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Abstract

Theories of physics beyond the Standard Model that address the hierarchy problem generally in-

volve top partners, new particles that cancel the quadratic divergences associated with the Yukawa

coupling of the Higgs to the top quark. With extensions of the Standard Model that involve new

colored particles coming under strain from collider searches, scenarios in which the top partners

carry no charge under the strong interactions have become increasingly compelling. Although

elusive for direct searches, these theories predict modified couplings of the Higgs boson to the

Standard Model particles. This results in corrections to the Higgs production and decay rates that

can be detected at the Large Hadron Collider (LHC) provided the top partners are sufficiently

light, and the theory correspondingly natural. In this paper we consider three theories that ad-

dress the little hierarchy problem and involve colorless top partners, specifically the Mirror Twin

Higgs, Folded Supersymmetry, and the Quirky Little Higgs. For each model we investigate the

current and future bounds on the top partners, and the corresponding limits on naturalness, that

can be obtained from the Higgs program at the LHC. We conclude that the LHC will not be able

to strongly disfavor naturalness, with mild tuning at the level of about one part in ten remaining

allowed even with 3000 fb−1 of data at 14 TeV.
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I. INTRODUCTION – UNCOLORED TOP PARTNERS

‘‘It’s a bit like spotting a familiar face from afar. Sometimes you need closer

inspection to find out whether it’s really your best friend, or actually your

best friend’s twin.’’

– Rolf Heuer, July 2012

——————

The discovery of a 125 GeV Higgs boson at the LHC [1, 2] seems to complete the Stan-

dard Model (SM) of particle physics. With the inclusion of the Higgs, the SM is a perfectly

well-behaved theory up to energies that are exponentially higher than the Higgs mass. This

extrapolation, without the inclusion of new physics, presents a theoretical problem because

achieving the observed hierarchy between the electroweak scale and the Planck scale requires

exquisite fine-tuning. This tuning is required because quadratically divergent radiative cor-

rections to the Higgs mass parameter need to be canceled by a large bare mass. One of

the most important questions in high energy physics today is whether such a tuning indeed

exists in nature or whether the electroweak scale is set by a mechanism that does not require

a large cancellation. This is the question of Higgs naturalness, or the hierarchy problem.

An attractive dynamical solution to the naturalness problem is to posit a new symmetry

which protects the Higgs against large radiative corrections. Invoking such a symmetry

implies the existence of particles beyond the SM which constitute the “symmetry partners”

of known SM fields. Considered from the bottom up, the hierarchy problem is dominated

by the one loop diagram involving the top quark. Any model that addresses the hierarchy

problem must therefore include symmetry partners for the top quark, the “top partners.”

To avoid significant residual tuning, the top partners are expected to have masses at or

below the TeV scale. Well known examples of top partners include the scalar stops in

supersymmetric models (for a review see [3]) and vectorlike fermionic top-primes in little

Higgs models [4–7] (for a review see [8]). In these examples the new symmetry that is

protecting the Higgs commutes with the SM gauge symmetries, and so the top partners

have identical quantum numbers to those of the top. In particular, the top partners in
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these models are charged under the SM color group. This fact, in combination with the

expectation that these particles lie at or below the TeV scale, leads to the conclusion that

top partners should be produced at the LHC with high rates.

Searches for colored top partners, both scalar and fermionic, have so far yielded only

stringent limits (see e.g. [9–12]). Broadly speaking, their masses are constrained to lie above

around 700 GeV. This limit is by no means model independent. Indeed, top partners could

be hiding, for example, in R-parity violating supersymmetric models, if the spectrum is

squeezed [13], or in more elaborate constructions [14]. As the LHC experiments improve

their analyses, the expectation is that most of these holes in the search for natural models

will be covered.

As models of new physics in which the top partners are colored come under increasing

strain from LHC searches, theories in which the top partners are not charged under the

strong interactions appear ever more compelling. Colorless top partners arise in scenarios

where the symmetry that protects the Higgs mass does not commute with the SM SU(3)

color group [15–18]. Instead, the action of the symmetry is to interchange SM color with a

hidden color group, labeled QCD′.

In such a framework, the phenomenology associated with the top partners is strikingly

different. In particular, since the production cross sections for uncolored top partners are

many orders of magnitude smaller than in the colored case, this allows a simple understand-

ing of why these particles have so far escaped discovery.

The most striking possibility along these lines is the Mirror Twin Higgs model, where the

Higgs is protected by the discrete Z2 subgroup of a larger global symmetry [15] (see also [19–

23]). The matter content of the theory is simply the SM, and an additional mirror, or twin,

copy of the SM. In such a scenario, all of the new particles which ensure Higgs naturalness

up to scales of order 5-10 TeV are singlets under the SM. The only way to produce new

particles at the LHC, or to see their effects, is through the Higgs boson itself. In this

case, the effects of new physics might only appear in precision Higgs measurements. While

more exotic signals, such as the displaced vertices characteristic of hidden valleys [24], are

certainly possible in specific realizations of this scenario, they are by no means guaranteed.

It is therefore important to study the Higgs phenomenology of this framework in detail.

In other scenarios, the top partners, while remaining uncolored, carry electroweak (EW)

charges in addition to QCD′. Examples of such theories include Folded Supersymmetry [16]
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and the Quirky Little Higgs [18]. In such a scenario the top partners may be directly pro-

duced through the weak interactions. In these theories there are no fermions or scalars with

masses below the scale where QCD′ gets strong. Therefore the top partners, once produced,

exhibit quirky dynamics [25], which leads them to lose energy to radiation, followed by pair

annihilation [25–27]. As a consequence of the low EW production rates and the exotic phe-

nomenology, discovering these states directly is challenging and may require a large LHC

data set. Therefore, in such scenarios it is also important to study the effects of such models

on Higgs production and decay rates, since this may lead to stronger limits. A study of the

Higgs physics would also be important in establishing that the quirks, once discovered, are

involved in addressing the hierarchy problem.

A different category of models is one in which the top partners carry electroweak charges,

but the gauge symmetry corresponding to QCD′ is broken and is not present at low energies.

This is the case in the Dark Top model [17], which has the interesting feature that the top

partners also constitute the observed dark matter.

In this work we consider some specific theories where the top partners are colorless, and

study the phenomenology associated with the Higgs. In what follows we consider in turn

three models: the Mirror Twin Higgs in Section II, Folded Supersymmetry in Section III,

and the Quirky Little Higgs in Section IV. For each case we obtain expressions for the Higgs

production cross section in various channels, and the branching ratios into various final

states. We use this to determine the current and future bounds on the top partners, and

the corresponding limits on naturalness, that can be obtained from the Higgs program at

the LHC.

II. MIRROR TWIN HIGGS

A. The Model and Cancellation Mechanism

The Mirror Twin Higgs (MTH) model assumes a mirror copy of the complete SM, called

the twin sector, along with a Z2 symmetry that exchanges each SM particle with the cor-

responding twin partner. In addition, the Higgs sector of the theory is assumed to respect

an approximate global symmetry, which may be taken to be either SU(4)×U(1) or O(8).

