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Abstract

A search is performed for long-lived massive neutral particles decaying to quark-
antiquark pairs. The experimental signature is a distinctive topology of a pair of jets,
originating at a secondary vertex. Events were collected with the CMS detector at the
CERN LHC in proton-proton collisions at a center-of-mass energy of 8 TeV. The data
analyzed correspond to an integrated luminosity of 18.5 fb−1. No significant excess is
observed above standard model expectations. Upper limits at 95% confidence level
are set on the production cross section of a heavy neutral scalar particle, H, in the
mass range of 200 to 1000 GeV, decaying promptly into a pair of long-lived neutral
X particles in the mass range of 50 to 350 GeV, each in turn decaying into a quark-
antiquark pair. For X with mean proper decay lengths of 0.4 to 200 cm, the upper
limits are typically 0.5–200 fb. The results are also interpreted in the context of an
R-parity-violating supersymmetric model with long-lived neutralinos decaying into
a quark-antiquark pair and a muon. For pair production of squarks that promptly
decay to neutralinos with mean proper decay lengths of 2–40 cm, the upper limits
on the cross section are typically 0.5–3 fb. The above limits are the most stringent on
these channels to date.
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1

1 Introduction
This paper presents a search for massive, long-lived exotic particles, decaying into quark-
antiquark pairs (qq), using data collected with the CMS detector at the CERN LHC. Quarks
fragment and hadronize into jets of particles. We therefore search for events containing a pair
of jets originating from a common secondary vertex that lies within the volume of the CMS
tracker and is significantly displaced from the colliding beams. This topological signature has
the potential to provide clear evidence for physics beyond the standard model (SM).

A number of theories of new physics beyond the standard model predict the existence of mas-
sive, long-lived particles, which could manifest themselves through nonprompt decays to jets.
Such scenarios arise, for example, in various supersymmetric (SUSY) models, such as “split
SUSY” [1] or SUSY with very weak R-parity violation [2]. Similar signatures also occur in
“hidden valley” models [3], and Z′ models with long-lived neutrinos [4].

We present search results in the context of two specific models, so as to give a quantitative
indication of the typical sensitivity. In the first model, a long-lived, scalar, neutral exotic par-
ticle, X, decays to qq. It is pair-produced in the decay of a non-SM Higgs boson (i.e. H → 2X,
X→ qq [5]), where the H boson is produced through gluon-gluon fusion. In the second model,
the long-lived particle is a neutralino χ̃0

1, which decays into two quarks and a muon through
an R-parity violating coupling. The neutralinos are produced in events containing a pair of
squarks, where a squark can decay via the process q̃→ qχ̃0

1 → qq′q′′µ [2]. Both models predict
up to two displaced dijet vertices per event within the volume of the CMS tracker. The event
selection is optimized for best sensitivity to the H model. The same event selection is then
applied to the neutralino model to yield an additional interpretation of the search result.

The CDF and D0 collaborations have performed searches for metastable particles decaying
to b-quark jets using data collected at the Fermilab Tevatron at

√
s = 1.96 TeV [6, 7]. The

ATLAS collaboration interpreted a search for displaced dijets, sensitive to decay lengths of
1–20 m, in terms of limits on the H model [8]. ATLAS also used results of a similar search,
one with a much smaller data set than the one considered in this paper, to place limits on
the neutralino model [9]. Previous searches by the CMS collaboration for long-lived particles
utilized high-ionization signals, large time-of-flight measurements, nonpointing photons or
leptons, and decays inside the CMS hadron calorimeter [10–13].

2 CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal di-
ameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are
a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a
brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections.
Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke out-
side the solenoid. Extensive forward calorimetry complements the coverage provided by the
barrel and endcap detectors. A more detailed description of the CMS detector, together with
a definition of the coordinate system used and the relevant kinematic variables, can be found
in [14].

