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ABSTRACT: Interaction of charges in CCDs with the already accumulated charge distribution

causes both a flux dependence of the point-spread function (an increase of observed size with flux,

also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in

flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent

shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measure-

ments of flat-field Poissonian noise correlations. The latter fall off approximately as a power-law

r−2.5 with pixel separation r, are isotropic except for an asymmetry in the direct neighbors along

rows and columns, are stable in time, and are weakly dependent on wavelength. They show varia-

tions from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts

predicted by the model cause biased shape measurements, primarily due to their effect on bright

stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of

star images and show that the effect can be mitigated by applying the reverse charge shifts at the

pixel level during image processing. Differences in stellar size, however, remain significant due to

residuals at larger distance from the centroid.

KEYWORDS: Photon detectors for UV, visible and IR photons (solid-state).

∗Corresponding author.

FERMILAB-CONF-15-007 

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



Contents

1. Introduction 1

2. Brighter/fatter effect in DECam 2

3. Model 4

3.1 A priori symmetries 5

3.2 Flat field covariances 5

3.3 Assumed model symmetries 10

3.4 Fitting of coefficients 11

4. Effects on galaxy shape measurement 12

5. Correction on pixel-level basis 15

6. Summary 18

1. Introduction

An idealized telescope focal plane is covered by a grid of equal-sized pixels that have a linear

response to the flux density at their corresponding position in the sky. Charge counts contain

Poissonian noise that is independent between any two pixels. The images produced by such a

camera then, up to noise, represent the sky convolved with a kernel. The latter, called point-spread

function (PSF), can be measured from the observed profiles of point sources. The only difference

between point sources, e.g. stars, of different flux levels is an amplitude by which the PSF profile

is re-scaled.

Real CCDs with large well depth exhibit deviations from this picture, two of which have been

known for some time. In exposures of homogeneous flux density (flat fields), the variance V at

moderate to high flux levels is not linear in the flat level µ , unlike what is expected for a Poissonian

process [11]. Secondly, the size of star images has been found to increase with flux (known as the

brighter/fatter effect), e.g. in science verification data from the Dark Energy Camera (DECam),

but also in many other cameras (e.g. MegaCam and LSST candidate sensors [2], Euclid candidate

sensors [26] and the Wendelstein Wide Field Imager [20]).

The brighter/fatter effect is particularly problematic for ongoing and future large weak lensing

programs such as the Dark Energy Survey (DES, [31]), the Hyper Suprime-Cam Survey (HSC,

[24]), the Kilo Degree Survey (KiDS, [5]), or the Large Synoptic Survey Telescope (LSST, [19]).

The reason for this is that a systematic misrepresentation of the PSF in bright stars (that are used

for PSF modeling) biases galaxy shape measurement, to a level that can exceed the acceptable
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systematics (cf. Section 3 and, e.g., [1]). Careful correction of this effect is therefore of great

importance.

Two physical phenomena have been proposed and examined with analytical and numerical

models [16, 29] that could be the cause for both observations: (1) lateral electric fields due to

differences in electrical potential between pixels of different charge count (put more simply, mutual

deflection of accumulating charges) and (2) an increase in lateral diffusion due to lower drift fields

in pixels that are partially filled [16].

[2, 14] (hereafter A14) have proposed a phenomenological model for charge self-interaction

in CCDs that describes both the variance non-linearity and the brighter/fatter effect. In their model,

accumulating charge shifts the effective pixel borders. In a flat field image, a pixel that has at

any point during an exposure collected more charges than its neighbors due to positive contribu-

tions from Poissonian noise will, effectively, shrink. This decreases the variance and introduces

a positive covariance with neighboring pixels. The charges already present in the image of a star

shift pixel borders inward, such that the measured image on the pixel grid increases in size. Using

laboratory and on-sky measurements with several different cameras, A14 have shown this model

to reproduce the observed effects reasonably well. Both lateral electric fields and increased lateral

diffusion due to lowered longitudinal electric fields are described by the same phenomenological

model.

One of the instruments studied by A14 was DECam [7, 17, 6, 9, 12, 21, 13, 10], the 3 sq. deg.

camera mounted at the prime focus of the Blanco 4m telescope at the Cerro Tololo Inter-American

Observatory (CTIO), currently used for DES and community observing programs. The mosaic

consists of 62 fully depleted 2K×4K science CCDs with a thickness of 250µm. During the science

verification phase of DECam, we detected a flux dependence of observed sizes of star images, in

line with the A14 study, at a level relevant for DES science requirements.

In this work, we aim at correcting the effects of charge self-interaction in DECam images at

a level tolerable for DES weak lensing science. In Section 2, we qualitatively characterize the

brighter/fatter effect from DECam star images. Section 3 introduces the A14 model and explains

our measurement of the model parameters from flat fields. In Section 4 we discuss the effect

of charge self-interaction in DECam on galaxy shape measurements for weak lensing. Section 5

describes tests of our correction for charge self-interaction by reverse application of the model. We

summarize our findings in Section 6.

2. Brighter/fatter effect in DECam

In this section, we make a phenomenological description of the flux dependence of the PSF in

DECam data.

