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ABSTRACT

Deep optical images are often crowded with overlapping objects. This is especially true in
the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accu-
rate measurements of cluster properties require deblending algorithms designed to automatically
extract a list of individual objects and decide what fraction of the light in each pixel comes from
each object. We present new software called the Gradient And INterpolation based deblender
(GAIN) as a secondary deblender to improve deblending the images of cluster cores. This soft-
ware relies on using image intensity gradient and using an image interpolation technique usually
used to correct flawed terrestrial digital images. We test this software on Dark Energy Survey
coadd images. GAIN helps extracting unbiased photometry measurement for blended sources. It
also helps improving detection completeness while introducing only a modest amount of spurious
detections. For example, when applied to deep images simulated with high level of deblending
difficulties, this software improves detection completeness from 91% to 97% for sources above
the 10σ limiting magnitude at 25.3mag. We expect this software to be a useful tool for cluster
population measurements.

Subject headings: surveys: catalogs: techniques: image processing

1. Introduction

Deep, wide-field, ground based optical imaging
surveys have an important role to play in the near-
term future of astronomy. Existing projects like
the Pan-STARRS1 and the Dark Energy Survey
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(DES)2 are mapping thousands square degrees of
the sky to 24th magnitude and beyond, while a fu-
ture project like the Large Synoptic Survey Tele-
scope (LSST)3 plans to image 20,000 square de-
grees to 28th magnitude. These surveys support
an enormous range of science goals, from identify-
ing Near-Earth Objects to measuring the expan-
sion history of the universe. One important goal
for all of these surveys is to measure the proper-
ties of galaxy clusters. Clusters are extreme ob-
jects, marking the upper limit of structure forma-
tion. As such, properties of their population are
extremely sensitive to basic cosmological param-
eters like the expansion history and cosmic mass
density. Detecting galaxy clusters and measuring
their properties precisely is an important task.

While deep images greatly facilitate the detec-
tion and measurement of clusters, they present

2http://www.darkenergeysurvey.org/
3http://www.lsst.org/
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some data processing challenges as well. One of
the most challenging is deblending. Image crowd-
ing is a problem in many astronomical applica-
tions, and a wide variety of approaches to solv-
ing it have been proposed. Many were created for
special purposes, for example deblending images
of objects crowded with point sources, like glob-
ular clusters (Federici et al. 1983; Stetson 1987;
Diolaiti et al. 2000; Savage and Oliver 2007). In
this application, the intrinsic shape of every object
can be more or less accurately estimated. Deep
images of galaxy clusters present more complex-
ity. Cluster cores are dense with galaxies, each
with its own unknown shape, brightness, and size.
Their images often overlap, making the identifi-
cation of individual galaxies and measurements of
their brightness a challenge.

In this manuscript, we describe a package de-
signed for deblending of cluster cores. This soft-
ware automatically identifies blended sources, sep-
arates them, and measures the photometry of each
individual source. We describe tests of this soft-
ware on both real and simulated images. This
software is primarily designed for DES, which
has started its 5-year survey since August 2013
(Diehl et al. 2014). DES obtained a full depth sci-
entific verification data set in 2012 with the new
DECam camera (Flaugher et al. 2012) mounted
on the Blanco telescope, allowing this package to
be directly tested on DES images with DES nom-
inal depth. However, the algorithms may also be
of use for other data sets like HST data and SDSS
data.

Several software packages for astronomical im-
age processing exist. Each attempts to auto-
matically detect astronomical sources and mea-
sure their properties. One of the most widely
used packages is SExtractor (Bertin and Arnouts
1996), which can extract sources in a wide field
in a short amount of time. Before SExtractor, a
few packages (Jarvis and Tyson 1981; Beard et al.
1990; Maddox et al. 1990; Yee 1991) existed, but
are not up to date for application with mod-
ern wide field surveys. Since the emergence of
SExtractor, scientists have been primarily focused
on developing software for specific instruments
(York et al. 2000; Lupton 2001) or to do pre-
cise photometry and shape measurement without
attempting to do astronomical source detection
(Simard et al. 2002; Peng et al. 2002, 2010).