The tracker plays an essential role in the reconstruction of displaced vertices. It comprises a
large silicon strip tracker surrounding several layers of silicon pixel detectors. In the central
region in pseudorapidity (η), the pixel tracker consists of three coaxial barrel layers at radii
between 4.4 cm and 10.2 cm and the strip tracker consists of ten coaxial barrel layers extending
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2 3 Online data selection

outwards to a radius of 110 cm. Both detectors are completed by endcaps at either end of the
barrel. Each endcap consists of two disks in the pixel tracker, and three small and nine large
disks in the strip tracker. Together they extend the acceptance of the tracker up to |η| < 2.5. The
pixel tracker provides three-dimensional hit position measurements. The strip tracker layers
measure hit position in rφ in the barrel, or zφ in the endcaps. A subset of strip tracker layers
carry a second strip detector module, mounted back to back to the first module and rotated
by a stereo angle of 100 mrad, which provides a measurement of the third coordinate (z in
the barrel, r in the endcaps). The initial track candidates (track seeds) are formed using only
those layers that provide three-dimensional hit positions (pixel layers or strip layers with a
stereo module). The outermost stereo layer in the barrel region is located at a radius of 50 cm.
The track reconstruction algorithm can therefore reconstruct displaced tracks from particles
decaying up to radii of∼50 cm from the beam line. The performance of the track reconstruction
algorithms has been studied in simulation and with data [15].

The global event reconstruction [16, 17] is designed to reconstruct and identify each particle
in the event using an optimized combination of all subdetector information. For each event,
hadronic jets are clustered from these reconstructed particles with the infrared- and collinear-
safe anti-kT algorithm [18] with a distance parameter R of 0.5. The jet momentum, determined
as the vectorial sum of all particle momenta in the jet, is adjusted with corrections derived
from Monte Carlo (MC) simulations, test beam results, and proton-proton collision data [19].
The corrections also account for the presence of multiple collisions in the same or the adjacent
bunch crossing (pileup interactions) [20].

3 Online data selection
For this analysis, we use a sample of pp collision data at a center-of-mass energy of 8 TeV
corresponding to an integrated luminosity of 18.5± 0.5 fb−1 [21]. The data were collected with
a dedicated displaced-jet trigger. At the trigger level, hadronic jets are reconstructed using
only the energy deposits in the calorimeter towers. As a first step, HT, defined as the scalar
sum of the transverse energy of all jets that have transverse momentum pT > 40 GeV and
|η| < 3, is required to be above 300 GeV. Then primary vertices are reconstructed, using tracks
reconstructed solely with the pixel detector, and the vertex with the highest squared pT sum
of its associated tracks is chosen as the primary event vertex. Jets are considered if they have
pT > 60 GeV and |η| < 2. To associate tracks to jets, the full tracking algorithm is applied to
tracker hits in a cone of size ∆R < 0.5 around each jet direction, with ∆R =

√
(∆η)2 + (∆φ)2.

The selection on the jet pseudorapidity ensures that all tracks fall within the tracker acceptance
|η| < 2.5. For each reconstructed track, an impact parameter is computed by measuring the
shortest distance between the extrapolated trajectory and the primary vertex. In order to accept
an event at the trigger level, we demand that at least two of the selected jets pass the following
criteria:

• the jet has no more than two associated tracks with three-dimensional impact pa-
rameters smaller than 300 µm;

• no more than 15% of the jet’s total energy is carried by associated tracks with trans-
verse impact parameters smaller than 500 µm.
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3

4 Monte Carlo simulation samples
Signal MC samples are generated at leading order with PYTHIA 6.426 [22], using the CTEQ6L1
parton distribution functions [23]. We simulate H production through gluon fusion (gg → H).
Subsequently, the H is forced to decay to two long-lived, spin 0 exotic particles (H → 2X),
each decaying into a quark-antiquark pair (X → qq) of any flavor except tt with equal prob-
ability. Samples with different combinations of H masses (mH = 200, 400, 1000 GeV) and
X boson masses (mX = 50, 150, 350 GeV) are generated. The lifetimes of X bosons are cho-
sen to give a mean transverse decay length of approximately 3 cm, 30 cm, and 300 cm in the
laboratory frame. For the neutralino model, we simulate squark pair production, assuming
that all squark flavors have the same mass, and the subsequent squarks decay to χ̃0

1. We
use several combinations of squark and neutralino masses: (mq̃, mχ̃0

1
) = (350, 150), (700, 150),

(700, 500), (1000, 150), (1000, 500), (1500, 150), and (1500, 500)GeV. The R-parity violating cou-
pling λ

′
211 [2] is set to a nonzero value and enables the decay of the χ̃0

1 into a muon, an up quark,
and a down quark. The values of λ

′
211 are chosen to give a mean transverse decay length of ap-

proximately 20 cm.

