP “bump hunt” problem. In section 4 we describe some of the differences
between software development methods typical to the cosmology and HEP communities, and
in section 5 we conclude with some observations about how each community might benefit by
learning some techniques used successfully by the other.

2. The CosmoSIS framework
2.1. The structure of CosmoSIS
In CosmoSIS, a parameter estimation problem is represented as a pipeline consisting of one
sampler and one or more modules. The sampler and modules are invoked by the runtime,
which is also responsible for writing the relevant output files. The sampler and modules do not
communicate directly; instead, they each read values from, and write values to, an object called
the datablock.

A sampler drives the exploration of the parameter space according to some specified algorithm
(e.g. Metropolis-Hastings). The configuration of the sampler defines the parameter space to
be explored: the number and names of parameters, as well as the ranges of variation of the
parameters, are determined by the user-specified configuration of the sampler.

Pipeline modules are used to perform the calculation of physical quantities required by other
modules later in the pipeline. Modules can also calculate data likelihoods: the likelihood of
observing some specified data, given the physical model and the values of the parameters for a
given sample.

Modules do not communicate directly with each other, nor do they directly communicate with
the sampler. They communicate indirectly through the datablock, which is an object that carries
named parameters of a variety of numeric types: integral, real and complex, in both scalar and
multi-dimensional array forms. The sampler inserts values of the sampled parameters into the
datablock; modules can read these parameters and those inserted into the datablock by other
modules, and write new values into the datablock. Modules can also calculate data likelihoods,
which are combined by the runtime, and provided to the sampler, to guide the generation of the
next sample. Figure 1 shows an example of how a full pipeline is organized.

Sampler

Cosmological
Parameters

Bias
Parameters P(k,z) NL

P(k,z)
Bias
b(k,z)

Galaxy
P(k,z)

Predicted
Observations Likelihood

Boltzmann
Integrator

Nonlinear
model

Bias
model

Apply
Bias

Survey
Window

Gaussian
Likelihood

Data
Block

Runtime

Modules

Figure 1. An example cosmological pipeline. The arrows indicate which modules write to, or
read from, each element in the datablock. The order of execution of the modules in the diagram
is left-to-right.

The similarity to most modular HEP event processing frameworks is clear. An interesting
difference is that, unlike the typical Event class, the datablock does not carry the data
corresponding to experimental observations; rather, it carries values corresponding to a
realization of the model for which the parameter estimation is being done. Observational
data is typically confined to individual likelihood modules, which calculate the likelihood of
the observation of those data given the model parameters specified by the sample represented
in the datablock. These data are typically loaded at module initialization time, an retained
throughout the execution of the program.

Modules can be written in Python, C, C++, and Fortran. In order to help assure
reproducibility and portability, CosmoSIS supports specific versions of various language
standards. Release 1 of CosmoSIS supports Python 2, C99, C++11, and Fortran 2003. Several
of the samplers can work in parallel; for these, CosmoSIS supports process-level parallelism using
the Message Passing Interface (MPI). Thread-level parallelism in modules is also supported, for
example using OpenMP.

CosmoSIS modules written in Python are also modules in Python’s sense of the word; they
must provide the required interface; for C, C++ and Fortran, modules are dynamic libraries
which provide specific function names and signatures. In each case, the required functions are
an initialization function, a cleanup function called at program end, and a function that is called
for each sample generated by the sampler.

2.2. Installation and building
CosmoSIS can be installed by downloading and executing a single script, which installs the
entire system. The components of the system fall into four categories: 1) tools installed,
but not modified by the user; 2) the core framework; 3) the CosmoSIS standard library; and
4) collections of third-party modules.

Tools like the C, C++ and Fortran compilers, the Python runtime, and the MPI
implementation are delivered in binary format, using a combination of technologies: UPS [3],
Python’s pip, and conda from Continuum Analytics. Binary delivery of a set of tools that has
been verified to be compatible is critical for the use of use of a diverse body of code, written
in several different languages. These tools are all installed in a fashion to not conflict with any
other versions of the tools installed on the same machine.