We illustrate the effect in 2D by comparing the profiles of bright and faint stars in DECam

images. The left panel of Fig. 10 shows the residuals of normalized profiles of stars at a peak flux

(SEXTRACTOR [4] parameter FLUX_MAX) of 5000 and 20000, i.e. (PSF20000 −PSF5000)/PSF5000

where PSFN is the PSF model made from stars around FLUX_MAX = N. Flux is missing in the

central region of the profile and re-appears on an annulus at ≈ 2−4 pix radius.

We use the flux deficit in the central pixel of the normalized PSF model as a metric to answer

a number of questions. To this end, we use i band images of the globular cluster ω Centauri taken
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Figure 1. Flux deficit of normalized PSF model in central pixel relative to a PSF model made with stars

in peak flux (FLUX_MAX) bin centered on 5000 ADU. We find that the flux deficit is approximately linear

in flux level (solid lines show best linear fit, dashed lines 68 per cent confidence intervals), independent of

exposure time (green squares: 50s, blue triangles: 80s), and increases when signal chain non-linearity is

corrected for (dark green/blue: corrected, light green/blue: uncorrected).

with DECam during science verification on Feb 02 2013 with homogeneous seeing conditions.

We process these as described in Section 5, without the reverse charge shift model applied. Fig. 1

shows results as a function of FLUX_MAX for star images with two different exposure times and for

a data reduction scheme applying or not applying, respectively, a correction for the known signal

chain non-linearity of DECam.1 We find that

• the relative flux deficit in the center of bright stars due to the brighter/fatter effect is well

described as linear in flux, as indicated by the solid lines that are good fits to the data points;

• the amplitude of the flux deficit does not depend on exposure time, but only on the measured

count level, as visible from the agreement between the blue and green lines (dashed lines

give confidence limits for the linear fit); this indicates that the charges must be moved while

being collected, not while they are waiting for readout in the pixel potential well;

• the effect is amplified when the high level signal chain non-linearity, a property of the readout

electronics, is corrected for; relative photometry of stars in frames with different exposure

times shows that correction for high level signal chain non-linearity is necessary for restoring

the physical charge level present in the CCDs (cf. Bernstein, presentation at PACCD2013

conference2); we will therefore apply the signal chain non-linearity correction in all follow-

ing analyses.

1The non-linearity correction was determined by comparing the mean count levels of dome flats of different exposure

time. At the 20k ADU level charge counts are approximately 1% lower than expected from linear response.
2See https://indico.bnl.gov/event/cosmo2013.
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Figure 2. Sketch of a DECam CCD and definition of our coordinate system, with the x and y axis parallel

to the channel stops and the serial register, respectively. The split of the chip into two amplifier regions is

indicated by the central horizontal line.

3. Model

We briefly introduce the model of A14 before we discuss our approach of constraining the model

parameters in Sections 3.2 and 3.3.

The basic idea is that charges qkl in any pixel (k, l) influence the path of newly generated

charges on their way into the pixel well.3 As a result, they induce a shift in the effective border of

a pixel (i, j), i.e., they change the mapping of physical area on the chip onto the pixels.

Consider pixel (i, j) and its four borders, which we label as L = (−1,0), R = (1,0) (left/right

border to neighbors along x axis) and T = (0,1), B = (0,−1) (top/bottom border to neighbors

along y axis). The shift in any of these we call δ X
i j , where X ∈ {L,R,T,B}. For a definition of our

coordinate system, refer to Fig. 2.

We assume the border shift to be linear in the surrounding charge (including charge in pixel

(i, j) itself) and dependent on the lag (k− i, l− j) between pixel (i, j) and (k, l),

δ X
i j = ∑

kl

aX
k−i,l− jqkl . (3.1)

The parameters of the model are the shift coefficients aX
i j. In all cases, δ X

i j shall be defined such that

the positive direction is outward from pixel (i, j).

The change in charges observed in pixel (i, j) is the sum of δ R
i j

qi j+qi+1, j

2
and the corresponding

terms for L,T,B. Here, we have approximated the charge density at the pixel border by the mean

of the neighboring pixels and defined the δ as fractions of a full pixel width. The observed charge

Qi j then becomes

Qi j = qi j +
qi j +qi+1, j

2
∑
kl

aR
k−i,l− jqkl +

qi j +qi−1, j

2
∑
kl

aL
k−i,l− jqkl

+
qi j +qi, j+1

2
∑
kl

aT
k−i,l− jqkl +

qi j +qi, j−1

2
∑
kl

aB
k−i,l− jqkl . (3.2)

3Note that this could be due to a combination of lateral fields and changes in lateral diffusion.
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3.1 A priori symmetries

Assuming conservation of effective area, the area lost in one pixel is gained by its neighbor,

δ R
i j =−δ L

i+1, j

δ T
i j =−δ B

i, j+1 (3.3)

Eqn. 3.1 fulfills these equalities for general charge distributions q if and only if

aL
i j =−aR

i+1, j ,

aB
i j =−aT

i, j+1 . (3.4)

The number of free parameters is further reduced by two parity symmetries. The first is in-

variance of charge shifts under change of sign of one coordinate axis,

a
0,±1
i, j = a

0,±1
−i, j ,

a
±1,0
i, j = a

±1,0
i,− j . (3.5)

Another parity symmetry is that charges on opposite sides of the pixel border cause opposite shifts,

a
0,±1
i, j =−a

0,±1
i,±1− j ,

a
±1,0
i, j =−a

±1,0
±1−i, j . (3.6)

With these symmetries, the free parameters of the model are reduced to, e.g., aR
i j for i > 0, j ≥ 0

and aT
i j for i ≥ 0, j > 0. Note that we discuss further empirically assumed symmetries, necessary

to unambiguously constrain the parameters, in Section 3.3.