This global symmetry is not exact, but is explicitly violated by the SM Yukawa couplings,
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and also by the SM electroweak gauge interactions. In particular, a subgroup of this global

symmetry is gauged, and contains the SU(2)×U(1) electroweak interactions of the SM, and

of the twin sector. The SM Higgs doublet emerges as a light pseudo-Nambu-Goldstone bo-

son (pNGB) when the global symmetry is spontaneously broken. In spite of the fact that

the gauge and Yukawa interactions explicitly violate the global symmetry, the discrete Z2

symmetry ensures the absence of quadratically divergent contributions to the Higgs mass to

one loop order.

The next step is to understand the cancellation of the quadratic divergences in this

model. We first consider the case where the breaking of the global symmetry, which for

concreteness we take to be SU(4)×U(1), is realized by a weakly coupled Higgs sector. The

SU(2)×SU(2)×U(1) subgroup of SU(4) and the additional U(1) are gauged giving rise to the

electroweak interactions in the SM and twin sectors. We use the labels A and B to denote

the SM and twin sectors respectively. Then, under the action of the discrete Z2 symmetry,

the labels A and B are interchanged, A↔ B. In this notation, HA represents the SM Higgs

doublet and HB the twin doublet. The field H, defined as

H =

 HA

HB

 , (1)

is chosen to transform as the fundamental representation under the global SU(4) symmetry.

The SU(4) invariant potential for H takes the form

m2H†H + λ(H†H)2 (2)

If the parameter m2 is negative, the SU(4)×U(1) symmetry is spontaneously broken to

SU(3)×U(1) and there are 7 massless NGBs in the spectrum. Depending on the alignment

of the vacuum expectation value (VEV), several of these NGBs will be eaten. If, however,

the VEV of H lies along HB, the SM Higgs doublet HA will remain massless.

The gauge and Yukawa interactions give rise to radiative corrections that violate the

global symmetry and generate a mass for HA. We focus on the top Yukawa coupling, which

takes the form

λAHAqAtA + λBHBqBtB . (3)

These interactions generate quadratically divergent corrections to the Higgs potential at one
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loop order. The corrections take the form

∆V =
3

8π2
Λ2
(
λ2
AH

†
AHA + λ2

BH
†
BHB

)
, (4)

where Λ is the ultraviolet (UV) cutoff. The Z2 symmetry, however, ensures λA = λB ≡ λ so

that

∆V =
3λ2

8π2
Λ2
(
H†AHA +H†BHB

)
=

3λ2

8π2
Λ2H†H . (5)

Thus, this contribution respects the global symmetry and so cannot contribute to the mass

of the NGBs. The leading contributions to the SM Higgs potential therefore arise from

terms which are only logarithmically divergent. Consequently, there are no quadratically

divergent contributions to the Higgs mass at one loop order.

The discussion so far has been restricted to the case when the breaking of the global

symmetry is realized by a weakly coupled Higgs sector. However, the cancellation is in

fact independent of the specifics of the UV completion and depends only on the symmetry

breaking pattern. To see this we consider the low energy effective theory for the light

degrees of freedom, in which the symmetry is realized nonlinearly. We parametrize the

pNGB degrees of freedom in terms of fields Πa(x) that transform nonlinearly under the

broken symmetry. For the purpose of writing interactions, it is convenient to define an

object H which transforms linearly under SU(4)×U(1),

H =

 HA

HB

 = exp

(
i

f
Π

)


0

0

0

f

 . (6)

Here f is the symmetry breaking VEV, and Π is given, in unitary gauge where all the B

sector NGBs have been eaten by the corresponding vector bosons, by

Π =


0 0 0 h1

0 0 0 h2

0 0 0 0

h∗1 h∗2 0 0

 . (7)

The discrete Z2 symmetry continues to interchange HA and HB. Expanding out the expo-

7



nential we obtain

H =


h

if√
h†h

sin

(√
h†h

f

)
0

f cos

(√
h†h

f

)


(8)

where h = (h1, h2)T is the Higgs doublet of the SM

HA = h
if√
h†h

sin

(√
h†h

f

)
= ih+ . . . , (9)

HB =

 0

f cos
(√

h†h
f

)  =

 0

f − 1

2f
h†h+ . . .

 . (10)

Now consider again the Z2 symmetric top quark sector, Eq. 3. To quadratic order in h this

takes the form

iλthqAtA + λt

(
f − 1

2f
h†h

)
qBtB . (11)

From this Lagrangian, we can evaluate the radiative contributions to the Higgs mass pa-

rameter. The contributing diagrams are shown in Fig. 1.

qA

h

tA

h
λt λt

+
h

qB

h

tB

λtf

−λt/(2f)

FIG. 1. Cancellation of quadratic divergences in the Mirror Twin Higgs model. The cancellation

holds when the top and its partner are charged under different SU(3)s.

Evaluating these diagrams we find that the quadratic divergence arising from the first

diagram is exactly canceled by that of the second. The first and second diagrams have been

colored differently to emphasize that the particles running in the two loops carry different

SU(3) charges. The first loop has the SM top quarks which carry SM color. The particles

running in the second loop, however, are twin top quarks charged under twin color, not SM

color.
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B. Effects on Higgs Physics

In order to understand the implications of this model for Higgs production and decays,

we first determine the couplings of the Higgs to the states in the low energy theory. We

choose the unitary gauge in the visible sector with h1 = 0 and h2 = (v + ρ)/
√

2 to obtain

HA =

 0

if sin

(
v + ρ√

2f

)  , HB =

 0

f cos

(
v + ρ√

2f

)  . (12)

The couplings of the weak gauge bosons to the Higgs spring from

∣∣DA
µHA

∣∣2 +
∣∣DB

µHB

∣∣2 (13)

where theDA,B denote the covariant derivative employing the A,B gauge bosons. Expanding

out the kinetic terms we find

1

2
∂µρ∂

µρ+

[
f 2g2

2
W+
AµW

µ−
A +

f 2g2

4 cos2 θW
ZAµZ

µ
A

]
sin2

(
v + ρ√

2f

)
+

[
f 2g2

2
W+
BµW

µ−
B +

f 2g2

4 cos2 θW
ZBµZ

µ
B

]
cos2

(
v + ρ√

2f

)
. (14)

From this we obtain the masses of the W± and Z gauge bosons in the visible and twin

sectors and their couplings to the Higgs, ρ. We find that

m2
WA

=
f 2g2

2
sin2

(
v√
2f

)
, m2

WB
=
f 2g2

2
cos2

(
v√
2f

)
. (15)

The masses of the Z bosons are related to those of the W s by the usual factor of cos θW .

Notice that the VEV of the Higgs in the SM, vEW =246 GeV, is related to the parameters

v and f of the MTH model by the relation

vEW =
√

2f sin

(
v√
2f

)
≡
√

2f sinϑ . (16)

From this expression, which defines the angle ϑ, we see that v and vEW become equal in the

v � f , or equivalently ϑ� 1, limit.

In the absence of any effects that violate the Z2 symmetry, minimization of the Higgs

potential will reveal that vEW = f , so that the state ρ is composed of visible and hidden

sector states in equal proportions. In order to avoid the experimental limits on this scenario,

it is desirable to create a hierarchy between these scales so that vEW < f . This is most simply
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realized by a soft explicit breaking of the Z2 symmetry. This allows the gauge and Yukawa

couplings to remain the same across the A and B sectors, so that the cancellation of quadratic

divergences remains intact.