The Dark Energy Survey has adopted an ad-
vanced version of SExtractor in the data pro-
cessing pipeline for catalog production. To
handle deblending, SExtractor has a procedure
that decides if a detected object should be
further separated as several branching com-
ponents. A major parameter that controls
this procedure is DEBLEND MINCONT. The
DEBLEND MINCONT parameter is a threshold
on the intensity ratio between a branching com-
ponent and the original detected object. However,
upon carefully tweaking SExtractor’s deblending
procedure, especially the DEBLEND MINCONT
parameter, it is found that high levels of deblend-
ing are accompanied by increasing numbers of
spurious detections and also deteriorating pho-
tometry. At an optimum setting of SExtractor
to achieve the balance between real and spurious
detections for DES, additional deblending is still
needed, especially in cluster cores. We note that
a future version of SExtractor featuring an im-
proved deblender is in the works (Bertin, private
communication). As of now, it is difficult for a
general purpose suite of software to also handle
deblending well. We suspect that this deblend-
ing dilemma plagues other reduction packages.
The data processing pipeline of the Sloan Digi-
tal Sky Survey is very different from that of the
Dark Energy Survey. However, there are also
reports about suppressed completeness around
bright objects (Adelman-McCarthy et al. 2006;
Mandelbaum et al. 2005), implying that deblend-
ing was also an issue in that analysis. The par-
ticular challenges of accurately deblending galaxy
cluster cores in both surveys led to this project.

In this paper, we describe new software that
aids blended source detection and photometry
measurement. It operates on clean, already pro-
cessed astronomical images. We describe steps in
the image analysis in Section 2, explain the algo-
rithms in Section 3, and present our analysis on
the effectiveness of this approach in Section 4. We
summarize the algorithms and the testing in Sec-
tion 5.

2. Application

This package, which we call the Gradient And
INterpolation based deblender (GAIN deblender),
is written in c++ and IDL and can be acquired on-
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Fig. 1.— Upper Left: A DES image, which is the linear combination of the r, i and z coadd images. There is
a bright star on the left and a brightest cluster galaxy on the right. Upper Right: Same image with detected
sources marked. Blue circles mark SExtractor detections with the optimum DES deblending setting. Red
squares mark additional detections found through GAIN. Lower left: The circles mark SExtractor detections
with a very low SExtractor DEBLEND MINCONT setting (1 × 10−6). Lower Right: Black circles mark
the differences between using different SExtractor settings. For comparison, GAIN detections marked by
red squares in the upper right panel are shown again in this figure. This figure illustrates that adjusting
the SExtractor DEBLEND MINCONT parameter is insufficient for finding all the blended sources. In these
figures, we only show sources brighter than 24.0 mag in i.
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Fig. 2.— Left: r band DES coadd images of four blended sources. The circles indicate the regions to be
deblended and are centered on the blended sources. Middle: Images that contain light from neighbors of
the blended sources. Right: the residual between the left and middle panels, which shows the light from the
blended sources within the circle.

line4. It operates on processed images that have
been flat corrected, background subtracted, cos-
mic rays removed etc. We assume that the users
have already done one round of source extraction
by other means, and are using this package for
finding blended sources that are missed in the pre-
vious procedure or to improve the photometry of
blended sources.

The first stage in our analysis is the identifi-
cation of blended sources. It begins by indepen-
dently identifying all sources in the image, then
matching its results to the user supplied object
list. Sources not matched to the user supplied
input catalog are kept as new sources to be ex-
tracted in the blended image. This procedure is
illustrated in Figure 1. The upper left panel in
Figure 1 shows a DES image containing a bright
star and a brightest cluster galaxy. The upper
right panel in Figure 1 shows sources detected by
SExtractor (the blue circles) and some additional
sources identified by GAIN (the red boxes). Note
that this package is sensitive to image imperfec-
tions as is the case around the saturated star in the
left half of this image. It has the beauty of find-
ing very faint sources but also the peril of finding
false sources around image artifacts like satellite

4https://github.com/yyzhang/gain deblend

trails or saturated star streaks. Qualitatively, the
GAIN algorithm can find blended sources without
introducing as many false detections as SExtrac-
tor with a low DEBLEND MINCONT setting, as
illustrated in Figure 1.

The second stage in our analysis aims to cor-
rectly assign the light in each pixel to the blended
sources which contribute to it. This procedure is
illustrated in Figure 2. Given a detected blended
source and a region (this region can be computed
from our package) to be deblended, as shown in
the left panel, the package interpolates for the light
that comes from “background sources” as shown
in the middle panel. The residual between the
original image and the “background sources” in-
terpolation is the light from the blended source
alone (right panel).

We find GAIN to be useful for two scenarios. In
many applications, GAIN would be used both to
detect blended sources using the first component
and to extract light for those sources using the sec-
ond component. It may also be used by skipping
the first step, and using the second component
to extract light for user supplied blended sources.
Subsequent photometry measurement can be done
on light separated images. This step is recom-
mended if the user has blended sources in their
first round of source extraction and wants to ob-
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tain consistent photometry for all blended sources.