Background MC samples, produced with the same generator and parton distribution func-
tions as the signal samples, comprise 35 million QCD multijet events with p̂T between 80 and
800 GeV. In this analysis, the background level is estimated from data and the simulated back-
ground samples are only used to find appropriate background discrimination variables.

For all samples, the response of the CMS detector is simulated in detail using GEANT4.9.4 [24].
The samples are then processed through the trigger emulation and event reconstruction chain
of the CMS experiment. In addition, simulated minimum bias events are overlaid with the
primary collision to model the pileup distribution from data. For the data used in this analysis,
the average number of pileup interactions was 21 per bunch crossing.

5 Event reconstruction and preselection
The offline primary vertex selection is analogous to the procedure employed in the trigger
(Sec. 3), except that the vertices used are obtained from fully reconstructed tracks. The pri-
mary vertex is required to have at least four associated tracks and to be displaced from the
center of the detector by no more than 2 cm in the transverse plane and no more than 24 cm
in z. Using offline reconstructed jets, a requirement of HT > 325 GeV is applied, after which
the corresponding trigger filter is >90% efficient. Furthermore, events produced by known
instrumental effects are rejected.

The selection of jet candidates from secondary displaced vertices begins by searching for at least
two jets with pT > 60 GeV and |η| < 2, similar to the trigger jet selection. Tracks with pT >
1 GeV are associated with jets by requiring their momentum vectors (determined at the point
of closest approach to the beam line) to have ∆R < 0.5 relative to the jet momentum vector.
Tracks may be associated with more than one jet. The set of associated tracks is divided into
“prompt” tracks, defined as those with transverse impact parameter value less than 500 µm,
and “displaced” tracks, with higher transverse impact parameter. This requirement imposed
for the displaced tracks is large enough to exclude most b-hadron decay products.

The long-lived particle candidates are formed from all possible pairs of jets. The jets in the
event are reconstructed with the anti-kT algorithm with a distance parameter of 0.5. Therefore,
if ∆R between the quarks from the qq system is below 0.5, they will not be reconstructed as two
distinct jets.

FERMILAB-PUB-14-568-CMS



4 5 Event reconstruction and preselection

The two sets of displaced tracks, corresponding to the two jets, are merged and fitted to a
common secondary vertex using an adaptive vertex fitter [25]. The vertex fitting procedure
down-weights tracks that seem inconsistent with the fitted vertex position, based on their χ2

contribution to the vertex. To include a track in the vertex, its weight is required to be at least
50%. This procedure reduces the bias caused by tracks incorrectly assigned to the vertex, e.g.
tracks originating from pileup interactions. The secondary vertex fit is required to have a χ2 per
degree of freedom less than 5. The distance in the transverse plane between the secondary and
the primary vertices, Lxy, must be at least eight times larger than its uncertainty. We require
that the secondary vertex includes at least one track from each of the two jets. This requirement
greatly reduces the background contribution from vertices due to nuclear interaction in the
tracker material. The nuclear interaction vertices are characterized by low invariant mass of
the outgoing tracks, making it unlikely that the outgoing tracks are associated with two distinct
jets. The invariant mass formed from all tracks associated with the vertex, assuming the pion
mass for each track, must be larger than 4 GeV and the magnitude of the vector pT sum of
all tracks must be larger than 8 GeV. Vertices can be misreconstructed when displaced tracks
originating from different physical vertices accidentally cross. To suppress such vertices, for
each of the vertex tracks we count the number of missing tracker measurements along the
trajectory starting from the secondary vertex position until the first measurement is found.
We require that the number of missing measurements per track, averaged over all the tracks
associated with the displaced vertex, is less than 2.