We can expand out (14) to obtain the couplings of the Higgs to the electroweak gauge

bosons

1

2
∂µρ∂

µρ+

[
m2
WA
W+
AµW

µ−
A +

m2
ZA

2
ZAµZ

µ
A

](
1 + 2

ρ

vEW

cosϑ+ · · ·
)

+

[
m2
WB
W+
BµW

µ−
B +

m2
ZB

2
ZBµZ

µ
B

](
1− 2

ρ

vEW

tanϑ sinϑ+ · · ·
)
. (17)

We see that the couplings of ρ to the W and Z differ by a factor of cosϑ from the SM

prediction.

We now turn to the top quark sector (3). Expanding this in the unitary gauge we find

λt

[
ifqAtA sin

(
v + ρ√

2f

)
+ fqBtB cos

(
v + ρ√

2f

)]
(18)

=i
λtvEW√

2
qAtA

[
1 +

ρ

vEW

cosϑ

]
+ λtfqBtB cosϑ

[
1− ρ

vEW

tanϑ sinϑ

]
where for simplicity we have not differentiated the components in the SU(2) doublets. We

also see that the mass of the top quark’s mirror twin partner is

mT = λtf cosϑ = mt cotϑ . (19)

We are also in a position to determine the implications of the MTH model for Higgs

production and decays. We have seen that the tree level couplings of ρ to the visible sector

fermions and bosons are simply altered by a factor cosϑ relative to the SM. Since the new

particles in the model carry no SM charges, the radiatively generated couplings of the Higgs

to gluons and photons are modified relative to the SM by exactly the same factor. It follows

that all production cross sections are modified by the square of this factor,

σ(pp→ ρ) = cos2 ϑ σSM(pp→ h) (20)

where h is the SM Higgs boson. There is a similar relation for decays of the Higgs into A

sector particles,

Γ(ρ→ Ai) = ΓSM(h→ SMi) cos2 ϑ, (21)

where the subscript i represents any particle species. In addition, ρ will decay into B sector

particles that are light enough. A factor of sinϑ accompanies couplings of ρ to twin sector
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states, relative to the corresponding SM interactions. We define the fraction δ as

δ =
Γ(ρ→ B)

ΓSM(h) sin2 ϑ
. (22)

In the limit that the states in the twin sector have the same masses as their visible sector

partners, δ = 1. Away from this limit, δ is expected to differ from unity due to kinematic

effects. The total Higgs width in the MTH model is given by

Γ(ρ) = ΓSM(h)
[
cos2 ϑ+ δ sin2 ϑ

]
. (23)

Employing the expressions ΓSM
BR(h → SMi) and ΓBR(ρ → Ai) to denote the branching

fractions into the same particle species i we obtain

σ(pp→ ρ)ΓBR(ρ→ Ai)

σSM(pp→ h)ΓSM
BR(h→ SMi)

=
cos2 ϑ

1 + δ tan2 ϑ
=

1(
1 + δ

m2
t

m2
T

)(
1 +

m2
t

m2
T

) . (24)

As explained earlier, in the case when the Z2 symmetry is only softly broken, the gauge

and Yukawa couplings are the same in the visible and twin sectors. This allows us to obtain

expressions for the masses of the particles in the twin sector, and predict δ. The masses of

the B sector particles are related to those in the A sector by

mB = mA cotϑ (25)

and so for f � v the B sector masses are significantly larger that those of the A sector.

The B sector particles couple to ρ with the same coupling as in the SM, but modified by

the factor − sinϑ.

The leading order relation for SM Higgs decays to fermions f is given by

Γ(h→ ff) =
Nc

16π
mhλ

2
f

(
1− 4

m2
f

m2
h

)3/2

, (26)

where λf is to be evaluated at the Higgs mass. For decays into gauge bosons we use [28]

Γ(h→ V V ∗) =
3mh

32π3

m4
V

v4
EW

δVRT

(
m2
V

m2
H

)
(27)

where δ′W = 1, δ′Z = 7
12
− 10

9
sin2 θW + 40

9
sin4 θW , and

RT (x) =
3(1− 8x+ 20x2)√

4x− 1
cos−1

(
3x− 1

2x3/2

)
− 1− x

2x
(2− 13x+ 47x2)

− 3

2
(1− 6x+ 4x2) lnx (28)
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when the mass of the vector is less than the mass of the Higgs. By suitably modifying these

expressions, we can obtain the width of the Higgs into twin fermions and twin electroweak

gauge bosons. The Higgs may also decay into twin gluons gB:

Γ(ρ→ gBgB) =
α2
sm

3
h

72π3v2

∣∣∣∣∣34 ∑
q

AF

(
4m2

q

m2
h

)∣∣∣∣∣
2

(29)

with AF defined in (A6). The sum is over the twin quarks, but is dominated by the twin

top.

We use these formulas in conjunction with the factor of sin2 ϑ to determine δ as a function

of mt/mT :

δ =
∑
j

ΓSM
BR(h→ fjf j)


1− 4

m2
fj

m2
h

m2
T

m2
t

1− 4
m2
fj

m2
h


3/2

+
∑
j

ΓSM
BR(h→ VjV

∗
j )

RT

(
m2
Vj

m2
h

m2
T

m2
t

)

RT

(
m2
Vj

m2
h

)

+ ΓSM
BR(h→ gg)

∣∣∣∣AF (4m2
T

m2
h

)∣∣∣∣2∣∣∣∣AF (4m2
t

m2
h

)∣∣∣∣2
(30)

In our analysis, we take into account the decay modes of ρ into the twin sector bottom and

charm quarks, and into the tau and muon leptons. We use the Higgs widths reported in [29].

Using these results we can determine the rate of Higgs events into any SM state and the

branching fraction into twin sector states. We plot these results in Fig. 2. The blue line

represents the rate of Higgs events into SM final states in the softly broken MTH model

normalized to the SM. The green line denotes the branching fraction of the Higgs into the

twin sector particles. A key observation is that the MTH model predicts a relation between

the Higgs invisible branching fraction and the modification to standard model rates.

The corrections to the Higgs couplings in the MTH model relative to the SM are con-

strained by precision electroweak measurements. In theories where the Higgs emerges as a

pNGB, its couplings to the fermions and gauge bosons are generally smaller than in the SM.

In [30] precision electroweak constraints were applied to the MCHM4 model [31], which, like

MTH, modifies the Higgs couplings to all the vector bosons and fermions by a universal

factor. Their bound on ε, where
√

1− ε2 = cosϑ, also applies to the MTH model in a

strongly coupled UV completion, and can be translated into a bound on the top partner
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FIG. 2. In blue, a plot of the rate of Higgs events into SM states normalized to the SM. The green

line is the invisible branching ratio of the Higgs into mirror twin particles. The vertical orange and

red lines are the 95% confidence bound from precision electroweak constraints for a 1 and 5 TeV

cutoff respectively.

mass. Their analysis was carried out assuming a cutoff Λ =3 TeV. In general, however, the

leading contributions to the oblique parameters go like

αT ∼ −ε2 ln

(
Λ

mZ

)
, αS ∼ ε2 ln

(
Λ

mZ

)
, (31)

where mZ is the mass of the Z boson. For ε sufficiently small we expect these parameters

to dominate the analysis. In that case we may translate the bound on ε at Λ to a bound on

ε′ at Λ′ by

ε2 ln

(
Λ

mZ

)
= ε2

1 +
ln
(

Λ
Λ′

)
ln
(

Λ′

mZ

)
 ln

(
Λ′

mZ

)
≡ ε′2 ln

(
Λ′

mZ

)
. (32)

The 2σ bound on ε′ can be translated into a limit on the top partner mass. In Fig. 2 we

denote bound corresponding to a 1 and 5 TeV cutoff by the vertical orange and red lines

respectively.