The core framework, and the library of standard modules, is each delivered as a git repository.
This allows users to modify the modules of the standard library, or even the core framework,
if they wish to do so. Users can add their own modules alongside the modules of the standard
library. Any number of third-party repositories may also be installed; this is especially convenient
for collaborations, who can establish their own repository for modules to be shared among
collaborators. Building the core framework and all compiled modules is done with make, and
the system provides makefile fragments and examples to help authors of compiled modules assure
that their modules are compiled and linked to be compatible with the rest of CosmoSIS.

2.3. Runtime environment
The runtime environment upon which CosmoSIS relies is established by a setup script that
makes available, at the command line, the correct version of the C, C++ and Fortran compilers,
of the Python interpreter, and of widely-used packages like LAPACK, NumPy, matplotlib.

Execution of CosmoSIS is controlled primarily by configuration files. The sampler and
selection of modules to be executed, and the order of the modules, is determined by the
configuration file. Samplers and modules are all user-configurable, using a simple configuration
language (ini files, as defined by the Python standard library ConfigParser class).

The output produced by CosmoSIS includes the complete information of the configuration
of the sampler and the set of modules used to create that output. In addition, each module can

have an associated text file with attribution information; if such a file is found, the information
in it is also written to the output. This helps make it easier for authors who contribute modules
for the use of others to obtain appropriate acknowledgment for their scientific contributions.

2.4. A complete toolkit
Realistic MCMC parameter estimation problems often require significant computational effort.
In order to allow work on such problems, CosmoSIS supports the use of MPI. Users of modules
do not need to deal with MPI directly; instead, the samplers amenable to parallelism use it
to parallelize the calculation. Because MPI is a distributed parallel system, this allows the
use of both multi-core nodes and distributed nodes. The system also provides the ability to
continue sampling from a previously saved chain. The ability to run using MPI, combined with
the delivery of an MPI system as part of the installed base of software, means that one can
develop an analysis on a laptop, and move it to a cluster when greater computational resources
are required.

In addition to the sampling application, CosmoSIS also includes a set of tools for analysis of
the generated samples. These tools include extensible plotting facilities and tools for statistical
analysis. The plotting tools provide generation of both one- and two-dimensional plots of
posterior densities and likelihoods. Figures 2 and 3 show samples of these plots. Convergence
tools include calculation of the Gelman-Rubin statistic and an autocorrelation length test.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
σ8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Plot of the likelihood for the
cosmological parameter σ8, from example 7
of the CosmoSIS instruction manual. The
dotted lines indicate the 68% and 95%
boundaries.

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Ωm

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

σ
8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
ik

e
li

h
o
o
d

Figure 3. Contour plot of the joint
likelihood for the cosmological parameters
σ8 and Ωm, from example 7 of the
CosmoSIS manual. The color scale shows
the magnitude of the likelihood; the
contour lines contain the 68% and 95%
regions.

3. An HEP use case
To demonstrate the use of CosmoSIS outside of the domain of cosmology, and to show the
simplicity of coding a likelihood module, we have implemented a toy version of a common HEP
analysis: the determination of the cross section, mass, and width of a mass resonance, in the
presence of a much larger background.

We proceed by generating a simulated sample of observed “events” from both signal and
background. We choose our resonance to have mass µ and width δ, with a Gaussian line shape,

and total production cross section σs. We choose the background to have a falling exponential
distribution, with e-folding length β, and total production cross section σb. We simulate an
experiment with integrated luminosity L by selecting a number of signal events Ns from a
Poisson distribution with mean Lσs, and a number of background events Nb from a Poisson
distribution with mean Lσb. We then generate Ns samples from a Gaussian distribution with
mean mu and standard deviation δ, and Nb samples from an exponential distribution with
parameter beta. Each of these samples represents an event with observed “mass” m. For our
simulated experiment, we choose (all in arbitrary units) L = 100, σb = 2000, β = 40, σs = 2.5,
µ = 232.2, and δ = 7.4. The generated distribution of m is shown in figure 4.

mass (arb. units)

ev
en

ts
/2

 u
ni

ts

150 200 250 300 350 400

0
10

0
20

0
30

0
40

0

Figure 4. Mass spectrum for the
simulated events.

2 4 6 8 10
δ

228

229

230

231

232

233

234

235

236

µ

Figure 5. Contour plot of the joint
posterior density for the mass (µ) and
width (δ) of the signal resonance; the
contour lines contain the 68% and 95%
credible regions. The true value of the
model parameters are µ = 232.2 and δ =
7.4, in arbitrary units.

