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Abstract 

Colorado State University (CSU) and Fermi National 

Accelerator Laboratory (Fermilab) have been developing 

a control system to regulate the resonant frequency of an 

RF electron gun. As part of this effort, we present initial 

test results for a benchmark temperature controller that 

combines a machine learning-based model and a 

predictive control algorithm. This is part of an on-going 

effort to develop adaptive, machine learning-based tools 

specifically to address control challenges found in particle 

accelerator systems.  

INTRODUCTION 

The electron gun at the advanced superconducting test 

accelerator [1-3] is a 1½ cell normal-conducting copper 

RF photoinjector operating at 1.3 GHz. It is water-cooled 

and shows a 23-kHz shift in resonant frequency per °C 

change in cavity temperature. Thus, establishing 

satisfactory control of the water temperature at the cavity 

entrance is the first step toward ensuring the gun is kept at 

the proper resonant frequency. Existing requirements state 

that this water temperature should be regulated to within 

±0.02°C [2]. This regulation loop can then be nested 

within another control algorithm that determines what the 

water temperature needs to be in order to either a) directly 

minimize the detuning or b) achieve an operator-specified 

cavity temperature set point. As an intermediate result, 

this discussion considers the latter case. This also 

facilitates comparison with the existing controller. 

Water System Overview 

A simplified schematic of the water system is given in 

Fig. 1. A detailed description is given in Ref. [4]. The two 

controllable variables are 1) the flow control valve setting 

and 2) the heater power setting. For this particular system 

there are several control challenges: 

• Due to water transport and thermal time constants, 

long time delays exist in the system responses (~10s 

from the valve to T02, ~30s from T02 to TIN, ~20s 

from TIN to TCAV, and ~60s from TOUT to T06). 

• Without compensation, any change in the 

temperature of the water exiting the gun (either due 

to an increase in waste heat from the gun or a change 

in the temperature of the water entering the gun) will 

circulate back into the mixing chamber and have a 

secondary impact on the cavity temperature. 

• There are fluctuations in the low conductivity water 

(LCW) supply temperature. While it is nominally 

regulated to within ±0.5°C, larger spikes can occur.  

Due to the TCAV sensor location and the cavity 

geometry, the temperature recorded will be higher than 

the cavity wall temperature under RF power. Thus, for 

resonance control using operator-specified TCAV set 

points, it is important to note that the set point required 

to maintain the proper resonant frequency will increase 

with increasing average RF power. 

 

Figure 1: Layout of the water system and relevant 

instrumentation. T01, T02, TIN, TCAV, TOUT, and T06 

are temperature sensors. 

Existing Controller 

Presently, the cavity temperature is being regulated by 

a feedforward/PI controller developed at Fermilab that 

adjusts the valve setting such that a TCAV set point is 

reached. An older version of the controller is described in 

[4], and a recent response to a 1-°C step change in the set 

point is shown in Fig. 2. This is under no RF power. 

 

Figure 2: A 1-°C step change under the existing PI 
controller. The oscillations are due to water recirculation. 
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The oscillations and long settling time are due to 

recirculation of the water (and its associated temperature 

changes) through the system. In the instance shown, it 

takes ~23 minutes to reach steady state. Note that this is 

without significant disturbances to the supply 

temperature. While this is acceptable for largely stable 

operations at current average power levels, a significant 

improvement in settling time, overshoot, and disturbance 

rejection could be gained by adopting alternative control 

techniques. This has implications for machine up-time 

and management of reflected power. 

DESIGN CONSIDERATIONS 

Because of the long time constants, the effect of the 

water returning from the gun, and the presence of two 

controllable variables, a model-based predictive control 

(MPC) scheme was chosen. In MPC, a system model and 

an optimization algorithm are used to determine an 

optimal sequence of future controller actions such that the 

target output is reached within some future time horizon, 

subject to the satisfaction of any defined constraints. 

Figure 3 shows the basic concept of MPC. 
 
 

 

Figure 3: Basic concept of model predictive control. 

Given the system layout, it makes sense to have the 

main MPC unit regulate the temperature immediately 

after the mixing chamber (i.e. at T02). By monitoring T01 

and using this as a model input, adjustments can be made 

to compensate for fluctuations in the LCW supply 

temperature. By also monitoring the temperature of the 

water leaving the gun, the controller can compensate for 

any changes before they reach the mixing chamber. 

Monitoring TOUT provides plenty of time for actuation 

of the heater to take effect (whereas monitoring T06 does 

not). Finally, if a series of future set points is known in 

advance, the controller can act anticipatively to reduce the 

effect of dead time in the system. 