If a long-lived neutral particle decays into a dijet at a displaced location, the trajectories of all
tracks associated with the dijet should cross the line drawn from the primary vertex in the
direction of the dijet momentum vector at the secondary vertex. The quantity Ltrack

xy , illustrated
in Fig. 1, is defined as the distance in the transverse plane between the primary vertex and the
track trajectory, measured along the dijet momentum direction. We use a clustering procedure

L
xy

PV

Dijet 
momentum

trajectory
track

Figure 1: Diagram showing the calculation of the distance Ltrack
xy . In the transverse plane, Ltrack

xy
is the distance along the dijet momentum vector from the primary vertex (PV) to the point at
which the track trajectory is crossed.

to test whether the distribution of Ltrack
xy is consistent with a displaced dijet hypothesis. Clusters
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5

of maximum track multiplicity are obtained, using a hierarchical clustering algorithm [26],
with a size parameter which is set to 15% of the distance Lxy. When multiple clusters are
reconstructed, we select the one whose mean Ltrack

xy is closest to the value of Lxy. For each dijet
candidate, a reconstructed cluster with at least two tracks is required.

The candidate preselection, described above, may result in multiple dijet candidates per event.
The fraction of data events with more than one candidate passing the preselection criteria is
below 0.1%. Nevertheless, for further event selection, we select the best dijet candidate in each
event, defined as the one with the highest track multiplicity for the secondary vertex.

6 Background estimation and final selection
The results are based on events for which the dijet candidate passing the preselection criteria
(Sec. 5) also passes three additional selection criteria. For this purpose, the correlation factors
between the discriminating variables of the simulated background candidates have been stud-
ied, until a set of three nearly independent criteria has been found.

The first two selection criteria consist of simultaneous requirements on the number of prompt
tracks and on the jet energy fraction of the prompt tracks, applied independently for each jet
in the displaced dijet pair. The third criterion is a likelihood discriminant, formed from the
following four variables:

• secondary vertex track multiplicity;

• cluster track multiplicity;

• cluster root mean square (RMS)—the relative RMS of Ltrack
xy with respect to the value

of Lxy for the secondary vertex, for the displaced tracks associated with the cluster;

• fraction of the secondary vertex tracks having a positive value of the signed impact
parameter (SIP). SIP is defined as a scalar product between the vector pointing from
the primary vertex to the point of closest approach of the trajectory to the beam line
(impact parameter vector) and the dijet momentum vector.

The likelihood ratio p for an X boson candidate is defined by:

p =
pS

pS + pB
, (1)

with

pS(B) =
4

∏
i=1

pS(B),i, (2)

where pS(B),i is the signal (background) probability density function for the ith input variable.
The probability density functions pS(B),i are obtained using normalized signal and background
MC distributions of dijet candidates passing the preselection. Because of the limited number
of events in the background MC samples, we select the MC events with a looser trigger than
the signal trigger, only requiring HT > 300 GeV with no additional requirement of a displaced
dijet candidate. The same loose trigger was in operation during data collection. However,
only a fraction of the events passing the trigger was recorded, so that the effective integrated
luminosity for this data sample amounts to 17 pb−1. Figure 2 presents the distributions of all
four variables entering the likelihood discriminant for data, SM background MC simulation,
and signal MC samples. The signal model distributions are found to have little dependence on
the input masses and lifetimes, and therefore all the signal samples are merged in creating the
pS,i functions.
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Figure 2: Dijet variables employed in the likelihood discriminant for simulated signal, simu-
lated SM QCD background, and candidates in data, after the preselection. Data and simulated
events are selected using a trigger that requires HT > 300 GeV. The simulated signal and SM
background distributions are scaled to an integrated luminosity of 17 pb−1. For purposes of
illustration, the signal process H → 2X → 2qq is assigned a 10 µb cross section for each mass
pair. The differences between the mass pairs arise mainly from differences in the kinematic
acceptance. Error bars and bands shown for the data, simulated SM background, and data/SM
background ratio distributions, correspond to statistical uncertainties. The data/SM ratio his-
tograms are shown with neighboring bins merged, until the relative statistical uncertainty is
less than 25%. The last bin in each histogram is an overflow bin.
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7

The three selection criteria (number of prompt tracks and prompt track energy fraction of jet
1, number of prompt tracks and prompt track energy fraction of jet 2, and vertex/cluster dis-
criminant) classify the events into eight regions. As listed in Table 1, the events in the A region

Table 1: Naming convention for the regions used in the background estimation procedure, A–
G, and the signal region, H. The “+” sign corresponds to a selection being applied and the “−”
sign to a selection being inverted.