The speed of running this package is fast
enough to apply with wide field optical surveys.
For one image, the running time of GAIN is
only a small fraction of the running time of SEx-
tractor. On a workstation computer equipped
with Intel Xeon Processor E5645, running on a
10, 000× 10, 000 pixels image without paralleliza-
tion, the source detection takes approximately 300
seconds to identify every 10,000 sources (without
matching to a user supplied input catalog). For
light separation, the light separation module takes
approximately 10 seconds for every 1,000 sources.
The memory usage of this package depends on the
size of the input image. It is generally more than
twice the size of the image. For a 10, 000× 10, 000
pixels image which has the size of ∼ 3.5GB, the
peak memory usage can be as intensive as > 8GB.

3. Methods

3.1. Source Detection

The source detection component of GAIN aims
to identify local maxima in images which are asso-
ciated with real objects. Our approach to this is
inspired by the crowded field stellar photometry
software DAOPHOT (Stetson 1987). The pres-
ence of a separable astronomical object usually
causes a local image intensity maximum. Unfor-
tunately, many, even most, local intensity maxima
are generated by image noise rather than real as-
tronomical objects. Procedures to eliminate these
noise peaks are therefore necessary.

One approach to reducing the impact of noise
is to smooth the whole image. While smoothing is
very effective at eliminating noise, it also washes
out the saddle points which separate close pairs of
real astronomical sources, exacerbating the prob-
lem of blending. When close pairs are separated
by distances around twice the FWHM of the see-
ing, and one source is brighter than the other,
even very modest smoothing merges the two. To
do the best job of deblending, we would like to
avoid smoothing. Instead of finding maxima in
smoothed images, GAIN uses the image segmen-
tation procedure and the image Laplacian map to
reduce the impact of noise.

The source detection of GAIN begins with iden-
tifying sources on raw, unsmoothed images, then
purges the identifications assigned with low pixel

area in the segmentation map. To further elimi-
nate spurious detections, GAIN cross matches the
remaining identifications to sources identified in a
“weighted Laplacian” map (which we explain in
Section 3.1.2). The software performs two other
rounds of segmentation area purging during the
“weighted Laplacian” step and during the “cross
matching” step.

3.1.1. Segmentation of Images

Purging of noise peaks can be aided by segment-
ing an image into separate regions, each associated
with one element in the seed list of maxima. This
seed list may include all local maxima, or may
be produced by some other means, for example it
could be a list of objects identified by SExtrac-
tor. We use a simplified version of Meyer’s wa-
tershed flooding algorithm (Meyer 1992) for seg-
mentation. To prime the segmentation procedure,
we give each of the pixels in the seed list a unique
region label. The goal of segmentation is then to
label every pixel in the image as either belonging
to one of the regions or residing in a boundary be-
tween the regions. The process begins by ranking
all pixels in the image in descending order of in-
tensity. As we move down the list, we apply the
following logic to each pixel.

1. If this pixel is already labeled (because it was
in the seed list), its label remains unchanged.

2. If this pixel is unlabeled, and all of the
neighboring pixels are unlabeled, this pixel
is marked as a boundary. This should be true
only for local maxima not found in the seed
list.

3. If this pixel is unlabeled, and some or all of
the neighboring pixels are already labeled,
and their labels (except those labeled as
boundary) are not all the same, this pixel
is labeled as a boundary.

4. If this pixel is unlabeled, and some or all of
the neighboring pixels are already labeled,
and their labels (except those labeled as
boundary) are all the same, this pixel is given
that label. If all the labeled neighbors are la-
beled as boundary, this pixel will also be a
boundary.

5



Fig. 3.— Upper left: Original DES coadd image, same as the one shown in Figure 1. The image is slightly
zoomed in to best illustrate the segmentation procedure. Upper right: The segmentation map derived using
all the local intensity maxima. Lower left: The segmentation map derived using all the local maxima of
the smoothed and weighted Laplacian map. Lower right: The segmentation map derived using the cross
matched local maxima from the original image and from the smoothed and weighted Laplacian image. In the
three segmentation maps, the pixels in white belong to the “boundary” (see Section 3.1.1 for definition) and
the pixels in black are associated with the seeds (local maxima from the intensity map, from the smoothed
and weighted laplacian map, and the cross matching between the two).
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Note that this procedure differs from the orig-
inal implementation of Meyer’s algorithm. When
the original seed list includes all of the local max-
ima (as shown in the upper right panel of Fig-
ure 3), the procedure above gives the same result
as Meyer’s, though it is much faster. When the
seed list does not include all of the local maxima,
as will be the case in our GAIN application, this al-
gorithm may yield thick boundaries (shown in the
lower panels of Figure 3). This may not be desir-
able for computer vision applications like those for
which Meyer’s watershed algorithm was invented,
but it is perfectly acceptable for our purposes.