Finally, we estimate the tuning ∆m of the Higgs mass parameter m2 as a function of the

top partner mass as a measure of the naturalness of the MTH model. We use the formula

∆m =

∣∣∣∣2δm2

m2
h

∣∣∣∣−1

(33)
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to estimate the tuning. We have denoted the quantum corrections to the Higgs mass pa-

rameter as δm2 and the physical Higgs mass as mh = 125 GeV.

The diagrams in Fig. 1 lead to

|δm2| = 3λ2
tm

2
T

8π2
ln

(
Λ2

m2
T

)
, (34)

up to finite effects. We take the cutoff Λ to be 5 TeV. In Fig. 2 we have denoted the top

partner masses corresponding to 30%, 20%, and 10% tuning.

The results of Fig. 2 should be compared to our expectations for the precision at which

the LHC will be able to constrain these couplings. Projections for the full high luminosity

LHC run (3000 fb−1) [32] show that the Higgs invisible branching fraction will be probed

down to about 10%. The precision for the signal strengths in the cleanest Higgs channels,

ZZ, WW , and γγ, is projected to be around 5%. The visible signal strengths are thus a

stronger constraint on the model and can probe a level of tuning of about 10% (although

combining several channels may improve this sensitivity). The sensitivity at the end of

Run II is only slightly worse. We conclude that models that are tuned at the level of one

part in ten may be able to escape detection at the LHC.

III. FOLDED SUPERSYMMETRY

A. The Model and Cancellation Mechanism

Supersymmetry (SUSY) is perhaps the best known solution to the hierarchy problem. In

supersymmetric theories every known particle is related by the symmetry to another particle

with a different spin, called its superpartner. The gauge quantum numbers of each particle

and its corresponding superpartner are identical. In supersymmetric extensions of the SM,

the quadratically divergent contributions to the Higgs mass from loops involving the SM

particles are canceled by new diagrams involving the superpartners.

In the case of the top quark, whose left and right components belong to the SU(2) doublet

q and SU(2) singlet u, the corresponding scalar partners are the scalar stops, which we label

by q̃ and ũ. Supersymmetric extensions of the SM generally contain two Higgs doublets, one

labeled Hu which gives mass to the up-type quarks and another, labeled Hd, which gives mass

to the down-type quarks and leptons. Both Hu and Hd have fermionic superpartners, the

Higgsinos. In supersymmetric theories, the one loop quadratically divergent contributions to
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the up-type Higgs mass associated with the top Yukawa coupling are canceled by diagrams

involving the stops. The relevant couplings take the form

(λtHuqu+ h.c.) + λ2
t |q̃Hu|2 + λ2

t |ũ|
2 |Hu|2 . (35)

These interactions lead to radiative corrections to the up-type Higgs mass from the diagrams

shown in Fig. 3.

q

Hu

u

Hu
λt λt

+
Hu

q̃, ũ

Hu
λ2
t

FIG. 3. Cancellation of quadratic divergences in the Folded SUSY model. This divergence is

canceled even if the top and stop transform under different color groups.

From the form of the interaction in (35), we see that for the cancellation to go through,

the left-handed stop q̃ must carry charge under the SU(2) gauge interactions of the SM.

At the diagrammatic level, however, the cancellation does not depend on whether the stops

transform under SM color.

In Folded Supersymmetric theories the cancellation of the one loop quadratic divergences

associated with the top Yukawa coupling takes place exactly as in the diagrams above,

but the top and its scalar partners, labeled “folded stops” or “F-stops”, are charged under

different color groups. While the fermions transform under the familiar SM color group, now

labeled SU(3)A, the scalars transform under a separate hidden color group, labeled SU(3)B.

The electroweak quantum numbers of the F-stops are identical to those of the corresponding

SM fermions. This scenario can be realized in a 5D supersymmetric construction, with the

extra dimension compactified on S1/Z2 (see [33] for an alternative UV completion). A

combination of boundary conditions and discrete symmetries ensures that the spectrum of

light states includes the SM particles and the scalar folded superpartners (“F-spartners”)

that cancel the quadratic divergences arising from the couplings of SM fermions to the up-

and down-type Higgs bosons. The gauginos are projected out by the boundary conditions,

and are not part of the low energy spectrum. The interactions of the top quarks and the

F-stops with the up-type Higgs have exactly the same form as in (35), and the cancellation
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of quadratic divergences between the fermion and scalar diagrams happens exactly the same

way.

B. Effects on Higgs Physics

In general, the low energy spectrum of Folded Supersymmetry contains two Higgs dou-

blets. Our analysis in this section will focus on the limit when one of the doublets is much

lighter than the other, so that the corrections to the Higgs phenomenology primarily arise

from the effects of the F-stops. In our discussion we follow the conventions of Haber[34].

In particular, we take vEW =
√
v2
d + v2

u = 246 GeV where vu and vd are the VEVs of the

up-type and down-type Higgs fields respectively. The ratio of the up-type and down-type

Higgs VEV is parametrized in terms of an angle β such that tan β = vu/vd.

It is well known that in order to obtain a mass of 125 GeV for the light Higgs h0 the

MSSM is driven into a constrained parameter space with very heavy stops, resulting in

significant tuning. This issue carries over to the folded SUSY construction. One of several

possible ways to alleviate this constraint is to add another U(1)X gauge symmetry to the

MSSM whose D-term contribution to the Higgs quartic increases the Higgs mass [35].

To be phenomenologically viable, the new gauge field Z ′ must have a mass mZ′ not far

above the scale of the soft masses [36]. This may be realized by giving two heavy scalar

fields φ and φc VEVs that break the U(1)X . The charge assignments of the SM fields under

U(1)X are chosen to be the same as under hypercharge. After integrating out the φ fields

the tree level Higgs quartic becomes

1

8

g2
L + g2

Y + g2
X

(
1 +

m2
Z′

2m2
φ

)−1
(|Hu|2 − |Hd|2

)
, (36)

where gL, gY , and gX are the SU(2)L, U(1)Y , and U(1)X gauge groups. The mass mφ is the

soft mass of φ, which is chosen to be equal to that of φc for simplicity.

This method, while not the unique way to raise the Higgs mass, serves to illustrate that

models of this type may have only moderate tuning from the top sector. For concreteness

we pick gX such that the Higgs mass, including one loop effects from the top and stops, is

125 GeV. For mZ′ =4 TeV and mφ =5 TeV a perturbative gX can be chosen to give the

correct Higgs mass. Additional details of the construction are given in Appendix B.