To perform the parameter estimation, we bin the observations, choosing a bin width of 2, in
our arbitrary units; this is the same binning as shown in figure 4. The likelihood for observing
these data, given the model parameters, is a product of the likelihood of observing the number
of counts in each bin. For each bin i, the likelihood of observing a count ni is given by the
Poisson distribution with mean n̂i, where n̂i is determined by the product of the luminosity L
and the sum of the integrated signal and background cross sections over bin i:

n̂i = L

∫ ui

`i

dx

(
σs√
2πδ

e−
1
2
(x−µ

δ
)2 +

σb
β
e−x/β

)
,

where `i is the lower edge of bin i and ui is the upper edge of the same bin.
Our likelihood function is the product of the Poisson likelihoods for each bin. For bin i, the

probability pi is:
pi = e−n̂i n̂kii /ki!

where ki is the number of events observed in bin i.
Noting that the integral of the Gaussian distribution over a finite interval is given by the

difference of two error functions, we find that we can encode the likelihood function using NumPy
and SciPy in a succinct and efficient fashion, taking advantage of those libraries’ vectorized math
functions. The code that does the likelihood calculation is shown in figure 6.

def execute (block , c f g) :
Read t h i s sample ’ s parameters from the b l o c k
lum , sigma b , beta , s igma s , mu, d e l t a = . . . # e l i d e d
C a l c u l a t e the expec ted counts in each b in f o r t h i s sample
lows = c fg . lowedges
h ighs = c f g . lowedges + c f g . binwidth
f1 = numpy . exp (−1.0 ∗ lows / beta)
f 2 = numpy . exp (−1.0 ∗ highs / beta)
expected bkg = lum ∗ sigma b ∗ (f 1 − f 2)

sqrt2s igma = numpy . s q r t (2 . 0)∗ d e l t a
g1 = s p e c i a l . e r f ((mu−lows)/ sqrt2s igma)
g2 = s p e c i a l . e r f ((mu−highs)/ sqrt2s igma)
e x p e c t e d s i g n a l = lum ∗ s igma s ∗ (g1 − g2) / 2 .0

expected counts = e x p e c t e d s i g n a l + expected bkg
C a l c u l a t e log− l i k e l i h o o d f o r our data , f o r t h i s sample
l o g l i k e = numpy .sum(−expected counts + c fg . counts ∗

numpy . l og (expected counts) − c f g . l n f a c t c o u n t s)
b lock [l i k e s , ’BUMP HUNT LIKE ’] = l o g l i k e
return 0

Figure 6. The execute function from the bump hunt.py likelihood module.

The fitted values of the mass and width are 231.8± 1.0 and 6.8± 1.3, respectively. The joint
posterior density for these two parameters is shown in figure 5.

4. Development strategies and choices
One of the key differences between the HEP and cosmology communities is that cosmologists
work on their own much more often. The HEP software community has thus had to solve
some problems of scale which the cosmology community are only now solving for themselves.
In developing CosmoSIS, we have found that some of the techniques used in HEP are of direct
benefit. Here we concentrate on a few of these techniques.

4.1. Packaging and delivery of software
The ability to deliver a set of software tools (e.g., the GCC compiler suite or an MPI
implementation) reliably, so that all supported platforms can be assured not merely of having
a version of the tools but the same version of the tools, has been a critical part of making
CosmoSIS reliable. Part of this reliability is reproducibility, which is enhanced by providing a
consistent set of tools with specified versions. When comparing different outputs from different
users’ execution of a program, one does not need to worry that the differences are because
different versions of some underlying library are being used.

The lowest-level packages are one which, while necessary for work, are not one which our
users have any interest in modifying; none of our users are going to alter the Fortran compiler
itself, nor to re-implement part of MPI. Thus the delivery of pre-built libraries and executables
allows users to gain access to the tools without wasting time building them locally, for supported
platforms. Users who want to build products on their own are, of course free to do so.