3.2 Flat field covariances

The mixing of independent Poissonian processes q into observed counts Q in Eqn. 3.2 causes a

correlation of noise in flat-field images. A14 collect the terms at first order in a to find4

Cov(Q00,Qi j) = 2µ2 ∑
X=T,B,L,R

aX
i j , (3.7)

assuming µ is the mean charge count level and Poisson variance [Var(q)= µ ] of charges in pixels in

the flat image. We can thus use measurements of flat field covariances to constrain the a parameters

under suitable symmetry assumptions. Note that, in addition, there is a change in variance, which

can be written using the above symmetries as

∆Var(Q00) =−4µ2(aR
1,0 +aT

0,1) , (3.8)

equal with negative sign to the sum of all covariances introduced between Q00 and the surrounding

pixels.

Note that if we convert Q and µ to quantities in ADU with some gain g, Eqns. 3.7 and 3.8 still

hold with the same coefficients a. In Eqn. 3.2 we have to multiply the coefficients a → a′ = ga to

get the change in observed ADU.

4Note that in their definition the a are only half as large, origin of the factor of 2 here.
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Figure 3. Checks for systematics in measured covariances, shown for DECam chip N1. Left: median versus

mean value of ≈ 1200 measurements for each lag (red: amplifier A, green: amplifier B). Center: covariances

measured at lag (i, j) versus (i,− j). Right: covariances measured in amplifier A region versus amplifier B

region. From these tests we conclude that the effect of outliers in measured covariances, artifacts, and

differences within the chip are negligible.

Measurement pipeline

We measure the covariances as follows, using all 10 s (≈ 15000 ADU) dome flat fields in the r

band from the full first year of DECam observations (2013-08-15 until 2014-02-09). We perform

overscan and bias subtraction based on the nightly median bias. Inter-CCD cross-talk between the

two amplifiers and the signal chain non-linearity are corrected for. Since cosmic rays are systematic

contaminants of the observed covariances, we run SEXTRACTOR on each flat image to detect all

groups of three or more pixels 3σ above the background. For each night, we mask the union of

these 2× 2 box-convolved object masks, a bad pixel mask, and edge distortions [18, 22, 27]. We

re-scale each flat image so as to make median count levels of all frames taken in the same night

match, which changes the levels below the per-cent level. From each pixel of the flat images, we

subtract the mean of that pixel over all n flats of the night.

From these residual images, we estimate covariances out to lags of (8,8). We re-scale the

residuals by
√

n
n−1

to correct the bias of the maximum likelihood ensemble covariance estimator.

Since each chip has two readout channels, we make measurements separately for the 118 halves of

chips in DECam,5 i.e. on a chip by chip and amplifier by amplifier basis.

Covariances are predicted by the A14 model to scale with the square of the count level µ

(cf. Eqn. 3.7). We have verified this behavior of measured covariances from a PTC series of pairs

of flat fields of different exposure times. For all following results, we therefore normalize our

covariance measurements by µ2 to make them comparable despite somewhat varying flat levels

between different nights and filters.

Checks for systematics

Each of the ≈1200 flat images yields an independent estimate, such that we can perform a number

of systematic checks. For each chip, we make comparisons between different measurements that

5Of the 62 chips, two (N30 and S30, i.e. CCDNUM 61 and 02) are damaged and one (S7, CCDNUM 31) has a time-

varying offset, which is why we exclude them from our analysis.
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Figure 4. Scaling of covariance and measured gain with count level, as measured in a series of pairs of flat

field exposures with different exposure time. Left panel: covariance at (1,0) lag, with µ2 ∝ t2 scaling around

the t = 10 s point indicated by red line. Right panel: measured gain ĝ = µ/V , with the red line as a linear

best fit to the data.

should give the same result:

• Since the statistics of our covariance estimator is very close to Gaussian, we expect no sig-

nificant differences between using the mean and median of the ≈ 1200 independent mea-

surements. Outliers, however, would influence the mean more strongly than the median.

• Chirally-symmetric lags (e.g. (1,1) and (1,−1)) measure covariances on disjunct sets of

pairs of pixels that are, however, predicted to be the same from the model.

• If chips are homogeneous and the model is correct, then Cov(Q00,Qi j)/µ2 should agree

between the two halves of the chip read out by different amplifiers (cf. Fig. 2) despite their

different gain values.

We find all these measurements to be consistent within the errors with systematic effects that are

small compared to our targeted accuracy, out to large lags (cf. Fig. 3).

Flux scaling

Covariances of the flat field Poisson noise are predicted to scale with µ2 according to the model

of Eqn. 3.7. Measured gain, i.e. the ratio of count level and variance, is predicted to rise linearly

with flux due to the lowered variance. Other effects, such as correlated read noise, charge transfer

inefficiency or other non-linearities in the signal chain, could cause different scalings. We test this

by measuring covariances and gain at a range of count levels.