After the segmentation is complete, we count
the number of pixels labeled as belonging to each
element of the original seed list. This number re-
flects the total area associated with each seed by
the algorithm. We then purge false detections by
eliminating seeds with segmentation areas smaller
than some threshold value (for example, as purge
all seed maxima associated with fewer than 27 pix-
els in DES coadd images).

3.1.2. Cross Matching to Laplacian Maxima

To populate an effective list of sources for de-
blending, GAIN generates a Laplacian map (3× 3
pixels laplacian) of the original image. This is
a useful approach because the contrast between
real objects and their local background can be
greatly enhanced in a Laplacian map. In terres-
trial image processing applications, the Laplacian
of Gaussian method is often used for edge detec-
tion (Lindeberg 1993). In these applications, an
image is first smoothed on some scale with a Gaus-
sian kernel, and then the Laplacian of the resulting
image is calculated. However, in astronomical im-
ages, real objects already have had their spatial
extent smoothed by an instrumental PSF, so that
finding features in the Laplacian is an effective ap-
proach to object detection.

One limitation of this approach is that ex-
tended, low contrast sources, are not prominent
in the Laplacian map. Since many of the sources
indeed have low surface-brightness, we ameliorate
this problem by weighting the Laplacian map with
a transformed version of the original image inten-
sity map. This weight map, denoted as Iw(x, y),
is computed from the original image intensity map
I(x, y) as,

I′(x, y) = I(x, y)−min(I)

Iw(x, y) =

{

I′(x, y), if I′(x, y) ≤ mean(I′)

log I′(x,y)
mean(I′) +mean(I′), otherwise.

(1)

We use the logarithmic values for high inten-
sity pixels to suppress their weight. The weighted
Laplacian map is then derived from the raw
Laplacian map L(x, y) and the image weight map
Iw(x, y), as

Lw(x, y) = L(x, y)Iw(x, y). (2)

Unlike the original image intensity map, where
pixel values span range across many orders of mag-
nitude, the pixel values of Iw(x, y) span a much
narrower range. Finally, we smooth Lw(x, y) with
a Gaussian function (σ = 1pixel for application
to DES coadd images). Local maxima identified
in this smoothed, weighted Laplacian image then
become the seeds for the segmentation and purg-
ing step described in Section 3.1.1. For illustra-
tion, we show the smoothed, weighted Laplacian
image of a DES coadd image in Figure 4. We also
show the segmentation result using local maxima
from this smoothed, weighted Laplacian image in
the lower left panel of Figure 3.

3.1.3. Further Purging

As a final step of cleaning, we cross match
the complete list of local maxima from the orig-
inal image with the list of local maxima from
the smoothed and weighted Laplacian image.
We retain those local maxima which have cor-
responding peaks (within 2 pixels or 0.53”) in the
smoothed and weighted Laplacian image. This
list of matched local maxima then becomes the
seed list for the segmentation process (illustrated
in the lower right panel of Figure 3). Local max-
ima associated with sufficiently large pixel lists in
the segmentation map then form the final list of
GAIN detected objects.

3.1.4. Matching to User Supplied Catalog

The usual application of GAIN follows an ini-
tial round of source extraction using tools like
SExtractor. GAIN aims to search for additional
blended sources missed by these applications. For
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Fig. 4.— Left: Original DES coadd image, same as the one shown in Figure 1. The image is slightly
zoomed in and shown at the “Histogram” scale of DS9. Right: The weighted Laplacian map of the same
image derived in Section 3.1.2. The right image is also shown at the “Histogram” scale of DS9. Note that
the substructure feature of the original image, like the spirals of the spiral galaxies at the bottom right, is
enhanced in a weighted Laplacian map.

this reason, we match the GAIN source list to
the user supplied source list, and single out those
sources not identified by the original reduction as
a list of newly identified, deblended sources.

For this matching procedure, the (x, y) coor-
dinates of the user supplied sources are taken as
input. Then in descending order of the intensity
value at the user supplied sources’ coordinates,
we search for each source’s nearest match in our
source list from Section 3.1. All matches with a
separation less than a threshold value (set to 10
pixels or 2.7” for our application to the DES data)
are considered valid matches. The matched source
is then removed from our list and the match-
ing process continues. After removing all GAIN
sources which match the user supplied list, the re-
maining sources constitute our list of newly iden-
tified, deblended sources.