Region Jet 1 selection Jet 2 selection Vertex/cluster selection
A − − −
B + − −
C − + −
D − − +
E − + +
F + − +
G + + −
H + + +

fail all three criteria, events in the B, C, D regions fail two of them and pass one, events in the
E, F, G regions fail one and pass two other criteria, and events in the signal region H pass all
the criteria. As the selection criteria are mutually independent in background discrimination,
the background level in the signal region H can be estimated using different products of event
counts in the other regions, namely FG/B, EG/C, EF/D, DG/A, BE/A, CF/A and BCD/A2. We
use BCD/A2 for the background prediction because it yields the smallest statistical uncertainty.
If the selection criteria are perfectly independent, all of the above products predict statistically
consistent amounts of background. However, the spread of the background predictions may
be larger due to systematic effects (e.g. residual interdependence of the variables). We there-
fore assign the largest difference between BCD/A2 and the other six products as a conservative
systematic uncertainty in the background prediction.

We determine the numerical values of the selection criteria by optimizing the expected limit for
the H signal model. Various values of the H mass, the X mass, and the X lifetime are considered.
The selection variables do not strongly depend on the particle masses. Therefore, the optimal
selection criteria vary only as a function of the mean transverse decay length of the generated
X bosons, 〈Lxy〉. We use two sets of selection criteria, depending on whether 〈Lxy〉 is below or
above 20 cm. The selection criteria are detailed in Table 2. For the neutralino model, the lower
lifetime selection is used for all signal samples.

Table 2: Optimized selection criteria, the number of observed events in data, and the back-
ground expectations with their statistical (first) and systematic (second) uncertainties. The low
〈Lxy〉 selection is optimized for signal models with 〈Lxy〉 < 20 cm, while the high 〈Lxy〉 selec-
tion is optimized for signal models with higher 〈Lxy〉.

low 〈Lxy〉 selection high 〈Lxy〉 selection
Number of prompt tracks for each jet ≤1 ≤1

Prompt track energy fraction for each jet <0.15 <0.09
Vertex/cluster discriminant >0.9 >0.8

Data events 2 1
Expected background 1.56± 0.25± 0.47 1.13± 0.15± 0.50

To check the background prediction, a control region is used that consists of events with a dijet
candidate that is required to pass all of the selection criteria but fail the preselection require-
ment that the average number of missing measurements for dijet tracks be less than 2. The
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8 7 Systematic uncertainties

signal efficiency in this region is a factor of 30 smaller than the efficiency in the signal region,
while the background level expectations are similar. In Fig. 3, we compare the observed back-
ground as a function of the vertex discriminant in this control sample, estimated using region
H, against the prediction from BCD/A2.
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Figure 3: The expected and observed background level as a function of the vertex discriminant
selection in the background dominated data control region, obtained by inverting the selection
requirement on missing track hits. The left (right) plot is obtained after applying all other selec-
tion criteria as normal, optimized for the region 〈Lxy〉 < (>)20 cm. The predicted background
error bands represent both statistical and systematic uncertainties added in quadrature.

We evaluate the p-value of the observed number of events based on a probability function
that is a Poisson distribution convolved with a Gaussian function representing the systematic
uncertainty. In Fig. 3, this p-value has been converted to an equivalent number of standard de-
viations using the normal cumulative distribution. We refer to this number as the significance
of the difference between the expected and observed backgrounds. In all cases, the magnitude
of the observed significance is less than 2 standard deviations.

7 Systematic uncertainties
Sources of systematic uncertainty arise from the integrated luminosity, background prediction,
and signal efficiency estimation. The uncertainty in the integrated luminosity measurement is
2.6% [21]; the uncertainties in the background predictions are described in Sec. 6.