16



In the limit that only one Higgs doublet is light, its tree level couplings to the fermions

and gauge bosons are necessarily of the same form as in the SM, up to small corrections.

Therefore, we need only determine the couplings of the Higgs to the F-stops. The stop

mixing matrix is given byM2
Q̃

+m2
t +m2

Z

(
1

2
− 2

3
s2
W −

1

6
ŝ2

)
cos 2β mt(At − µ cot β)

mt(At − µ cot β) M2
Ũ

+m2
t +m2

Z

2

3
cos 2β

(
s2
W + ŝ2

)
 (37)

where sin θW ≡ sW , mt = λtvEW sin(β)/
√

2, and the effective coupling

ŝ2 ≡ g2
X

(
1 +

m2
Z′

2m2
φ

)−1
v2

EW

4m2
Z

. (38)

Although the original incarnation of Folded Supersymmetry has At = 0, in our analy-

sis we allow for the possibility that there may be more general constructions that admit

nonvanishing At. Then the heavy stop T̃ and the light stop t̃ can be written as

T̃ = cosαtq̃ + sinαtũ (39)

t̃ = − sinαtq̃ + cosαtũ (40)

where

cos 2αt =
M2

Q̃
−M2

Ũ
+m2

Z cos 2β
(

1
2
− 4

3
s2
W − 5

6
ŝ2
)

m2
T̃
−m2

t̃

, sin 2αt =
2mt(At − µ cot β)

m2
T̃
−m2

t̃

. (41)

and

m2
T̃ ,t̃

=
1

2

[
M2

Q̃
+M2

Ũ
+ 2m2

t +
1

2
m2
Z cos 2β

(
1 + ŝ2

)]
± 1

2

√[
M2

Q̃
−M2

Ũ
+m2

Z cos 2β

(
1

2
− 4

3
s2
W −

5

6
ŝ2

)]2

+ 4m2
t (At − µ cot β)2 . (42)

To ensure that the light stop t̃ has non-negative mass the relation

mt |At − µ cot β| ≤√[
M2

Q̃
+m2

t +m2
Z

(
1

2
− 2

3
s2
W −

1

6
ŝ2

)
cos 2β

] [
M2

Ũ
+m2

t +m2
Z

2

3
cos 2β (s2

W + ŝ2)

]
(43)

must be satisfied.
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We can then obtain the couplings of the heavy and light stop mass eigenstates to the

light Higgs, yT̃h
0|T̃ |2 and yt̃h

0|t̃|2. These are given by

yT̃ ≡
2

vEW

{
m2
t +m2

Z cos 2β

[
1

4
+

1

4
ŝ2 +

(
1

4
− 2

3
s2
W −

5

12
ŝ2

)
cos 2αt

]
+

1

2
mt(At − µ cot β) sin 2αt

}
, (44)

yt̃ ≡
2

vEW

{
m2
t +m2

Z cos 2β

[
1

4
+

1

4
ŝ2 −

(
1

4
− 2

3
s2
W −

5

12
ŝ2

)
cos 2αt

]
− 1

2
mt(At − µ cot β) sin 2αt

}
. (45)

We are now in a position to determine the Higgs phenomenology of this model. At tree

level, the couplings of the Higgs to the fermions and to the W± and Z gauge bosons are

the same as in the SM model. Furthermore, since the F-stops carry no charge under SM

color, the couplings of the Higgs to the gluons, which are generated at one loop, are also the

same as in the SM. It follows that the Higgs production cross sections in the gluon fusion,

associated production and vector boson fusion channels are largely unchanged from the SM

predictions.

The Higgs decay widths into SM fermions, gluons and massive gauge bosons are also very

close to the SM predictions. However, since the F-stops do carry electric charges, the rate

of Higgs decays to two photons is affected. This can be used to constrain the model [37].

Using the results in Appendix A we find

Γ(h0 → γγ) =
α2m3

h0

1024π3

∣∣∣∣ 2

vEW

AV

(
4m2

W

m2
h0

)
+

2

vEW

4

3
AF

(
4m2

t

m2
h0

)

+
yt̃
m2
t̃

4

3
AS

(
4m2

t̃

m2
h0

)
+

yT̃
m2
T̃

4

3
AS

(
4m2

T̃

m2
h0

)∣∣∣∣∣
2

(46)

where we have employed (44) and (45) to obtain the last two terms.

Having now accounted for all the decay modes we find the corrections to the total width

are negligible. Therefore, we focus on only the diphoton channel. It can be seen from (44),

(45) and (46) that in general the stop loops will contribute with the same sign as the top

loops and therefore lead to a reduction in the diphoton decay rate. If the mixing At is

increased, however, the coupling of the Higgs to the light stop can change sign, leading to

an enhancement in the rate. We parametrize this difference from the SM value by

δ =
Γ(h0 → γγ)− ΓSM(h→ γγ)

ΓSM(h→ γγ)
. (47)

18



Then, neglecting corrections to the overall Higgs width, we have

σ(pp→ h0)ΓBR(h0 → γγ)

σSM(pp→ h)ΓSM
BR(h→ γγ)

= 1 + δ. (48)

FIG. 4. Plots of the total Higgs to diphoton rate normalized to SM value as function of the square

averaged stop mass m2
T . The red, blue, and green lines correspond to mixing At − µ cotβ equal

to 100, 400, and 500 GeV. We have taken the soft masses equal, tanβ = 10, and µ = −200 GeV.

Contours of tuning are also plotted. The color of the contour indicates the size of At for which it

applies.

In Fig. 4 we plot the total rate of the h0 → γγ normalized to the SM value as a function

of the square averaged stop mass m2
T = 1

2
(m2

T̃
+m2

t̃
). For definiteness we take the stop soft

masses to be equal, µ = −200 GeV, and choose tan β = 10. The red, blue, and green lines

correspond to mixing terms At−µ cot β equal to 100, 400, and 500 GeV respectively. We see

that for small mixing the rate is reduced while for larger mixing the rate can be enhanced.

The tuning ∆m of the Higgs mass parameter m2 in this model differs only slightly from

the MSSM case. As in the MTH model, we estimate the tuning as

∆m =

∣∣∣∣2δm2

m2
h

∣∣∣∣−1

(49)

where δm2 represents the quantum corrections to the Higgs mass parameter and mh = 125

GeV is the physical Higgs mass. In addition to the diagrams in Fig. 3, there is a logarithmic

divergence due to stop mixing, as shown in Fig. 5. From these loops we find, for equal stop

19



q̃

Hu
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Hu

Atλt Atλt

FIG. 5. Contribution to the logarithmic divergence in folded SUSY from the stop mixing term.

soft masses msoft,

|δm2| = 3λ2
t

16π2

[
2m2

T − 2m2
t −

1

2
m2
Z cos 2β

(
1 + ŝ2

)
+ A2

t

]
ln

(
Λ2

m2
soft

)
(50)

where Λ = 5 TeV is the cutoff of the model. We have shown the tuning for various values of

m2
T in Fig. 4. The color of each tuning contour corresponds to value of At used to generate

the corresponding curve in the figure.

