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Abstract

Longitudinal space-charge (LSC) effects are generally

considered as detrimental in free-electron lasers as they can

seed instabilities. Such “microbunching instabilities” were

recently shown to be potentially useful to support the genera-

tion of broadband coherent radiation pulses [1,2]. Therefore

there has been an increasing interest in devising accelerator

beamlines capable of sustaining this LSC instability as a

mechanism to produce a coherent light source. To date most

of these studies have been carried out with a one-dimensional

impedance model for the LSC. In this paper we use a N-body

“Barnes-Hut” algorithm [3] to simulate the 3D space charge

force in the beam combined with elegant [4] and explore

the limitation of the 1D model often used.

INTRODUCTION

Space-charge forces are essential to account for in realis-

tic beam dynamics simulations. The nature of these forces

lies in particle-to-particle Coulomb interaction. However,

the numerical complexity of the problem grows as O(N2),

where N is the number of particles. Therefore, it is not

possible to exactly compute all space-charge contributions.

Several approximation techniques can be used: mean-field

on a grid approximation [5], space-charge impedance [6],

analytical sub-beams or ensembles model [7]. All of those

methods reduce the problem’s complexity via some approx-

imations which ultimately limits the maximum attainable

spatial resolution.

Space-charge problem is very similar to the well-known

N-body problem in celestial mechanics. One of the most

effective algorithms for the gravitational N-body problem

is the so called “tree” or Barnes-Hut (BH) algorithm [3],

which scales as O(N log N ). In this paper we present the

results obtained using a modified version of the program

available at [8]. Such a code was successfully employed to

simulate early beam dynamics in photocathode [9]. Other

more efficient algorithm have been recently developed [10,

11] and will be eventually used in further refinement of our

work.

METHOD & VALIDATION

For the studies presented in this paper and our cascaded

space charge amplifier study [17], we used the BH algorithm

as an external script within the elegant simulations. At
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DE-SC0011831 with Northern Illinois University.

a user-specified axial locations along the accelerator beam

line, space charge kicks were applied. The distribution at

the defined locations was saved and Lorentz transformation

to the bunch rest frame was applied. The BH algorithm

was used to obtain the 3D electrostatic field E
′. This field

was then transformed in the laboratory frame and the ob-

tained electromagnetic fields (E,B) were used to compute

the Lorentz force on each of the macroparticles composing

the beam. We used an impulse approximation so that only

the momentum was altered by the space charge force. The

distribution then was finally passed back to elegant and

tracked up to the next space-charge kick where the above

process repeated. The main assumption in our calculations

was that there was no magnetic field in the rest frame. This

assumption although not strictly valid, was shown to hold

for the beam with low energy spread typically produced in

photoinjectors [12]. We henceforth refer to the combination

of the BH algorithm with elegant as “elegant-bh”.

To validate our simulations we both rely on analytical

results and simulations carried out with the astra program

[5]. We first consider a 3D homogeneous ellipsoidal bunch

with electric field linearly dependent on the position within

the charge distribution as [13]

Eu (u) =
C

γ2

(1 − f )u

ru (rx + ry )rz
, and Ez (z) =

C f

rxryrz
z, (1)

where C ≡ 3Q/(4πǫ0), u ∈ [x, y], rx,y,z are the ellipsoid

semiaxes, f ≈ √rxry/3γrz and Q is the bunch charge. The

simulated fields are in excellent agreement with the field

given by Eq. 1 as shown on Fig. 1. To assess longer-term
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Figure 1: Transverse (left) and longitudinal (right) elec-

tric field experienced by the macropaticle simulated with

elegant-bh (symbols) and obtained from Eq. 1 (lines).

tracking, we compared the evolution of the beam envelope

over a drift space. For a stationary uniform beam the trans-

verse envelope evolution is governed by [14]

a′′x,y −
ε2
r x,r y

a3
x,y

− K

2(ax,y + ay,x )
= 0, (2)
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Figure 2: Comparison of the beam envelope evolution along

a 1-m drift. Eq. 2 solution (blue), is compared against astra

(red), and elegant-bh simulation (green). The dashed line

corresponds to no space-charge case.

where ax,y is the rms beam size in x, y, εr x,r y is the corre-

sponding emittance and K is a 3D space charge parameter.

Figure 2 compares the solution of Eq. 2 against the beam

envelope simulated with elegant-bh. The geometric emit-

tance is very low (εx,y = 1 × 10−11 m) for these studies

so that when space charge is turned off the beam envelope

(dashed line) is quasi-constant.

IMPEDANCE CALCULATION

LSC is commonly investigated using analytical impedance

models. For a transversely Gaussian cylindrical-symmetric

beam the impedance is given by [6]

Z (k) = −i
Z0

πγσ

ξσ

4
eξ

2
σ
/2Ei(− ξ

2
σ

2
), (3)

where Z0 = 120π is the free-space impedance, Ei(x) ≡
−
∫ ∞
−x dte−t/t, σ is the beam rms size and ξσ ≡ kσ/γ.