It is critical that users with no elevated privileges be able to install CosmoSIS. That means we

could not require installation at any pre-specified filesystem path (e.g. /usr/local). The UPS
system used by CosmoSIS permits this by providing relocatable products: products that can be
built at one location in the filesystem, and then installed in another location. The UPS system is
shared with the neutrino and muon experiments at Fermilab, and is supported by the Fermilab
Scientific Computing Division. Thus we gained the ability to make use of a tested and supported
system, without having to invent one ourselves. We also contributed to that system, for example
by creating the first fully relocatable Python package. Using UPS we are able to control the
specific version of software in current use, while allowing multiple versions to be present on
the system. The tight control over the active versions provides a strong assurance of binary
compatibility of the products, which is especially important for Fortran and C++ libraries, both
of which can give rise to difficult-to-diagnose failures from subtle incompatibilities.

4.2. Hierarchy of code and contributions
While CosmoSIS can be installed by running a single script, it is not a monolithic body of code.
Rather, it consists of several layers, with the different layers corresponding to different types of
interaction with the code.

The underpinning is the binary distribution of the lowest-level products, managed by UPS,
as described in the previous subsection. Above this is the core framework, delivered via a git
repository. This code is not touched by most users, but is available to them in case they want
to experiment, or just want to study the code. Above the core framework are the modules and
libraries supply as the CosmoSIS standard library, delivered by another git repository. This
code is available for use, and modification and extension, by users. Finally, there can be any
number of experiment- or user-supplied repositories of code. These allow the finest level over
sharing, tuned to each experiment or user’s need. This layered approach allows tradeoffs between
convenience and flexibility.

4.3. Attribution protocol
It is sometimes difficult for scientists who have developed significant and useful bodies of code
to obtain appropriate attribution for their work. In large HEP collaborations, the internal social
mechanisms of the collaboration largely alleviates this problem. But in a community that is not
dominated by large collaborations, these mechanisms are lacking.

The adoption of a simple protocol for attribution (the presence of a text file named
X.yaml, expected to be found alongside the code for the module named X) allows CosmoSIS
to automatically include the appropriate attribution information in the output it generates.
This simple mechanism has been sufficient to help convince authors to share their work through
this framework.

4.4. Multilingual programming
Because cosmologists often work in small groups, each individual or group makes choices of
programming language, tools, etc. independently. In particular, C, Fortran and Python all
have a significant number of practitioners in the field. With no large collaboration to enforce a
language choice, cosmologists will use CosmoSIS only if they find it convenient to their style of
work. Thus supporting multiple programming languages was a necessity. Support of the major
languages in use in the community helped lower the bar to accessing the abilities of the system,
and allows cosmologists to use tools developed in languages that they themselves do not prefer
for programming.

5. Conclusion
In developing CosmoSIS, we have been able to take advantage of some of the lessons learned by
the HEP community, for the benefit of the cosmology community. In addition, we were able to

share effort between otherwise unrelated efforts, to the benefit of both, by sharing some of the
underlying tools and technologies between HEP programs and CosmoSIS.

As the collaborations in which cosmologists work grow in size, they are finding the same
needs—and often finding the same solutions—as the HEP community. The use of shared
repositories and more clearly controlled software stacks are both becoming widespread. In many
issues that have, and will continue to be raised, the lessons learned by the HEP community
should be of value to the cosmology community.

The cosmology community also has experience from which the HEP community might
learn. In particular, the more open-source model for sharing of software, with an appropriate
attribution system, might help encourage more widespread sharing of software products not
only within large HEP collaborations, but between collaborations. We are, perhaps, seeing
the first signs of progress in this direction in the form of the HEP Software Foundation. In
addition, experience in the cosmology community shows the multi-lingual programming system
help encourage scientists to contribute work by “lowering the bar” for such contribution. Greater
support for such multi-language programming in the common event-processing frameworks might
provide the same benefit for the HEP community.

References
[1] Zuntz J, Paterno M, Jennings E, Rudd D, Manzotti A, Dodelson S, Bridle S, Sehrish S and Kowalkowski J

2014 CosmoSIS: modular cosmological parameter estimation Preprint arXiv:1409.3409 [astro-ph.CO]
[2] Gelman A, Carlin J, Stern H and Rubin D 2003 Bayesian Data Analysis, 2nd edition (Chapman & Hall/CRC,

Boca Raton, FL, U.S.A) chapter 11
[3] The UPS/UPD Manual, online at http://www.fnal.gov/docs/products/ups/ReferenceManual