3.2. Photometry for Blended Sources

3.2.1. Separating the Light

The most difficult aspect of blended object pho-
tometry is untangling the relative contributions
of light from multiple sources. It is not uncom-
mon for a faint source near a bright object to sit
atop a background with photon count equal to –

or in extreme cases several times higher than –
the photon count of the source. To measure pho-
tometry for blended objects, we must meticulously
account for the light contributed by their neigh-
bors. For this purpose, we use an image inpaint-
ing technique which is originally developed in the
computer vision field. In this field, many tech-
niques have been developed to recover parts of an
image that is deteriorated, or remove components
that are unwanted. Our method is inspired by the
Telea (2004) technique which is used to “inpaint”
an image, i.e., to recover the texture of a small
patch of an image from its surrounding pixels. It
cannot re-create new patterns in the to-be-filled
region, but rather fills them with a smooth back-
ground through interpolation. The problem this
technique tries to solve is similar to our light sep-
aration problem. It allows us to estimate the light
contribution from the more extended source in the
blended pixels. We choose the Telea (2004) tech-
nique over a variety of other available approaches
(Bertalmio et al. 2000; Criminisi et al. 2004) be-
cause it is computationally efficient and has been
extensively studied.

The Telea (2004) technique works as follows.
Given an intensity map, an unknown pixel can
be inpainted with a value approximated from its
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known neighbors. Telea (2004) developed an effi-
cient way to prioritize pixels in an unknown patch
and determine the order in which they are in-
painted, starting from the pixels nearest to the
boundary and progressing inward (Sethian 1996).
This technique explicitly maintains a narrow band

of pixels to be filled in as one of its features. Our
implementation is adapted from the Telea (2004)
technique, with a few modifications. A brief de-
scription follows.

1. Identify the regions to be inpainted: for each
deblended source, this region is defined as a
circle centered on the object, with an area
equal to the segmentation area from Sec-
tion 3.1.1. Pixels in this region are labeled
as unknown, and the rest as known.

2. Initiate the narrow band: the narrow band

is a list of pixels originally identified as un-

known, that have at least one neighbor la-
beled as known. Pixels in the narrow band

are prioritized in the ascending order of their
original intensity value.

3. Begin inpainting: select the highest priority
pixel from the narrow band and inpaint it.
We explain how this is done in the next item.
After inpainting this pixel, label it as known,
and check if it has any unknown neighbors. If
there are any, add them to the narrow band

list, re-prioritize the narrow band, and re-
peat this step until the narrow band is empty.

4. Inpaint a pixel: to inpaint one pixel, we fill
it with the zeroth order approximation value
from its known neighbors,

I(q) =
Σpwp × I(p)

Σpwp

(3)

with wp being the weighting for each neigh-
boring pixel.

At step 2, we prioritize the narrow band pixels
according to their image intensity values. This is
fundamentally different from the implementation
of Telea (2004) algorithm in that Telea (2004) pri-
oritize the narrow band in the order of pixels’ dis-
tance to the original known and unknown region
boundary, while the distance to the boundary is
calculated from the fast marching solution to the
Eikonal Equation (Sethian 1996). This is designed

to mimic the practice in manual inpainting that
the pixels closest to the known region are filled
first (Bertalmio et al. 2000, 2001). However, we
prioritize pixels for inpainting using their inten-
sity value rather than their distance to the known

region. This is because pixels with lower intensity
are less affected by the astronomical object we are
removing, and filling them in first allows for more
reliable background reconstruction. Also, we use
Equation 3 for step 4 with zeroth order approxi-
mation rather than the first order approximation
used in Telea (2004) because astronomical images
are noisy, and the derivatives at pixel scale are
unreliable.

After using the above method for “background”
interpolation for one object, the interpolated im-
age contains light from the object’s neighbors.
The residual between the original image and the
interpolated image contains the extracted light for
this deblended object.

3.2.2. From Image to Catalog

To produce a useful catalog of deblended
sources, we need to measure magnitudes and
shapes, as well as to classify each as a star or
a galaxy. Many packages capable of doing this are
available (Bertin and Arnouts 1996; Simard et al.
2002; Peng et al. 2002, 2010), and a user might
choose their favorite. For our application to the
DES data, we use SExtractor (Bertin and Arnouts
1996). The tests described in the following sec-
tions are also based on the application of SEx-
tractor. We provide the wrapper code for such an
application in our package. Applications of other
software, like GALFIT(Peng et al. 2002, 2010),
are possible. When choosing software for cata-
loging, we advise people to consider a few things:

1. The light extracted image of one object is
usually smaller than the area that contains
all of its light. One should consider how
to reconstruct/account for the light of the
object outside this region.