To this end, we analyze a photon transfer curve (PTC) series of pairs of flat field images with

exposure times of 0.05 . . .30s at a light level of ≈ 1500ADU s−1. Figure 4 shows covariances and

gains measured from each pair, averaged over all valid chips. At very low levels, there is a floor
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Figure 5. Left: Test for time stability of flat field covariances for DECam chip N1. Shown are measurements

in flat frames of each month of the DES season of the covariance at lag (1,1) (red and green for amplifier

A and B, respectively) and (1,−1) (magenta and blue). The four measurements are offset on the time axis

for readability. No significant time variability is observed. Right: Wavelength dependence of pixel-to-

pixel covariances as measured in DECam g, r, i, z, and Y flat field images. Measurements are plotted at

the respective central wavelength for lags (1,0) (solid symbols), (1,1) (crosses) and (0,1) (open symbols).

Intervals of ±10% around the r band measurements we use to fix the parameters of the model are indicated

by dashed lines.

of covariance below Cov < 0.01, which could be due to a small correlation of noise in the signal

chain or a low-level non-linearity. At larger levels, correlations rise more quickly than predicted,

potentially due to saturation and charge transfer effects. In the range of 2 . . .15 s exposure time,

however, the Cov ∝ µ2 scaling describes the measurements well.

Likewise, measured gain is predicted by the model as linearly increasing with count level.

Gain measurements in flats of ≈20 s exposure time overestimate the true gain by ≈10 % and we

correct the gains used in the DES data management system [8, 25] for this effect.

Wavelength dependence

A14 found the noise correlations to be achromatic for the e2v-250 CCD run with nominal voltage

configuration. This is in line with an effect that acts on the charges primarily in the last few µm of

their drift path and therefore is almost independent of conversion depth. We measure covariances

on g, i, z, and Y band flats from 20 nights to test for a potential wavelength dependence. Results

for the three innermost lags, averaged over all 59 chips, are shown in the right panel of Fig. 5. Both

g and i measurements are consistent with the r band baseline model within 10%. For the (0,1) lag,

the increase from g to Y band is at the 40% level between the g and Y band. In (1,0) and (1,1)

there are indications of an increasing trend, although at a weaker level.

Time stability

We also test our measurements for time stability (cf. Fig 5, left panel) by binning the measurements
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Figure 6. Pixel-to-pixel covariance as function of distance r =
√

i2 + j2. The long axis and readout direction

is defined as x. Correlations with pixels along the same x or y coordinate are plotted in blue and red,

respectively. A r−2.5 power-law with arbitrary amplitude is indicated by the dashed green line.

Figure 7. Cov/µ2 measured from flat fields for each of the DECam chips, plotted as a function to CCD

production lot. Marked in red are the two high-resistivity lots. Left: (1,0) lag (left/right neighbor along

readout direction), center: (0,1) lag (top/bottom neighbor across the channel stop), right: (1,1) lag (diagonal

neighbor).

on a monthly basis. We find no evidence for time variation in any of the 59 chips used in our study.

Results

We show covariances as a function of lag distance r =
√

i2 + j2, averaged over the 59 chips, in

Fig. 6. We measure positive correlations with a signal-to-noise ratio of ≈ 15 even at the outer-

most point r =
√

128. Off-axis covariances show a smooth power-law drop-off with radius, with

indications for a break at around r ≈ 5. The behavior of on-axis coefficients is slightly different,

with a higher amplitude and a low outlier at the (0,1) lag, i.e. for neighbors across the channel

stop. We note that the ratio Cov(1,0)/Cov(0,1)≈ 5 is in the range the [29] simulations predict for

reasonable channel stop barrier dipole moments.
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We test for variations of the level of covariances between different chips. Since all chips

in DECam use the same nominal bias and clock voltages, the reason for such differences would

have to be connected to chip properties. The science chips used in DECam were produced in nine

different production lots. For simplicity of notation, we label the two high resistivity (10.6-14.2 kΩ

cm) lots 107419 and 112094 as 1 and 2 and the remaining lots (with lower resistivity of 4.3-6.2 kΩ

cm) 123194, 123195, 124750, 124753, 135959, 135960 and 135961 as 3-9 (in this order). Fig. 7

shows results for the three nearest lags. We find variations in amplitude at the ≈ 20% level from

lot to lot. Variations within the lots are significantly smaller, although with outliers, particularly at

the (1,0) and (1,1) lag in lots 3 and 5.

The two high resistivity lots have covariances ≈ 20% higher (lower) than the low resistivity

ones in the (1,1) (the 0,1) lag. Larger lags show a similar resistivity dependence as (1,1). For

the (1,0) lag, no strong resistivity dependence is observed. This is evidence for a mixing of two

effects with different dependence on resistivity and distance. While this suggests that resistivity is

a relevant factor, other unknown lot-to-lot variations that coincide with resistivity by chance cannot

be excluded, particularly since the high resistivity lots were cut from a different boule than the

remaining CCDs.

3.3 Assumed model symmetries

The parameters of the model are the shift coefficients a from Eqn. 3.1. They are connected to the

measured covariances (see Section 3.2) by Eqn. 3.7. With only the symmetries of Eqns. 3.4ff, how-

ever, the shift coefficients are not unambiguously constrained by flat field covariances (cf. A14).