We see that the modifications to the Higgs couplings in Folded supersymmetry are very

small, even when for very mild tuning. Therefore, precision Higgs couplings at the LHC will

not strongly constrain naturalness. In this framework, however, top and quark partners are

charged under electroweak interaction and will be produced. We therefore briefly investigate

the collider limits on F-squarks.

C. Direct searches for F-squarks

Because the modifications to Higgs rates in folded supersymmetry are small, probes of

naturalness in this framework may come from direct searches for F-squarks. Because of the

new strong force, collider searches for F-squarks may be complicated by quirky dynamics [25].

The quirky narrative for folded SUSY has been outlined in [26]. The most promising signal

comes from the production of an up-type and a down-type F-squark through an s-channel

W . This pair of F-squarks is bound by a quirky string and forms an excited state which

loses its excitation energy to soft radiation promptly on collider time scales. The exotic

scalar meson, which is now in its ground state, is electrically charged and thus cannot decay

into hidden glueballs. In [26] it was shown that the dominant decay of this state is prompt,

going to Wγ with a branching ratio of about 0.85. The predicted signal of this framework

is thus a Wγ resonance at twice the F-squark mass. We will now estimate the current limit
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FIG. 6. An estimate of the ATLAS limits on the production of an up-down pair of F-squarks as

a function of the F-squark mass, assuming 1, 2, or 3 such generations.

on this framework from an ATLAS Wγ resonance search [38].

To do this we make some simplifying assumptions. These assumptions lead to a best-case

limit, and a more rigorous study is likely to yield weaker bounds. The mass splitting among

these two states is expected to be small for the first two generation of F-squarks. Therefore,

the time scale β decay of one into the other is expected to be longer than the time required

for energy loss and decay. We assume that this is the case for the third generation as well.1

We further assume that the contribution to the pT of the ground state meson from energy

loss is small, which would be the case if the radiation is perfectly isotropic (see [26] for

corrections to this approximation). In this case the transverse mass peak is not smeared.

Making these assumptions will give us an optimistic estimate for the limit.

The production cross section of the Wγ resonance is simply the cross section for up-

down F-squark pair production. We calculate this cross section using MadGraph [39] at the

8 TeV LHC. Multiplying by the appropriate branching fractions, we compare this rate to

the ATLAS limit in Fig. 6. We find that the estimated limits on the F-squark mass are

about (320, 445, 465) GeV for 1, 2, and 3 generations respectively.

We conclude that natural models of folded supersymmetry are still allowed by current

LHC searches, but future dedicated searches at run-II of the LHC are motivated. We also

1 If this is not the case, β decay will precede the reannihilation of the F-squarks and the dominant channel

is a pair of hidden glueballs.
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note that depending on the dominant mechanism of energy loss, the Wγ resonance may be

accompanied by many soft photons contributing to the underlying event [27].

IV. QUIRKY LITTLE HIGGS

A. The Model and Cancellation Mechanism

In Little Higgs models the Higgs doublet emerges as a pNGB whose mass is protected

against one loop quadratic divergences by collective symmetry breaking. To understand

how this mechanism operates, consider the Simplest Little Higgs model [7]. In this the-

ory the SU(2)L×U(1)Y gauge symmetry of the SM is embedded in the larger gauge group

SU(3)W×U(1)X. All the states in the SM that are doublets under SU(2)L are now promoted

to triplets. The Higgs sector for this theory is assumed to respect a larger approximate

global [SU(3)×U(1)]2 symmetry, of which the gauged SU(3)W×U(1)X is a subgroup. This

approximate global symmetry, which is explicitly violated by both the gauge and Yukawa

interactions, is broken to [SU(2)×U(1)]2, which contains SU(2)L×U(1)Y of the SM as a sub-

group. The SM Higgs doublet is contained among the uneaten pNGBs that emerge from this

symmetry breaking pattern, and its mass is protected against large radiative corrections.

The symmetry breaking pattern may be realized using two scalar triplets of SU(3)W ,

which we denote by φ1 and φ2. If the tree level potential for these scalars, V (φ1, φ2) is of

the form

V (φ1, φ2) = V1(φ1) + V2(φ2) , (51)

then this sector possesses an [SU(3)×U(1)]2 global symmetry. When φ1 and φ2 acquire VEVs

f1 and f2, this symmetry is broken to [SU(2)×U(1)]2. For simplicity we assume that the

two VEVs are equal, so that f1 = f2 = f . However, this is not required for the mechanism

to work. Of the 10 resulting NGBs, 5 are eaten while the remaining 5 contain the SM Higgs

doublet.

The next step is to understand how the cancellation of quadratic divergences associated

with the top Yukawa coupling arises in this theory. The top sector takes the form

λ1φ1Qt1 + λ2φ2Qt2 (52)

where Q represents the SU(3) triplet containing the third generation left-handed quarks,
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while t1 and t2 are SU(3) singlets that carry the same electroweak charge as the right-

handed top quark in the SM. These interactions do not respect the full [SU(3)×U(1)]2 global

symmetry but only the gauged SU(3)W×U(1)X subgroup. As a consequence, the potential

for φ1 and φ2 will receive corrections, and the 5 uneaten NGBs will acquire a mass. However,

as we now explain, this radiatively generated contribution to the mass is not quadratically

divergent, but only logarithmically divergent.

qL

φ1

t1

φ1
λ1 λ1

+

qL

φ2

t2

φ2
λ2 λ2

FIG. 7. Quadratic divergences from the top sector of the Littlest Higgs model.

The diagrams that can potentially lead to quadratically divergent contributions to the

masses of the pNGBs are shown in Fig. 7. The divergent parts of these graphs are given by

3

8π2
Λ2λ2

1φ
†
1φ1 +

3

8π2
Λ2λ2

2φ
†
2φ2 . (53)

However, we see that these terms respect the full global SU(3)×SU(3) symmetry and so

cannot contribute to the mass of the pNGBs. This is not a coincidence, but a consequence

of collective symmetry breaking. To see this, note that in (52) if either of the λi is set to

zero then the Lagrangian for the top sector recovers the full SU(3)×SU(3) global symmetry

and all the resulting NGBs are all massless. We see the global symmetry is violated only

in the presence of both λ1 and λ2, which collectively break the symmetry. Therefore, any

correction to the pNGB masses can only arise from a diagram that includes both λ1 and λ2.

There are, however, no such quadratically divergent diagrams. The lowest order diagram

that corrects the potential and contains both λ1 and λ2 is the box diagram, shown in Fig.

8, which is only logarithmically divergent.

We can show that this protection mechanism depends only on the symmetry breaking

pattern of the model and is independent of the details of the dynamics that breaks the

symmetry. To do this, we parametrize the uneaten pNGBs, in unitary gauge, by a set of

fields π(x). It is convenient to construct from the π(x) two objects φ1 and φ2 that transform
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φ1

φ1
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FIG. 8. Logarithmically divergent contribution to the Higgs potential. This contribution vanishes

unless both λ1 and λ2 are nonzero.

linearly under the full broken SU(3)×SU(3) symmetry.