While elements of the system can be modeled 

analytically, a model that is developed using measured 

data helps to ensure the plant-model mismatch is kept 

relatively small. To this end, a neural network model of 

the heater/mixing chamber subsystem was designed. This 

model takes in 20s of relevant (i.e. with dead time 

removed) previous values of T01, TOUT, valve position, 

and heater power to predict the next value of T02. 

BENCHMARK MPC 

To guide future design work, a performance benchmark 

for temperature regulation using a simple quadratic 

programming formulation of MPC was desired. This 

helps to define what kind of performance we can expect 

without having to grapple just yet with the tradeoff 

between solution quality and computation time that comes 

with using more sophisticated MPC designs. 

To ensure good solutions for the optimization problem 

could be reached within the 2-s control interval, the 

model was linearized. Over test data, the root mean 

squared error of the simplified model is 0.073°C, whereas 

for the original model it is 0.008°C. No communication or 

actuation delays were taken into account during model 

training. 

Finally, a rudimentary neural network model that takes 

a user-specified TCAV set point and yields the 

appropriate T02 set point was also created. Figure 4 

shows a conceptual diagram of the benchmark MPC. 

 

Figure 4: Conceptual diagram for the benchmark MPC. 

Candidate MPCs with various prediction/control 

horizons, constraints, and specific cost functions were 

examined via simulation and testing. Some parameters of 

the benchmark MPC are shown in Table 1.  

Note that T02 was upgraded between the model design 

and the controller design, resulting in a temperature offset 

and improved noise characteristics. An approximate static 



offset was incorporated into the data preprocessing for 

T02, but because the model was trained on the noisier 

data it is not quite as sensitive to small changes in the 

input parameters as it could be with some re-training. 

Table 1: Benchmark MPC Parameters  

  

Benchmark MPC Performance 

A 1-°C step in cavity temperature is shown in Fig. 5. 

Note that the scales are smaller than those shown in Fig. 2 

(1.5°C vs. 2.5°C and 10min vs. 30min), and once again 

there is no RF power going to the gun. After the step 

command for the cavity is issued, the MPC brings T02 to 

within ±0.02°C of its respective set point in about 3 

minutes. Correspondingly, TCAV is brought to within 

±0.02°C of its set point in about 5 minutes.  

 

Figure 5: 1-°C change in TCAV under the benchmark 
MPC. Note that the scales are smaller than those of Fig. 2. 

The small oscillations in T02 that start at the 4-minute 

mark are the result of imperfect timing in the 

compensative actions for the recirculating water.  

The small steady state offset in TCAV after the step is 

likely due to modeling error between the TCAV and T02 

set points. This portion of the controller contained no 

feedback to account for such steady state errors. In 

addition to modeling errors, TIN and TCAV had not yet 

completely reached a steady state prior to the step. 

Figure 6 shows the measured valve and heater actions. 

We see an initial adjustment (the valve opens and the 

heater power decreases), followed by an adjustment to 

compensate for the lower temperature of the water exiting 

the gun. Note that the requested actions (not shown) are 

slightly offset in timing and are a bit smoother than the 

readbacks. 
 

 

Figure 6: Measured flow control valve and heater actions. 

This is a significant improvement over the performance 

achieved with more conventional control techniques. 

Additional work is still needed before the controller can 

be used reliably at different RF power levels. The T02 

model performs well under powered conditions, and thus 

in principle the MPC should be able to compensate for 

temperature changes in the water exiting the gun 

associated with RF power adjustments. However, the 

component that converts the TCAV set point to a T02 set 

point needs to be more carefully designed before this is 

implemented for regular use.  

CONCLUSIONS 

The benchmark MPC was able to adjust the valve and 

heater settings during a 1-°C step such that the TCAV set 

point was reached to within ±0.02°C in about 5 minutes. 

In the process, the control actions compensated for 

temperature changes in the recirculating water. 

We are now confident that building a more 

sophisticated MPC is a sensible way forward for the water 

temperature control. We also plan to extend the controller 

to regulate the resonant frequency directly using the water 

temperature and measurements of the cavity RF signals. 
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Parameter Value Units

Valve max rate 10 [% open]

Valve upper limit 70 [% open]

Valve lower limit 2 [% open]

Heater max rate 4 [kW]

Heater upper limit 8.9 [kW]

Heater lower limit 1 [kW]

Prediction horizon 100 [s]

Control horizon 20 [s]

Control interval 2 [s]
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