This is most comprehensibly exemplified by the following degeneracy. Finding all covariance

terms that contain any aX
i j with i < 2 and j < 2

∆Cov(Q00,Q00) = −4µ2(aR
1,0 +aT

0,1)

Cov(Q00,Q0,±1) = 2µ2(aT
0,1 −2aR

1,1)+ . . .

Cov(Q00,Q±1,0) = 2µ2(aR
1,0 −2aT

1,1)+ . . .

Cov(Q00,Q1,1) = 2µ2(aR
1,1 +aT

1,1)+ . . . (3.9)

we see that all covariances (including the variance defect ∆Cov) are degenerate under the transfor-

mation

aR
1,0 → aR

1,0 +∆

aT
0,1 → aT

0,1 −∆

aR
1,1 → aR

1,1 −∆/2

aT
1,1 → aT

1,1 +∆/2 (3.10)

with an arbitrary constant ∆, which compensate the smaller shifts of one pixel border by larger

shifts of the perpendicular ones. Clearly, however, the effect on inhomogeneous surface brightness

images is not invariant under the above change on model coefficients.

Our approach is to assume two additional symmetries (the rotational and projection symmetry

described below) that are suggested by the covariance measurements. For the above degener-

acy, this entails setting aR
1,1 = aT

1,1 and modelling the observed asymmetry in Cov(Q00,Q0,±1) 6=
Cov(Q00,Q±1,0) by differences in aR

1,0 and aT
0,1 only.
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Rotational symmetry

All off-axis lags rotated by π/2 have covariances measured to be equal at the level of agreement

between the A and B sides of chips, i.e. Cov(Q00,Qi j) = Cov(Q00,Q ji) for i > 0, j > 0. This

symmetry is predicted by the model if

aR
i j = aT

ji ∀i > 0, j > 0 . (3.11)

If we assume this symmetry, we forfeit almost half of our observables (because the covariances at

lag (i, j) and ( j, i) are now two measurements on the same combination of shift coefficients). In

order to break the degeneracies, it would suffice to set aR
i,i = cia

T
i,i, i > 0, with a set of assumed

ratios ci. Due to the agreement of measured covariances at rotated lags, however, this would just

yield a statistically consistent (yet noisier) model.

Projection symmetry

The lateral electric field due to two charges at the same distance from a border should result from

an electrostatic force that has the same amplitude but a different direction.6 The most similar

pairs of charges in terms of distance are ones at lag (i, j) and ( j, i). If we assume that the border

displacement is proportional to the component of the force projected onto the normal vector of a

border, we have (for i > 1 or j > 1)

aR
j,i = r(i, j)aR

i, j , (3.12)

where

r(i, j) =
j−0.5

i−0.5

√

(i−0.5)2 + j2

( j−0.5)2 + i2
. (3.13)

For aT , we write the analogous

aT
j,i = r−1(i, j)aT

i, j . (3.14)

As we find from a first iteration of fitting, the fall-off of shift coefficients with radius is close

to a power-law with slope α =−2. We use that to refine Eqn. 3.13 as

r′(i, j) = r(i, j)

(

√

( j−0.5)2 + i2

(i−0.5)2 + j2

)α

=
j−0.5

i−0.5

(

(i−0.5)2 + j2

( j−0.5)2 + i2

)3/2

(3.15)

and insert r′ instead of r in Eqns. 3.12 and 3.14 for our final model.

3.4 Fitting of coefficients

Assuming these symmetries, we have reduced the vector aaa of independent coefficients to aR
1,0, aT

0,1,

aR
1,1 and aR

i, j for 1 < i ≥ j ≥ 0 (a total number of ∑n
i=0(i+ 1) = 1

2
(n+ 1)(n+ 2) when going out

to a maximum of n pixels distance). This matches the dimension of the vector ccc of independent

measured covariances at the same lags.

6Note that the situation is different for lateral diffusion, which is affected by the change in the longitudinal electric

field. For distant enough pairs, however, lateral electric fields appear to be the dominant effect.
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Out to lags of ∆ = 3 we use the direct measurement of covariances of each chip individually.

At larger distances, the chip-wise signal-to-noise ratio of the covariances is low. We therefore

assume a power-law fall-off of covariances with radius, as observed in Section 3.2,

Cov(i, j) = A(i2 + j2)−β/2 (3.16)

with β = 2.5. We fit three independent amplitudes (one for lags along the x and y axis and one for

off-axis pixels) to the covariances measured between 3 and 5 pixels separation. Covariances out to

a maximum lag of 25 are extrapolated from this model.

Using Eqn. 3.7 and the symmetries we express ccc as a linear function of aaa, ccc = Maaa. We invert

to find aaa = M−1ccc as a function of the measured and extrapolated vector of covariances.

We note that this approach is somewhat different from the one proposed by [14], who model

the radial fall-off of the shift coefficients in LSST candidate sensors by an exponential integral.

Tests

We perform two consistency tests of the fitted model.

By comparing to measurements (Fig. 8, left panel), we confirm that the model correctly repro-

duces (at lags ≤ 3) and extrapolates (at larger lags) the observed covariances.