The signal efficiencies are obtained from MC simulations of the various signals, including full
detector response modeling. The systematic uncertainties related to the signal efficiency are
dominated by the differences between data and simulation, evaluated in control regions. The
relevant differences are discussed below and their impact on the signal efficiency is evaluated.
Table 3 summarizes the sources of systematic uncertainty affecting the signal efficiency.

Varying the modeling of the pileup, within its estimated uncertainty, yields a relative change
in the signal selection efficiency of less than 2%, independent of masses and lifetimes over the
ranges studied.

The trigger efficiency, obtained from control samples selected using lower threshold triggers,
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7.1 Track finding efficiency 9

Table 3: Systematic uncertainties affecting the signal efficiency. For the uncertainties that de-
pend on particle masses and lifetime, a range of values is given for the signal parameters used.
In all cases, the uncertainties are relative.

Source Uncertainty
Pileup modeling 2%

Trigger efficiency 6%
Jet energy corrections 0%–5%

Track finding efficiency 4%
Jet momentum bias 1%–5%

Total 8%–10%

is found to be higher in the simulation than in the data. An overall correction of 11± 6% is
applied to the trigger efficiency.

Jet energy corrections are varied within their uncertainties [27]. This variation affects only the
H signal models with mH = 200 and 400 GeV, with a relative change in the signal efficiency of
5% and 3%, respectively. For the H signal model with mH = 1000 GeV and for the neutralino
model, the energies of the jets are high enough that the variation in the energy correction does
not alter the selection efficiency.

7.1 Track finding efficiency

The tracks associated with the dijet candidates correspond mostly to light hadrons originating
at a displaced location. The K0

S → π+π− decay provides an abundant source of displaced
tracks owing to the K0

S mean proper decay length of 2.68 cm [28]. The reconstruction of a K0
S

candidate depends upon the reconstruction of the two pions. Therefore it is proportional to the
square of the efficiency for finding displaced tracks. Approximately 250 000 K0

S candidates are
obtained from a data sample collected with a multijet trigger. K0

S candidates from simulation
are obtained using QCD multijet samples. The MC simulation does not reproduce perfectly ei-
ther the overall production rate for K0

S, or their kinematic distributions [29]. In order to account
for these differences, we first select K0

S candidates with transverse decay lengths Lxy < 2 cm,
where tracking efficiency is high and well simulated. We then match the pT and η distribu-
tions for these candidates and obtain weights, binned in pT and η, as well as an overall scale
factor, that are applied to all K0

S candidates. Figure 4 presents the decay length distributions
of the K0

S candidates in data and simulation after this reweighting. Data and simulation agree
within 10% in the entire range of the tracker acceptance. Therefore, we estimate the tracking
efficiency systematic uncertainty to be 5%. We study the track finding systematic uncertainty
by removing 5% of tracks before dijet reconstruction and selection. For all signal models, the
signal reconstruction efficiency is lowered by at most 4%.

7.2 Jet momentum bias

For jets originating at a location that is significantly displaced from the event primary vertex,
the reduced track reconstruction efficiency and an inclined approach angle at the calorimeter
face result in a systematic underestimation of the jet momentum by up to 10%, as determined
from simulation. We assume that the detector geometry is well reproduced in the MC simu-
lation, and study only the jet momentum dependence on the reconstruction efficiency of dis-
placed tracks. A 5% variation in the jet energy fraction carried by tracks, corresponding to the
systematic uncertainty in the track finding efficiency (Sec. 7.1), leads to a change in the signal
efficiency of 1%–5%, over the range of signal models considered.
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Figure 4: Transverse decay length (left) and decay length (right) distributions of the K0
S candi-

dates in data and simulation. The ratio histograms are shown with neighboring bins merged
until the relative statistical uncertainty falls below 2%. The last bin contains all candidates that
are above the plotted range.