2. Because of the above constraint, photometry
from model fitting is probably more appro-
priate. With our application of SExtractor,
we find that Kron (Kron 1980) and Petrosian
(Petrosian 1976) magnitudes can provide re-
liable photometry when proper corrections
are made for reconstructing total light.
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3. Some star/galaxy separation methods may
not work on light extracted images. When
we use SExtractor on such images, we find
that the class star quantity fails most of
the time because of the small area used for
light separation. Star/galaxy separation us-
ing SExtractor spread model quantity is still
effective.

4. Methods Verification

We verify the performance of the following as-
pects of GAIN : photometry measurement, source
detection completeness, and source detection pu-
rity. Because of the importance of star/galaxy sep-
aration in extra-galactic science, we also include a
modest test of it in the photometry measurement
test.

We want to test this package on optical images
with complex deblending challenges, while all the
sources in these images are known and already re-
liably measured. Our principal goal is to improve
deblending around brightest cluster galaxies, so
we designed a test to simulate this challenge by
adding simulated BCGs to real deep optical im-
ages. The images we use are coadded images taken
with DECam on the Victor M. Blanco telescope
by the Dark Energy Survey. Cleaning of individ-
ual exposures, coaddition of the images, and initial
extraction of sources are all done using standard
data processing pipelines of the DES collaboration
(Mohr et al. 2012). We then select regions of these
images with no bright stars or real BCGs, so that
deblending is not an important issue before the
addition of a simulated BCG. Object catalogs ex-
tracted from these images are then used as “truth
tables” in our testing process. When we add sim-
ulated BCGs to these images, some objects which
are initially isolated and clean become blended,
giving us a well understood deblending challenge
to test against.

In Figure 5, we show an image before and af-
ter adding simulated BCGs. For the results pre-
sented in this section, we make simulated galaxy
images of Sersic profile with Sersic index n = 4
and Sersic radius Re = 10′′ at ∼ 19.0 magnitude
(exact values vary depending on the metrics). We
convolve these profiles with the PSF function of
one coadd image and add them into that coadd
image. We also ran the test with simulated galax-
ies of different magnitudes and different Sersic pa-

rameters. Since the results are weakly sensitive
to these changes, we present results for just the
model described above. In this test, we combine
GAIN with SExtractor for photometry measure-
ment. We compare the performance of this ap-
plication to application of solely using SExtractor
when possible. Throughout the test, the major
parameter of SExtractor’s deblending procedure,
DEBLEND MINCONT is set at 0.001, which is
found to be optimum for processing Dark Energy
Survey early data.

We note that the algorithm we describe in this
paper is designed for deblending between a satel-
lite object and its much brighter neighbors. It
may also be desirable to deblend closely spaced
pairs and triples of astronomical objects. GAIN
can indeed help this kind of deblending problem,
but the performance of GAIN on this aspect re-
mains un-verified. Because pairs or triplets do not
always cause local maxima, it is hard to distin-
guish them from extended sources without using
the image PSF (which is being implemented in a
future version of SExtractor). GAIN is not de-
signed for this kind of deblending.

Finally, to thoroughly evaluate the deblending
problem, the performance of GAIN and more im-
portantly the detection and photometry measure-
ment of cluster galaxies in DES, one may wish
to compare a data set with much higher resolu-
tion to DES data. A project of comparing HST
and DES data to study the DES data processing
performance and its scientific effects has been un-
dertaken within the DES collaboration (Palmese,
Lahav, et al., private communication).

4.1. Photometry Measurement

To test whether GAIN can improve photome-
try measurement for blended sources, we use it
to measure sources that become blended in the
altered coadd image. We run SExtractor on the
unaltered image as well as the image with simu-
lated BCGs. We select sources that were clean
in the original image (SExtractor flag = 0) but
become blended (SExtractor flag = 3) upon the
addition of simulated BCGs for photometry mea-
surement comparison. In the original image, the
selection standard ensures that these sources were
free from blending. Therefore, their photometry
measurement from the original image can be used
as a truth table. In the images altered with sim-
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Fig. 5.— Left: An r band DES coadd image. The 10 sigma limiting magnitude of this image is 25.3mag as
measured from the SExtractor mag auto uncertainty. Right: The same image after adding simulated BCGs.
The size of these two images is approximately 3.15′× 3.15′. The apparent magnitude of the simulated BCGs
is approximately ∼ 19 mag (exact values vary depending on the metrics).

ulated BCGs, we compare measurements of these
sources from SExtractor directly and from SEx-
tractor with GAIN implementation to their “truth
table” values. The result is shown in Figure 6
(a)(b).