We further compare the fitted coefficients to our gain measurements from the PTC series

(cf. Fig. 4). The deviation of ĝ from the true gain g is predicted to be linear in flux with a slope of

4g(aR
1,0+aT

0,1). We show the measured slope from the PTC series plotted against model parameters

for all chips in Fig. 8 (right panel), finding the two to be in agreement at the 10% level. Note that

the fitted aR
1,0 + aT

0,1 are quite sensitive to changes in the shift coefficients at large radii, i.e. the

maximum lag used or the power-law coefficient of Eqn. 3.16.

Results

We show the fitted shift coefficients aR of one exemplary chip in Fig. 9. The fact that for rows

at ∆y ≥ 2 there is a maximum at ∆x > 1 (or, equivalently, that curves for constant ∆x cross as a

function of ∆y) is due to projection effects: at larger ∆x the separation increases, but the electrostatic

force is aligned closer to the normal of the pixel border. Using the projection angle θ , we correct

for this effect by normalizing with cosθ = [∆x−0.5]/[
√

(∆x−0.5)2 +∆y2].

The de-projected coefficients aR
i j/cosθ appear to follow a single, power-law radius depen-

dence (Fig. 9, right panel). The coefficient aT
0,1 is the strongest outlier from this trend. For chip N1,

aT
0,1 ≈ 1.0×10−7 whereas aR

1,0 ≈ 1.4×10−7, indicating that an additional physical mechanism acts

on directly neighboring pixels.7 The moderate asymmetry of charge shifting is amplified by the

differential nature of how the shift coefficients contribute to the pixel-to-pixel covariance to yield

the strong asymmetry between Cov(1,0) and Cov(0,1) that we observed in Fig. 6.

4. Effects on galaxy shape measurement

One of the primary science applications of DES is to probe cosmic shear and the weak gravitational

lensing effect of galaxies and clusters of galaxies. The measurement of gravitational shear γ =

7Compare also to the observed inverted resistivity dependence of the (0,1) lag. Note, however, that from the PTC

flat series we find all covariances to be consistent with a µ2 scaling as predicted by the charge shift model.
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Figure 8. Tests of the fitted shift coefficient model. Left panel: measured (black points with error bars) and

model (red open squares) covariance coefficients for lags out to 5 for CCD N1. Right panel: comparison of

slope of observed gain ĝ w.r.t. flat count level µ to sum of model coefficients for all chips. According to

Eqn. 3.8, we expect the two quantities to relate with a factor of 4g (solid red line). The mean agreement is

better than at the ten per-cent level (dashed red lines).

Figure 9. Shift coefficients aR of chip N1 plotted as function of ∆x (left panel) and ∆y (center). Projection

effects are corrected in the right panel, where we normalize coefficients by the cosine of the angle between

pixel border normal vector and direction of the lag. This leads to a well-behaved r−2-like power-law behavior

(indicated by dotted green line) of the coefficients, with the neighbors aR
1,0 and aT

0,1 (the latter is overplotted

with the open symbol) as outliers.

γ1 + iγ2 is based on a measurement of galaxy shapes ε = ε1 + iε2. The latter can be defined based

on second-order moments of the pre-seeing surface brightness profile I(θθθ) of a galaxy centered at

θθθ = (0,0),

Qi j =

∫

I(θθθ)θiθ jd
2θ

∫

I(θθθ)d2θ
, (4.1)
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as
(

ε1

ε2

)

=

(

Q11 +Q22 +2

√

Q11Q22 −Q2
12

)−1

×
(

Q11 −Q22

2Q12

)

. (4.2)

When second moments are measured with uniform weight as in Eqn. 4.1, deconvolution with the

PSF can be performed by subtracting the observed and PSF second moments,8

Qgal, dec
⋆ = Qgal, obs

⋆ −QPSF
⋆ . (4.3)

Observationally, one estimates QPSF
⋆ from the second moments of star images. Since the stars

used for this are typically at a high flux level in comparison to the galaxy images, the primary effect

of charge-self interaction is a misrepresentation of the PSF second moments.9

In order to simulate the full effect on charge self-interaction on shape measurement, we imple-

ment the A14 model in GALSIM [30].10 Simulating PSF-convolved galaxy and star images with

the effect applied, we estimate shapes using Eqns. 4.1-4.3. We quantify biases in the measured

shape εmeas relative to the input galaxy shape ε true as

(

εmeas
1 − ε true

1

εmeas
2 − ε true

2

)

=

(

m1ε true
1 + c1

m2ε true
2 + c2

)

+

(

p1
1 p2

1

p1
2 p2

2

)

·
(

ε p
1

ε p
2

)

, (4.4)

with multiplicative and additive biases mi and ci (e.g. [15]) and leakage terms pi
j of the PSF

ellipticity ε p
i into the same and respective other component of shear.

For the fiducial simulation settings, we choose the following conservatively realistic param-

eters. The pre-seeing galaxy and PSF profile are modelled as Gaussians with full-width at half-

maximum FWHMgal = 0.5′′ and FWHMPSF = 0.9′′, converted to the DECam pixel scale of 0.27′′

per pixel and Gaussian standard deviation σ ≈ FWHM/2.35. We draw the star image with a

FLUX_MAX in the central pixel of 60k charges. The galaxy is chosen to have a total flux of 4000

charges. We add no noise to the image, assume a background level of b = 0 in the fiducial settings

and set both galaxy and star image centroid to fall on a pixel center. For the shift coefficients, we

use the mean values over the individually fitted chips out to lags ∆ = 8pix. From determining εmeas
1/2

at four different settings (where one of the components of either ε true or ε p is set to 0.1 and all

others are 0) we fix the eight bias parameters of Eqn. 4.4.