ϕ1 = eiΠ/f


0

0

f

 , ϕ2 = e−iΠ/f


0

0

f

 , (54)

with the relevant degrees of freedom encapsulated by

Π =


0 0

0 0
h

h† 0

 . (55)

The Lagrangian for the top sector then takes the form

λ1√
2
ϕ†1Qt1 +

λ2√
2
ϕ†2Qt2 . (56)

Expanding to quadratic order in h and making the definitions

tc ≡ i

(
λ1√
λ2

1 + λ2
2

t2 −
λ1√
λ2

1 + λ2
2

t1

)
, (57)

T c ≡ λ2√
λ2

1 + λ2
2

t2 +
λ1√
λ2

1 + λ2
2

t1 (58)

this becomes

hq (λtt
c + λTT

c) +mTTT
c

(
1− 1

2f 2
h†h

)
. (59)

Here we have defined

λt =

√
2λ1λ2√
λ2

1 + λ2
2

, λT = i
λ2

2 − λ2
1√

2
√
λ2

1 + λ2
2

, mT =
f√
2

√
λ2

1 + λ2
2 . (60)

The diagrams contributing to the Higgs mass, see Fig. 9, demonstrate the cancellation of

quadratic divergences. Notice that because q couples to both tc and T c that the top partner
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must transform under the same SU(3) as the top. Thus, the two loops have been given the

same color. If, however, there is some symmetry that forces λ1 = λ2 then the coupling λT

of q to T c vanishes and the cancellation can go through even if tc and T c transform under

different SU(3) color groups.

q

h

tc, T c

h
λt, λT λt, λT

+
h

T c

h

T

mT

−mT /(2f
2)

FIG. 9. Cancellation of quadratic divergences in the Littlest Higgs model. The two fermions must

transform under the same SU(3) unless λ1 = λ2.

In Quirky Little Higgs models the one loop quadratic divergences generated by the top

quark are canceled exactly as in the diagrams shown above, but the fermionic top partners

T and T c do not transform under the SM color group, SU(3)c. These partners are instead

charged under a different SU(3), called infracolor, and labeled as SU(3)IC. However, the

electroweak quantum numbers of the quirks are the same as those of their SM partners. In

this construction, all the fermions that are charged under SU(3)IC have masses much above

the scale where the gauge group gets strong. As a consequence, the system exhibits quirky

dynamics.

Quirky Little Higgs models can be realized in a 5 dimensional space with the extra dimen-

sion compactified on S1/Z2. The breaking of the SU(3)W×U(1)X gauge group down to the

SM is realized by boundary conditions and separately by a scalar field Φ that transforms as

a triplet under SU(3)W . The 5 dimensional theory also possesses an SU(6) gauge symmetry

that is broken down to the SM SU(3) color group and to SU(3)IC by boundary conditions.

This construction allows the third generation quark doublet q and the top partner T to

emerge as zero modes from the same bulk multiplet, but transforming under different color

groups. The Higgs doublet is contained among the pNGBs that emerge from Φ after the

breaking of the SU(3)W×U(1)X symmetry. The interactions in (59) arise from couplings of

Φ to the multiplets that contain the top quarks and the top partners. The SU(6) gauge

symmetry ensures the equality of the couplings in (59) that is necessary to enforce the

cancellation of the quadratic divergence.
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B. Effects on Higgs Physics

When the scalar field Φ acquires a VEV, the SU(3)W×U(1)X gauge symmetry is broken

down to SU(2) L×U(1)Y of the SM. We associate the SM-like Higgs doublet with some of the

NGB modes that emerge from this breaking pattern. We parametrize the relevant degrees

of freedom (neglecting the SU(2)W singlet that plays little role in the phenomenology) as

Φ = exp

(
i

f
Π

)
0

0

f

 (61)

with

Π =


0 0 h1

0 0 h2

h∗1 h∗2 0

 . (62)

Employing the symbol h for the SU(2)W doublet of h1 and h2 we find

Φ =


h

if√
h†h

sin

(√
h†h

f

)

f cos

(√
h†h

f

)
 . (63)

The top sector Yukawa interaction takes the form

− i λtf√
h†h

sin

(√
h†h

f

)
h†tcq + λtf cos

(√
h†h

f

)
TT c . (64)

After moving to the unitary gauge h1 = 0, h2 = (v + ρ)/
√

2 this becomes

λt

[
−if sin

(
v + ρ√

2f

)
tLt

c + f cos

(
v + ρ√

2f

)
TT c

]
(65)

with tL and tc transforming under SU(3) color and T and T c transforming under SU(3)IC.

Expanding to first order in ρ and defining ϑ ≡ v/(
√

2f) we find

λt

[
−ivEW√

2
tLtR

(
1 +

ρ

vEW

cosϑ+ . . .

)
+ f cosϑTT c

(
1− ρ

vEW
tanϑ sinϑ+ . . .

)]
(66)

with vEW =
√

2f sinϑ. We see from this that the mass of the top and the mass of the top

partner are related by mt = mT tanϑ. The gauge sector analysis is very similar to that
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of the A sector in MTH models. We expand the gauge kinetic term |DµΦ|2 in the unitary

gauge to find the couplings between ρ and the gauge bosons:[
m2
WW

+
µ W

µ− +
m2
Z

2
ZµZ

µ

](
1 + 2

ρ

vEW

cosϑ+ . . .

)
. (67)

We see from this that all zero mode quark and gauge boson couplings are suppressed by a

universal factor of cosϑ relative to the SM.

The fact that all the Higgs couplings are corrected by the same factor implies that all the

production modes are also suppressed by a common factor relative to the SM,

σ(pp→ ρ) = cos2 ϑ σSM(pp→ h). (68)

A similar relation holds for all decay modes of the Higgs Γ(ρ → Ai), with the exception of

Γ(ρ → γγ), which receives new contributions from loops involving the top partners. The

sign of the coupling of the top partner to the Higgs is opposite to that of the top. This

causes their contributions to partially cancel, leading to an enhancement in the γγ rate.

Using Eq. (A1) from Appendix A we find

Γ(ρ→ γγ) =
α2m3

ρ

1024π3

∣∣∣∣ 2

vEW

cosϑAV

(
4m2

W

m2
ρ

)
+

2

vEW

cosϑ
4

3
AF

(
4m2

t

m2
ρ

)
− 2√

2f
tanϑ

4

3
AF

(
4m2

T

m2
ρ

)∣∣∣∣2 . (69)

We conclude that for all decay modes except the diphoton,

σ(pp→ ρ)ΓBR(ρ→ Ai)

σSM(pp→ h)ΓSM
BR(h→ Ai)

=
1

1 +
m2
t

m2
T

, (70)

where we have neglected tiny effects of order Γ(ρ→ γγ)/ΓSM(h). For diphoton decays

σ(pp→ ρ)ΓBR(ρ→ γγ)

σSM(pp→ h)ΓSM
BR(h→ γγ)

=
Γ(ρ→ γγ)

ΓSM(h→ γγ)
. (71)

These functions are plotted in Fig. 10. The solid blue line denotes the rates for all final

states other than diphoton and the dashed red line denotes the rate to diphotons. Note

that even though the rate into two photons is enhanced because of the top partner loop, the

universal suppression factor more than compensates for this, leading to a net suppression.