7.3 Effect of higher-order QCD corrections

The signal reconstruction efficiency is sensitive to the jet energy scale variations, for the H sig-
nal model with H masses of 200 GeV and 400 GeV. Therefore, it is also sensitive to the modeling
of the H pT spectrum, which may be influenced by higher-order QCD corrections. To study this
effect, we reweight the leading-order PYTHIA H pT spectrum from our signal samples to match
the corresponding distribution, determined at next-to-leading order (NLO) using POWHEG [30–
32]. For signal with masses mH = 200 (400)GeV and mX = 50 (150)GeV, this reweighting
increases the efficiency by 20 (3)%, while for other H masses the effect is below 1%. Since the
H signature simply relates to a benchmark model, we do not incorporate this variation as an
additional systematic uncertainty.

8 Results
No significant excess of events is observed over the predicted backgrounds. Two events pass
the low 〈Lxy〉 selection (〈Lxy〉 < 20 cm). One of the two events passing the low 〈Lxy〉 selection
additionally passes the high 〈Lxy〉 selection (〈Lxy〉 > 20 cm). No additional candidates pass the
high 〈Lxy〉 selection. Both of these results are in agreement with the background expectations
quoted in Table 2.

8.1 Upper limits

We set 95% confidence level (CL) upper limits on the signal cross section for a counting exper-
iment using the CLs method [33, 34]. The limit calculation takes into account the systematic
uncertainties described in Sec. 7 by introducing a nuisance parameter for each uncertainty,
marginalized by a log-normal prior distribution.

Upper limits are placed on the mean number of signal events NS that could pass the selection
requirements. The resulting observed upper limits on NS are 4.6 events for the low 〈Lxy〉 selec-
tion and 3.7 events for the high 〈Lxy〉 selection. These limits are independent of the particular
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model assumed for production of long-lived particles.

In addition, upper limits on the production cross section for the H and neutralino models are
determined. The efficiency of the full set of selection criteria for both signal models, at all
considered masses, is presented in Table 4.

Table 4: Signal reconstruction efficiency ε for the H and neutralino models in simulated signal
samples. The trigger and reconstruction efficiencies are both taken into account. The uncer-
tainties are statistical only.

mH [GeV] mX [GeV] cτ [cm] 〈Lxy〉 [cm] ε [%]
200 50 2 3 0.25± 0.05
200 50 20 30 0.15± 0.04

400 50 0.8 2.6 5.6± 0.2
400 50 8 26 3.3± 0.2
400 50 80 260 0.3± 0.1

400 150 4 3 15.6± 0.4
400 150 40 30 7.6± 0.3
400 150 400 300 0.6± 0.1

1000 150 1 2.5 41.3± 0.5
1000 150 10 25 31.1± 0.5
1000 150 100 250 4.8± 0.2

1000 350 3.5 2.9 49.2± 0.5
1000 350 35 29 30.9± 0.5
1000 350 350 290 4.4± 0.2
mq̃ [GeV] mχ̃0

1
[GeV] cτ [cm] 〈Lxy〉 [cm] ε [%]

350 150 17.8 22 7.2± 0.3
700 150 8.1 20 13.6± 0.3
700 500 27.9 20 22.8± 0.3
1000 150 5.9 19 13.0± 0.3
1000 500 22.7 21 26.4± 0.3
1500 150 4.5 21 8.6± 0.2
1500 500 17.3 23 28.8± 0.4