Results for the fiducial settings and a number of variants are shown in Table 1. Multiplicative

biases are above the per-cent level and exceed the DES weak lensing science requirements. For a

hypothetical deep all-sky lensing survey, [1] have calculated requirements on systematic errors in

shape measurement that translate to approximate limits of |m| > 0.1×10−2, |c| > 0.3×10−3 and

|p|> 0.3×10−2, all of which are exceeded by the observed biases.

We probe the seeing range typical for DES lensing band data and object sizes between the

smallest usable and median angular size of faint galaxies (cf., e.g., [28]). We note that multiplicative

8This is a simplified procedure for shape measurement, which in practice needs to use appropriate weighting to

prevent the divergence of noise. Biases in real shape measurement pipelines should, however, be similar since the

primary effect of charge self-interaction is a change in PSF size due to shifting of charges on scales of its FWHM.
9Note that the effect can be alleviated by using fainter stars only, which are less affected by charge self-interaction

(for DECam analyses, cf. e.g. [23]).
10cf. https://github.com/GalSim-developers/GalSim/
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bias is a strong function of the relative size of PSF and galaxy, as expected due to the PSF size

misrepresentation in bright stars. High background levels somewhat alleviate the multiplicative

bias since the shifting of background charges is a convolution effect that is independent of the

object flux. Interestingly, the strong x/y asymmetry of neighbouring pixel covariances in flat fields

(cf. Sec. 3.2) results in a relatively small additive bias c1 that disappears when we artificially set

aT
0,1 to the fitted value of aR

1,0.

We apply reverse charge shifts to test the appropriateness of our correction scheme, e.g. use

shift coefficients aaa → −aaa and apply Eqn. 3.2. The purpose of this is to test the influence of a

number of simplifications in the corrections we make on shape measurement biases (summarized

in the second part of Table 1). Specifically,

• we correct according to the true model, but only out to lags of ∆max = 5pix; multiplicative

bias is reduced by a factor of ≈ 30 to 8× 10−5 for the fiducial case and is, as all other bias

parameters, within the requirements;

• we apply a maximally asymmetric model, degenerate in terms of flat field covariance mea-

surements (aT
0,1 = 0 as transformed with Eqn. 3.10), but make a correction for the symmetric

model fitted as described in Section 3.4; the most significant effect is that additive bias c1 is

corrected only partially, but still below science requirements;

• we apply the model, using a Lanczos-3 interpolated version of the image at the pixel border

centers, but for the reverse use the mean counts in the two neighbor pixels in Eqn. 3.2; this

leaves a per-mille level multiplicative bias, at the 5% level of the uncorrected case.

We conclude that a ∆max = 5, symmetric, linearly interpolated correction scheme is sufficient for

our scientific requirements. For a deep all-sky lensing survey, the latter two cause residual biases

at the limit of acceptable systematic errors.

5. Correction on pixel-level basis

In the previous Sections 3 and 4, we have characterized flat-field noise pixel-to-pixel covariances

with the A14 model and shown that the amplitude of charge self-interaction present in DECam is

expected to cause shape measurement biases at a critical level. Here, we test whether a correction

using our model restores the profiles of bright stars to the shape of their fainter counterparts.

To this end, we analyze a set of 90 r band exposures of moderately dense stellar fields taken

between Aug 16, 2013 and Jan 19, 2014. To these we apply overscan and bias subtraction and a

correction of inter-CCD cross-talk and signal chain non-linearity. For evaluation of the correction,

we generate two versions of the frames, in one of which we apply Eqn. 3.2 with the negative of the

fitted shift coefficients (e.g. aaa →−aaa). Finally, we divide by a master flat field.

On the reduced frames we run SEXTRACTOR [4] and split the catalog by brightness. We

use the number of counts in the brightest object pixel, FLUX_MAX, with four bins centered on

FLUX_MAX of 5000, 10000, 15000 and 20000 ADU, all sufficiently below the saturation level of

DECam. We run PSFEX [3] on each of the catalogs to generate a model of the PSF as measured

from stars of different flux. We remove a small number of frames for which the fitted PSF models

have an irregular appearance visually. We finally stack the PSF models to get the mean PSF profile
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settings m[10−2] c1[10−3] p1
1[10−2] p2

2[10−2]

fiducial 2.4 -0.5 -0.6 -0.7

FHWMPSF = 0.7′′ 1.7 -0.5 -0.4 -0.5

FHWMPSF = 1.1′′ 3.1 -0.5 -0.8 -0.9

FHWMgal = 0.3′′ 6.9 -1.4 -1.7 -2.0

FHWMgal = 0.7′′ 1.1 -0.3 -0.3 -0.3

2000 e− background 2.2 -0.5 -0.6 -0.7

symmetric aT
i j := aR

ji 2.5 0.0 -0.6 -0.7

corrected out to ∆ = 5 only 0.0 0.0 0.0 0.0

corrected with flat-field degenerate model 0.0 -0.2 0.0 0.0

corrected neglecting interpolation -0.1 0.0 -0.1 0.0

Table 1. Shape biases due to charge self-interaction in DECam as determined from image simulations.