Because light from simulated BCGs in the al-
tered image is not completely accounted for in the
basic SExtractor reductions, the blended sources
typically have their brightness significantly over-
estimated, often by as much as much as 0.5mag.
Comparing to model magnitudes (Bertin 2011;
Desai et al. 2012) in the truth table, Kron magni-
tudes (mag auto) from the blended image are sub-
ject to more bias than model magnitudes. When
GAIN is implemented, results become much bet-
ter: either model magnitudes or Kron magnitude
for these “artificially” blended sources are almost
unbiased. Potential bias, if there is any, is below
0.05mag.

The photometry measurement from SExtractor
in Figure 6 are obtained with SExtractor “global
background” setting. One might think that the
photometry measurement biases in blended im-
ages will go away with SExtractor “local back-
ground” setting, but our tests show that this is
not the case. In Figure 7, we show comparisons
adopting SExtractor local background setting. A
local background setting does diminish the biases,

but is not sufficient to eliminate them. In addi-
tion, the scatter of photometry measurement is
much larger in local background setting.

In addition to magnitude measurements, we
also include a modest comparison of star/galaxy
separation parameters for these sources. This is
shown in Figure 6 (c)(d) and Figure 7 (c)(d). We
find that the class star quantity has become inef-
fective for star/galaxy separation as discussed in
Section 3.2.2. Another star/galaxy separation pa-
rameter spread model seems to remain effective,
but has large scatter associated with it. Users who
require precise star/galaxy separation may wish to
consider other approaches.

4.2. Purity and Completeness

To test for completeness (did we recover all real
objects) and purity (are all the new deblended ob-
jects real), we again utilize images containing sim-
ulated BCGs.

After introducing a deblending challenge into
optical images with simulated BCGs, issues asso-
ciated with deblending procedures emerge: object
detection becomes incomplete and spurious detec-
tions appear. We use GAIN to improve deblend-
ing, then verify the completeness and purity. We
point out here that the face values of completeness
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Fig. 6.— Comparison of photometry measurements and star/galaxy separation quantities with SExtractor
using the “global background” setting. (a)(b) Offsets between truth table magnitudes and magnitude mea-
surements from altered images for “artificially” blended objects. (c)(d) Comparison of star/galaxy separation
quantities for “artificially” blended objects.
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Fig. 7.— Comparison of photometry measurements and star/galaxy separation quantities with SExtractor
using the “local background” setting. (a)(b) Offsets between truth table magnitudes and magnitude mea-
surements from altered images for “artificially” blended objects. (c)(d) Comparison of star/galaxy separation
quantities for “artificially” blended objects.
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Fig. 8.— Completeness of the C1 catalog (blue
solid line, from SExtractor) and completeness of
the combination (red dashed line) of C1 and C2
(C2 from GAIN) as computed in Section 4.2.1.
The non-negligible incompleteness of SExtractor
cataloging can be improved by GAIN all the way
to 25.5 mag. The vertical dotted line marks the
10 sigma limiting magnitude of the image that the
test is performed on. The errors in this plot are
estimated through assuming poisson distribution
for the samples.
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Fig. 9.— Purity of C1 (blue Solid line) by SEx-
tractor and C2 (red dotted line) by GAIN and pu-
rity of the combination of C1 and C2 (red dashed
line) as computed in Section 4.2.2. The purity of
the combination of C1 and C2 is dragged down by
the purity of C1. The vertical dotted line marks
the 10 sigma limiting magnitude of the image that
the test is performed on. The errors in this plot
are estimated through assuming poisson distribu-
tion for the samples.
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and purity presented in this section should not be
taken as estimations for real astronomical images,
as we are imposing exaggerated deblending diffi-
culty on the testing images.

4.2.1. Completeness

For the completeness test, we first run SExtrac-
tor on the unaltered coadd image, and call the re-
sulting catalog Truth Table 1 (TT1). The GAIN
run on this original, unaltered coadd produces a
catalog of blended sources not detected in TT1,
and we call this list of additional sources Truth
Table 2 (TT2). The combination of TT1 and TT2
is then used as the total truth table (TT) in our
completeness and purity tests. We then insert sim-
ulated BCGs, run SExtractor on the image to pro-
duce Catalog 1 (C1), and run the GAIN package
to search for blended sources and extract another
catalog called Catalog 2 (C2). We then take all ob-
jects brighter than some magnitude from TT and
match them to the C1 and C2 catalogs derived
from the image containing simulated BCGs.