As with the MTH model, modification of Higgs couplings in the QLH model relative to

the SM is constrained by precision electroweak measurements. The analysis of the MCHM4
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FIG. 10. Ratios of the rate of Higgs events into a given final state in Quirky Little Higgs model

normalized to the SM. The solid blue line denotes the rates for all final states other than diphoton

and the dashed red line denotes the diphoton final state. The vertical orange and red lines represent

the 95% confidence bound from precision electroweak constraints at 1 and 5 TeV respectively.

model in [30] also applies to the QLH . Their bound on ε, where
√

1− ε2 = cosϑ, can be

translated into a bound on the top partner mass. This analysis was carried out assuming a

cutoff Λ =3 TeV. As in the MTH case, we can translate this bound on ε at Λ to a bound on

ε′ at Λ′; see Eq. (32). The 2σ bound on ε′ can be translated into a limit on the top partner

mass. In Fig. 10 we denote the bound corresponding to a 1 and 5 TeV cutoff by the vertical

orange and red lines respectively.

Finally, we estimate the tuning ∆m of the Higgs mass parameter m2 as a function of the

top partner mass as a measure of the naturalness of the QLH model. We continue to use

the formula

∆m =

∣∣∣∣2δm2

m2
h

∣∣∣∣−1

(72)

to estimate the tuning. We have denoted the quantum corrections to the Higgs mass pa-

rameter as δm2 and the physical Higgs mass as mh = 125 GeV.

The diagrams in Fig. 9, with λ1 = λ2 = λt lead to

|δm2| = 3λ2
tm

2
T

8π2
ln

(
Λ2

m2
T

)
, (73)

up to finite corrections. We take Λ = 5 TeV as the cutoff of the theory. In Fig. 10 we have

labeled the top partner masses corresponding to 30%, 20%, and 10% tuning. We see again
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that even at the 5% branching fraction precision expected at full luminosity, the LHC will

not be able to probe tunings at the 10% level. Studies of the direct collider limits on quirky

top partners are thus well motivated.

V. CONCLUSIONS

As the LHC bounds on new colored particles continue to grow, theories of physics beyond

the SM that address the hierarchy problem with colorless top partners have become increas-

ingly attractive. Since these new states must be light and couple to the Higgs with order

one strength to address the hierarchy problem, their affects on Higgs production and decay

can be significant. This suggests the possibility of using precision Higgs measurements at

the LHC to probe these scenarios.

In this paper we have considered three theories of colorless top partners: the Mirror Twin

Higgs, Folded Supersymmetry and the Quirky Little Higgs. In each case we determined the

effects of the top partners on Higgs production and decay rates, and used the results to

place limits on the top partner masses, and therefore on naturalness. We have shown that

even with 3000 fb−1 at 14 TeV, the LHC will not be able to strongly disfavor naturalness.
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Appendix A: General Expressions for the Higgs Decay Rate to Two Photons

In all the models we consider, the effects of new physics on Higgs production and decays

often occur as simply a multiplicative factor relative the SM. In tree level processes this

is a reflection of modified couplings between the Higgs and SM fields. In loop mediated

processes, however, we might expect more complicated corrections.

Because we are considering top partners which are not charged under color the gluon

fusion and h→ gg decay are affected in exactly the same way as tree level processes. When

the top partner is electrically charged, however, the analysis of h→ γγ is more subtle.

At leading order the partial width of the Higgs to γγ is given by

Γ(h→ γγ) =
α2m3

h

1024π3

∣∣∣∑M
∣∣∣2 (A1)

where the amplitudesM for each electrically charged vector, fermion, or scalar are given by

MV =
g (mV )

m2
V

Q2
VAV (xV ), (A2)

MF =
g (mF )

m2
F

Q2
FAF (xF ), (A3)

MS =
g (mS)

m2
S

Q2
SAS(xS). (A4)

In these definitions the Qs are the electrical charges in units of e, the charge of the proton

and g(m) is the couping of the particle to the Higgs. The A functions are given by

AV (x) = −x2

[
2

x2
+

3

x
+ 3

(
2

x
− 1

)
arcsin2

(
1√
x

)]
, (A5)

AF (x) = 2x2

[
1

x
+

(
1

x
− 1

)
arcsin2

(
1√
x

)]
, (A6)

AS(x) = −x2

[
1

x
− arcsin2

(
1√
x

)]
(A7)

where xi = 4m2
i /m

2
h and is understood to be greater than one. The couplings g are defined

by

g(m)

m2
=

1

m2(v)

∂m2(v)

∂v
(A8)

where in the case of fermions the mass squared is taken to mean |m(v)|2.
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Appendix B: MSSM with Extra U(1)X

In this appendix we add a U(1)X gauge symmetry, with coupling gX , to the MSSM which

is then spontaneously broken. This affects the Higgs mass, the stop masses, and the Higgs

couplings to the stops. We follow closely the work of [35].

All MSSM matter content is given equal charge under hypercharge and U(1)X . In ad-

dition, the heavy scalar fields φ and φc, which spontaneously break the symmetry, carry

charges ±q under the new U(1)X but are singlets under every other MSSM gauge group.

These fields are part of chiral superfields Φ and Φc with superpotential

W = λS
(
ΦΦc − w2

)
(B1)

and soft masses

m2
φ

(
|φ|2 + |φc|2

)
. (B2)

For λ2w2 > m2
φ and equal soft masses these scalars obtain identical nonzero VEVs 〈φ〉. The

U(1)X gauge field Z ′µ also gets a mass mZ′ = 2qgX〈φ〉.

The usual MSSM D-terms

g2
L

2

(∑
MSSM

φ∗i qiσ
aφi

)2

+
g2
Y

2

(∑
MSSM

φ∗i qiφi

)2

(B3)

(with the qi denoting the charge of the ith field with respect to the appropriate gauge

symmetry) are joined by

g2
X

2

(∑
MSSM

φ∗i qiφi + q|φ|2 − q|φc|2
)2

. (B4)

When φ and φc have masses much higher than the weak scale we can integrate them out.

This generates the leading D-terms

g2
L

2

(∑
MSSM

φ∗i qiσ
aφi

)2

+
g2
Y + ĝ2

2

(∑
MSSM

φ∗i qiφi

)2

(B5)

where

ŝ2 = g2
X

(
1 +

m2
Z′

2m2
φ

)−1
v2

EW

4m2
Z

. (B6)

This effective enhancement of the hypercharge D-term raises the tree level Higgs mass to

m2
h0 = m2

Z cos2 2β
(
1 + ŝ2

)
. (B7)
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The D-term contributions to the Higgs-stop couplings and the stop masses are similarly

modified, as shown in the body of the paper. All numerical results, see Fig. 4, use the value

of ŝ such that mh0 = 125 GeV with stop loop corrections to the Higgs mass included[3]:

m2
h0 = m2

Z cos2 2β
(
1 + ŝ2

)
+

3λ2
t sin2 β

2π2

{
m2
t ln

(
mT̃mt̃

m2
t

)
+

sin2 2αt
4

(m2
T̃
−m2

t̃
) ln

(
m2
T̃

m2
t̃

)

+
sin4 2αt
16m2

t

[
(m2

T̃
−m2

t̃
)2 − 1

2
(m4

T̃
−m4

t̃
) ln

(
m2
T̃

m2
t̃

)]}
(B8)

where we have used the definition of sin 2αt from (41).
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