Multiplicative biases m, additive biases c and PSF leakage p, defined as in Eqn. 4.4, are measured with

fiducial settings (see text in Section 4), and the described differences in parameters. Note that biases of

approximately |m| > 0.1× 10−2, |c| > 0.3× 10−3 and |p| > 0.3× 10−2 are problematic for a hypothetical

deep all-sky lensing survey. For DES, requirements are less stringent but clearly exceeded by the observed

multiplicative bias. We always find m = m1 ≈ m2, c2 ≈ 0 and p1
2 ≈ p2

1 ≈ 0 and omit these from the table.
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Figure 10. Difference image of normalized PSF as measured from stars at FLUX_MAX of 20000 and 5000

ADU. Left: without correction, the brighter/fatter effect shows as a flux deficit in the central 9 pixels that

is compensated by excess charge on an annulus at ≈2-4 pix radius. Right: after applying the charge shift

correction.

at each of the flux levels, ensuring that we only use frames where the number of stars in each

FLUX_MAX bin is sufficient to fit a bilinear model of the spatial variation of the PSF that we

always evaluate at the chip center position.

Fig. 10 shows a difference image of the FLUX_MAX ≈ 5000 and 20000 star profile before and
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Figure 11. Relative change in flux in the central pixel of bright stars (left) and sum of squared residuals

between bright and faint stars (right) before correction (red squares) and after applying the reverse charge

shifts predicted from the model (black crosses). Both are plotted as a function of peak flux (FLUX_MAX)

and measured relative to stars of FLUX_MAX ≈ 5k ADU with (very small) bootstrapped error bars.

Figure 12. Difference in radius (left) and ellipticity (center, right for the two components) between bright

and faint stars before correction (red squares) and after applying the reverse charge shifts predicted from

the model (black crosses). Quantities are based on second moments Qi j measured with a Gaussian weight

function of σ = 3 pix width. Both are plotted as a function of peak flux (FLUX_MAX) and measured relative

to stars of FLUX_MAX ≈ 5k ADU with bootstrapped error bars.

after correction. The dominant brighter/fatter feature of a flux deficit in the central pixels is largely

removed.

We calculate a number of metrics to quantify how well the correction removes the flux depen-

dence of the PSF. Metrics based on the reduction of the residuals in the individual pixels’ fluxes

(see Fig. 11 for flux deficit in central pixel and sum of squared deviations) show a reduction of the

effect at the 90 per cent level.

For lensing applications, however, the more relevant quantities are based on second moments

of the PSF (cf. Eqns. 4.1ff). Figure 12 shows residuals of three combinations of second mo-

ments that correspond to the PSF size and the PSF ellipticity between brighter stars and stars of

FLUX_MAX ≈ 5000. The residuals at somewhat larger radii that remain in the corrected image

(cf. Fig. 10) have a significant influence on second moments. While the ellipticity effects of

– 17 –



charge self-interaction appear corrected for, size residuals are overcorrected significantly. We have

checked that this effect is not due to statistical or systematic differences in centroiding of the PS-

FEx models. Shape biases associated with the observed residuals after correction are likely still

problematic.

We were not able to find the cause of the size residuals at the time of this writing. We hypoth-

esize, however, that they could be connected to either a break-down of the model at low charge

levels and large distances or one of the simplifying symmetry assumptions required in constraining

the model parameters from flat field covariances (cf. Section 3.2).

6. Summary

We have presented a systematic study of imaging data from DECam and identified two effects of

charge self-interaction: (1) a broadening of star images with increasing flux and (2) a correlation

of Poisson noise in pairs of pixels in flat field exposures.

The first effect shows as missing flux in the central pixels of bright stars that instead appears

at ≈3 pix distance from the center. The difference between bright and faint stars is approximately

linear in flux and, at fixed total flux level, independent of exposure time (Section 2).

We have measured the second effect with high signal-to-noise ratio out to pixel-to-pixel dis-

tances of ≈10 pix (Section 3.2). There is a ≈ 5 : 1 asymmetry of correlations with the direct

neighbor pixels on the same row or column. Correlation amplitudes for more distant pixels are

almost isotropic with an approximate power-law fall-off ∝ r−2.5. Covariances differ from chip to

chip at the ≈ 20% level. The DECam chips with higher resistivity show larger correlations with

their diagonal and distant neighbors and smaller correlations with the adjacent pixel perpendicu-

lar to the read-out direction. There is a color dependence of the measured covariances, which is

most severe for the latter pairs (more than 40% increase in correlation from g to Y band) but much

weaker for other lags.

Both effects are phenomenologically connected by the A14 charge shift model. From the latter

measurements and a number of symmetry assumptions, we fit the model parameters (Section 3.3).

We simulate the effect of the predicted charge shifts on shape measurement (Section 4) and find it

to be significant for ongoing Dark Energy Survey weak lensing science, with multiplicative shape

measurement biases above the per-cent level.

Finally, we test the ability of the charge shift model to remove the flux dependence of the

profiles of stellar images (Section 5). We find that the flux dependence is strongly reduced in terms

of the flux deficit in the central pixels and the overall sum of squared residuals. However, significant

flux dependence of stellar sizes remains, indicating that our treatment of the charge self-interaction

effects on inhomogeneous surface brightness images is yet incomplete.
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