The matching is done in descending order of
brightness for objects in the Truth Tables. For
one object in the TTs, we search for the object
that is nearest in C1 or C2. If the nearest neigh-
bor from C1 or C2 is separated less than 5 pixels to
the TTs object, we claim this object as matched.
Once a C1/C2 object is matched, it is removed
from the list available for matching. The matching
procedure is done at different magnitude limit for
the TTs sample. To ensure that the completeness
evaluation is least subject to photometry measure-
ment scatters, When selecting TTs sample above
certain magnitude, we ease the magnitude limit
on C1 or C2 by 1 mag. We evaluate complete-
ness by computing the ratio between the number
of matched objects in a TTs sample and the total

number of objects in the TTs sample. We compute
this quantity for SExtractor by matching TT1 to
C1 and for deblending improved catalogs using our
package by matching TTs to the combination of
C1 and C2. The result is shown in Figure 8.

After the image is altered by simulated BCGs,
a small but non-negligible fraction of sources are
missed from SExtractor data production, espe-
cially at the faint end. After improving deblending
with our package, the fraction of missed sources
can be lowered to a satisfying level out to magni-
tude 25.5.

4.2.2. Purity upon Deblending

The purity is tricky to test as there is no clear
definition for “real” astronomical objects in our
test. Here we focus on evaluating the number
of spurious detections introduced by the deblend-
ing procedure rather than categorizing objects as
“real” or not.

To test the purity of the catalogs, we match C1
or C2 from altered coadd images to Truth Tables
from un-altered coadd images. The procedure is
similar to the completeness test in Section 4.2.1,
except that we match Catalogs to the Truth Tables
instead of match Truth Tables to Catalogs. When
selecting C1 or C2 sample above certain magni-
tude limit, we also ease the magnitude limit on
TTs by 1mag. We match C1 to T1, C2 to the
combination of T1 and T2 and also the combina-
tion of C1 and C2 to the combination of T1 and
T2. To evaluate the number of spurious detections
produced during deblending, we calculate purity
as the ratio between the number of matched ob-
jects in C1 or C2 sample and the total number of
objects in the sample. The result is shown in Fig-
ure 9. In this plot, GAIN 1 is the computed purity
for the combination of C1 and C2, while GAIN2
is the computed purity of C2 alone. The purity of
SExtractor (SE) is evaluated as the purity of C1
alone.

In Figure 9, purity of C1 (SE) lowers toward
the bright end, and is less than 80% at magni-
tude 21. Purity of the combination of C1 and C2
(GAIN 1) is also un-satisfying dragged by spurious
detections in C1. For C2 (GAIN 2), the sources
contained in C2 are consistent with sources con-
tained in T1 and T2 to 99%. Figure 9 indicates
that while performing the deblending procedure,
SExtractor is likely to introduce spurious detec-
tions but GAIN is not.

In Figure 9, part of the explanation to C1’s un-
satisfying purity is that blended objects have dete-
riorated photometry and astrometry measurement
(see discussion in 4.1), that the matching proce-
dure fails for these sources. This tension can be re-
laxed if using GAIN to remeasure photometry for
objects that have “blended” flag from SExtractor.

5. Summary

Deep astronomical images face deblending chal-
lenges, especially in the crowded cores of galaxy
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clusters. Current deblending algorithms are not
optimized to handle this problem. To take full ad-
vantage of the opportunity offered by new surveys
like the DES, we need better methods for extract-
ing accurate galaxy lists in cluster cores. In this
paper, we describe a relatively simple approach to
sorting out blended sources in these crowded re-
gions. The design of this GAIN package includes
two innovative features.

1. This package makes use of the Laplacian of
an intensity image for blended source detec-
tion. In deblending procedures, one of the
biggest challenges occurs when the intensity
contrast between blended sources is too low
to trigger detection. This problem can of-
ten be solved by making use of image inten-
sity gradient. Future improvements in opti-
cal telescope data production software may
wish to make use of the information in image
intensity gradient to help deblending.

2. This package uses an interpolation tech-
nique to separate blended light from multiple
sources. This is an improvement comparing
to two popular approaches: simply assigning
pixels to blended sources which is inaccurate
but computationally efficient, and simulta-
neously fitting profiles of multiple sources
which is accurate but computationally inef-
ficient. Our method provides a nice balance
between accuracy and efficiency.

We have tested this package on DES coadd im-
ages. Our tests shows that it can increase the re-
liability of photometry for blended objects. It can
also increase the completeness of blended source
detection, while introducing only a modest num-
ber of spurious detections. Upon application to
DES data, GAIN has been used to improve clus-
ter galaxy detection for red sequence photomet-
ric redshift measurement and accurate modeling
of cluster central galaxy light profile. It is also
possible to apply GAIN to HST and SDSS im-
ages, although the various threshold values need
to be tuned.
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