In Fig. 5 we show the upper limits on the product of the cross section to produce H → 2X
and the branching fraction squared B2 for X to decay into qq. The upper limits on the squark
production cross section (where each squark decays to a neutralino that decays into a quark-
antiquark pair and a muon) are presented in Fig. 6. In order to increase the number of tested
models, the lifetime distributions of the signal long-lived particles are reweighted to different
mean values, between 0.4τ and 1.4τ, for every lifetime value τ and mass combination listed
in Table 4. Event weights are computed as the product of weights assigned to each long-lived
particle in the event. The reweighted signal reconstruction efficiencies are then used to com-
pute the expected and observed limits for the additional mean lifetime values. The upper limits
for the neutralino model are compared with NLO calculations of the squark production cross
section, including next-to-leading-logarithmic (NLL) corrections obtained with the program
PROSPINO [35–37]. The theoretical cross section for q̃q̃∗ + q̃q̃ is 10, 0.139, 0.014, and 0.00067 pb
for q̃ masses of 350, 700, 1000, and 1500 GeV, respectively, assuming a gluino mass of 5 TeV. The
cross section uncertainty band represents the variation of the QCD factorization and renormal-
ization scales, each up and down by a factor of 2, as well as a variation obtained by using two
different sets of NLO parton distribution functions (CTEQ6.6 and MSTW2008 [38]).
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Figure 5: The 95% CL upper limits on the product of the cross section to produce a heavy
resonance H that decays to a pair of neutral long-lived particles X, and the branching fraction
squared B2 for the X decay into a quark-antiquark pair. The limits are presented as a function
of the X particle mean proper decay length separately for each H/X mass point. Solid bands
show the ±1σ range of variation of the expected 95% CL limits.
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When a neutralino decays into a quark-antiquark pair and a muon, all three particles may be
identified as jets by the jet reconstruction algorithm. The selected dijet candidate can there-
fore be formed from a quark-quark or a quark-muon pair. There are up to six displaced dijet
pairings per event, two quark-quark pairs and four quark-muon pairs. Using ∆R matching
between the generator-level particles and reconstructed jets, we find that at least 50% of the
accepted events have a dijet candidate selected that is associated with a quark-quark pair, for
all squark/neutralino masses.

9 Summary
A search for long-lived particles, produced in proton-proton collisions at

√
s = 8 TeV and

decaying to quark-antiquark pairs, has been performed. The observed results are consistent
with standard model expectations and are used to derive upper limits on the product of cross
section and branching fraction for a scalar particle H in the mass range 200 to 1000 GeV, de-
caying promptly into a pair of long-lived X bosons in the mass range 50 to 350 GeV, which
further decay to quark-antiquark pairs. For X mean proper decay lengths in the range 0.4 to
200 cm, the upper limits are typically 0.5–200 fb. Additionally, the results are interpreted for the
pair-production of long-lived neutralinos that decay into two quarks and a muon through an
R-parity violating coupling. For pair production of squarks, which promptly decay to neutrali-
nos that have mean proper decay lengths in the range 2 to 40 cm, the upper limits on the cross
section are typically 0.5–3 fb. The above limits are the most stringent on these channels to date.
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Figure 6: The 95% CL upper limits on the product of the cross section to produce a pair of
squarks, where each squark decays to a long-lived neutralino, and the branching fraction
squared B2 for neutralino to decay into a pair of up or down quarks and a muon. The lim-
its are presented as a function of the neutralino mean proper decay length separately for each
squark/neutralino mass point. For each mass point the theoretical cross section for q̃q̃∗ + q̃q̃,
and its systematic uncertainty, are shown. Solid bands show the ±1σ range of variation of the
expected 95% CL limits.
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Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,
U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon,
A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits,
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C. Nägeli36, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane,
M. Rossini, A. Starodumov37, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber
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34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy

FERMILAB-PUB-14-568-CMS



33

35: Also at University of Athens, Athens, Greece
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Cag University, Mersin, Turkey
42: Also at Mersin University, Mersin, Turkey
43: Also at Izmir Institute of Technology, Izmir, Turkey
44: Also at Ozyegin University, Istanbul, Turkey
45: Also at Marmara University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
48: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
49: Also at School of Physics and Astronomy, University of Southampton, Southampton,
United Kingdom
50: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences,
Belgrade, Serbia
51: Also at Argonne National Laboratory, Argonne, USA
52: Also at Erzincan University, Erzincan, Turkey
53: Also at Yildiz Technical University, Istanbul, Turkey
54: Also at Texas A&M University at Qatar, Doha, Qatar
55: Also at Kyungpook National University, Daegu, Korea

FERMILAB-PUB-14-568-CMS


	1 Introduction
	2 CMS detector
	3 Online data selection
	4 Monte Carlo simulation samples
	5 Event reconstruction and preselection
	6 Background estimation and final selection
	7 Systematic uncertainties
	7.1 Track finding efficiency
	7.2 Jet momentum bias
	7.3 Effect of higher-order QCD corrections

	8 Results
	8.1 Upper limits

	9 Summary
	A The CMS Collaboration 