Z (k) can be normalized by πγσ/Z0 = γσ/120 to be di-

mensionless. Note, that although the Eq. 3 is effectively

one-dimensional, it assumes the bunch has a Gaussian trans-

verse distribution.

In order to benchmark Eq. 3 with elegant-bh we consid-

ered initial bunch distribution with pre-modulated current

profiles of the form f (r) = T (x, y)Lz (z) [1 + m cos kz],

where m is the amplitude of the modulation, k the mod-

ulation spatial wavenumber, and L(z) and T (x, y) are

respectively the nominal longitudinal and transverse beam

distributions. The axial modulation in z direction leads to an

energy modulation due to the LSC impedance and eventually

produces further current modulation depending on the

longitudinal dispersion of the beamline. From the definition

of the impedance, and given the Fourier-transformed

longitudinal electric field Ẽz (k) and current distribution

Ĩ (k), the longitudinal impedance can be recovered as

Z (k) = −Ẽz (k)/Ĩ (k). Note, that Ẽz (k) and Ĩ (k) have a

π/2 phase shift; see Fig. 3 (bottom). We therefore use

elegant-bh and simulate the space-charge force effect on

an initially modulated bunch over one kick; see Fig. 3 (top

images). The generated longitudinal phase space can then

be analyzed to provide information on Ẽz (k) and Ĩ (k).
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Figure 3: Modulated longitudinal phase space of a Gaussian

beam before (top left) and after (top right) the application of

one space-charge kick. Comparison of the induced energy

modulation (bottom plot, red trace) computed from top-right

image with the current distribution (bottom plot, blue trace).

The Fourier transform was carried out using a fast-Fourier

transform (FFT) algorithm and the elegant-bh and was

performed over different values of the initial modulation

wavenumber k. While spanning k, different number of

macroparticles (N = [1,4,6] × 106) was used. The number

of FFT bins was also tuned to minimize discretization effects

when altering the value of k. As the wavenumber k value

was decreased, the bunch duration length was increased to

ensure the number of macroparticles per bin was consistent

with the large values of the wavenumber. In our simula-

tions we set this ratio to be N/nb ≈ 5000. The resulting

impedance evolution as a function of k is shown in Fig. 4

and is in a reasonable agreement with Eq. 3 and simulation

using the 1-D LSCdrift model available within elegant.

The Fourier images Ẽz (k) and Ĩ (k) were also found nu-

merically via FFT. The longitudinal electric field and current

functions analysis can be further enchanced by polynomial

fit [15]. Our method overall demonstrates a good agreement

with Eq. 3.

THREE-DIMENSIONAL EFFECTS

Our simulations consistently underestimate the impedance

compared to Eq. 3 over the range of k values explored. Such

an effect was previously recognized [16] and is attributed
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Figure 4: Space-charge impedance. elegant-bh algorithm

(green), analytical form Eq. 3 (blue), elegant built-in

LSCdrift element, very close to Eq. 3 (yellow).
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Figure 5: Radial dependence of Z (k,r) for a fixed value

of k. The red and blue traces respectively correspond to

a Gaussian and uniform transverse distribution (the lines

are splines to the simulated data symbols). For both case

the longitudinal distribution is taken to be Gaussian. The

parameter r0 is the rms transverse size of the distribution.

to the radial dependence of the LSC field conferring a sim-

ilar dependence on the impedance. To further explore this

possibility we performed a similar analysis as was detailed

in the previous section but over thin radial slices [r,r + δr]

where δr ≈ 0.1r0. The results of such an analysis provide

the radial dependence of the LSC impedance Fig. 5.

Additionally, one can show that for a parabolic f (r) =

f0(a2 − r2)θ(r − a) and uniform f (r) = f0θ(r − a) distri-

bution an analytical form of the impedance can be retrieved

[here a, f0, and θ(r) are respectively the radius, normaliza-

tion factor, and Heaviside function]. It can especially be

shown that the parabolic distribution yield an impedance

with weak dependence on the radius.

CONCLUSIONS AND FUTURE WORK

Using a gridless code adapted from Astrophysics we

have investigated three-dimensional effects in the LSC

impedance and found that the one-dimensional often used

LSC impedance model is a good approximation.

We will use the developed method in our further numer-

ical studies of the Cascaded Longitudinal Space-Charge

Amplifier at the Fermilab’s Advanced Superconducting Test

Accelerator [17].

We are grateful to Dr. Barnes (U. Hawaii) for granting us

the use of his open-source version of the BH algorithm and

to Dr. Borland (Argonne National Laboratory) for his help

with elegant.
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